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Abstract: Let F be a global function field over the finite constant field Fq with 3 | q − 1 , and let K/F be a
cubic cyclic function fields extension with Galois group G =Gal(K/F ) =< σ > . Denote by C(K) and C(K)3

the ideal class group of K and its Sylow 3-subgroup, respectively. Let C(K)G3 = {[a] ∈ C(K)3| σ[a] = [a]} and
C(K)1−σ

3 = {[a](σ[a])−1| [a] ∈ C(K)3} . In this paper, we present a method for computing the 3-rank of the quotient
group C(K)G3 C(K)1−σ

3 /C(K)1−σ
3 . Specifically, when K is a cubic Kummer extension of Fq(T ) , we determine explicitly

the key factors t , x1, · · · , xt , and [A1], · · · , [At] in the process of computing the 3-rank of C(K)G3 C(K)1−σ
3 /C(K)1−σ

3 .
Combining this deterministic algorithm along with the structure of class groups for cubic Kummer function fields, the
3-rank of the Sylow 3-subgroup of C(K) is determined explicitly in this specific case. Examples are given in the last two
sections to elucidate our computational method.
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1. Introduction
The structure of the class group of global fields has been investigated intensively by many authors since Gauss
first studied the arithmetic of binary quadratic forms. Quadratic and cyclic number fields are mostly addressed
by researchers. Genus theory and the Rédei matrix, which were invented respectively by Gauss and Rédei, are
the two effective tools to deal with the structure of class groups of quadratic and cyclic number fields. Over
the past three decades, Conner and Hurrelbrink’s exact hexagon [6] and the generalized Rédei matrix [21] have
been combined with class field theory to study the structure of the Sylow subgroups of class groups.

In the seventies of the last century, Gerth began to research the structure of class groups of cyclic number
fields and associated density problem. In particular, Gerth studied in great detail the Sylow 3-subgroups of
cubic cyclic number fields (see [9]–[10]) and presented analogous results for the 3-rank of the 3-class group of
cubic fields to Gauss’s for the 2-rank of the 2-class group of quadratic fields. Using Gerth’s results on the 3-rank
of the class group of cubic number fields, Chen et al. [5], Guo [13], Li and Qin [15], and Zhou [23] studied the
3-ranks of tame kernels of cubic cyclic number fields and associated density problems. Recently, in terms of
Gerth’s results in the number field case, we presented in [22] the function field analogue of the l -rank of class
groups of cyclic function fields by the genus theory and Conner–Hurrelbrink exact hexagon for function fields.

Let F be a global function field over the finite constant field Fq with 3 | q − 1 , and let K/F a cyclic
extension of degree 3 of global function fields with G = Gal(L/K) =< σ > . Denote by C(K) and C(K)3 the
∗Correspondence: zzj_aqnu@163.com
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ideal class group of K and its Sylow 3-subgroup, respectively. Let

C(K)G3 = {[a] ∈ C(K)3| σ[a] = [a]}

and
C(K)1−σ

3 = {[a](σ[a])−1| [a] ∈ C(K)3}.

Genus theory together with the Conner–Hurrelbrink exact hexagon for function fields, the 3-rank, and the
structure of the Sylow 3-subgroup of C(K) were characterized explicitly in [22] when 3 does not divide the
class number of F . In this paper, we continue our previous work on the 3-rank of class groups of cubic
cyclic function fields. Now we describe the organization of this paper. In Section 2, we present the necessary
notation and known results. In Section 3, we give a method for computing the 3-rank of the quotient group
C(K)G3 C(K)1−σ

3 /C(K)1−σ
3 , which is one of the main results of this paper. To be more specific, we prove that

the 3-rank of C(K)G3 C(K)1−σ
3 /C(K)1−σ

3 equals the rank of matrix (aij)1≤i,j≤t where aij are determined by
Artin symbols for cubic Kummer extensions. When K is a cubic Kummer extension of Fq(T ) , we determine
explicitly in Section 4 the key factors t , x1, · · · , xt , and [A1], · · · , [At] in the process of computing the rank
of matrix (aij)1≤i,j≤t . It has to be pointed out that the most difficult part of determining the 3-rank of
C(K) is how to compute the 3-rank of C(K)G3 C(K)1−σ

3 /C(K)1−σ
3 . The computational method for the 3-rank

of C(K)G3 C(K)1−σ
3 /C(K)1−σ

3 completes the determination of the structure of the Sylow 3-subgroup of C(K) in
this special case. Finally, we conclude this paper with some remarks.

2. Notation and known results
In what follows, we first introduce some terminologies and notation for convenience. Unless otherwise specified,
k will denote the rational function field Fq(T ) throughout this paper over a finite field Fq with q a prime
power. Let F be a finite separable extension of k and F sep be a separable closure of F . Denote the set of all
prime divisors of F by SF . For a fixed nonempty finite subset S∞(F ) of SF , set S0(F ) = SF \ S∞(F ) . The
element in S0(F ) will be called a finite prime divisor of F while one in S∞(F ) will always be called an infinite
prime divisor of F . Denote by OF the set of elements of F that are integral at all finite prime divisors. It
is well known that OF is a Dedekind domain with F as its quotient field. Denote by I(F ) , C(F ) , and O∗

F

respectively the fractional ideal group, ideal class group, and unit group of OF . Let h(OF ) = |C(F )| , which is
finite, be the class number of OF . For an ideal a ∈ I(F ) , we use [a] to denote the image of a in C(F ) . It is
worth pointing out here that there is a one-to-one correspondence between prime divisors in S0(F ) and prime
ideals in I(F ) . Without causing confusion, p will denote both prime divisor and prime ideal for convenience.
For a finite separable extension K/F , let S∞(K) be the set of prime divisors of K that are the extensions
of S∞(F ) . Then OK , which is composed of the elements integral at prime divisors in S0(K) , is exactly the
integral closure of OF in K .

With notation defined as above, we give several definitions that will be used in the following discussion.

Definition 2.1 ([17], [19]) A finite unramified extension of function fields K/F is called a Hilbert extension
with respect to S∞(F ) , or Hilbert extension for simplicity, if all the infinite prime divisors split completely in
K . The Hilbert class field of function field F with respect to S∞(F ) , denoted by HF , is the maximal Hilbert
abelian extension of F in F sep .
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The following definition is a function field analogue of the number field case, which was given by Fröhlich
[7].

Definition 2.2 ([3], [17], [22]) The genus field GF of function field F is the maximal Hilbert abelian extension
of F , which is a compositum of F with an abelian function field over k .

For a global function field F/Fq , it follows readily from the above definitions that GF is a subfield of
HF . By the class field theory, the Artin reciprocity law map provides us an isomorphism as follows

AF : C(F ) → Gal(HF /F ).

Let l be a prime number. This isomorphism tells us that F admits a cyclic Hilbert extension K/F if and only
if l | h(OF ) . Suppose that K/F is a cyclic Hilbert extension of degree l . Then K ⊂ HF and there is an exact
sequence as follows:

1 → Gal(HF /K) → Gal(HF /F ) → Gal(K/F ) → 1.

Now we focus our attention on the case that F/k is a finite abelian extension. In this case, the genus field
GF of F is exactly the subfield of HF , which is maximal abelian over k . Note here by Lemma 2.3 in [19] that
HF /k is a Galois extension. These statements mean that the Galois group Gal(HF /GF ) is the commutator
subgroup of Gal(HF /k) and

Gal(GF /F ) ∼= Gal(HF /F )/Gal(HF /GF ).

Under the Artin map, Gal(HF /GF ) can be identified with a subgroup of C(F ) , which is characterized as the
principal genus (see Proposition 2.4 in [3] or Lemma 1 in [17]),

{[a]1−σ| [a] ∈ C(F ), σ ∈ Gal(F/k)},

where [a]1−σ = [a](σ[a])−1 .
To continue our discussion, we shall take a short detour to some notation. Let G =< σ > be a cyclic group

of order prime l with a fixed generator σ , and Aa finite G -module whose operation is written as multiplication.
Set N = 1+ σ+ · · ·+ σl−1 and I = 1− σ . Denote by Al and lA respectively the Sylow l -subgroup of A and
the set of elements in A of order no more than l . Define

Al = {al| a ∈ A},

AG = {a ∈ A| σ(a) = a},

AI = {I(a) = aσ(a)−1| a ∈ A}.

It is easy to check that Al , lA , Al , AG , and AI are all G -submodules of A . We denote by rln(A) the ln -rank
of A , i.e.

rln(A) := dimZ/lZ

(
Aln−1

/Aln
)
.

With notation defined as in the previous paragraph, assume from now on that K/F is a cyclic func-
tion fields extension of prime degree l with the Galois group G = Gal(K/F ) =< σ > . It is clear that
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K∗, I(K), C(K),O∗
K are all G -modules, and the principal genus of C(K) can be denoted by C(K)I . The ele-

ments in C(K)G are called ambiguous ideal classes. The Galois module structure of C(K)l and C(K)Gl , which
has been studied intensively by many researchers over a long period of time, is an important and difficult issue
in number theory. Let Zl be the ring of l -adic integers. Under the map σ 7→ ζl , where ζl is a primitive l th
root of unit, we obtain an isomorphism of discrete valuation rings as follows:

Zl[σ]/(N ) ∼= Zl[ζl].

Thus, if l ∤ h(OF ) , then C(K)l is a finite module over Zl[ζl] because N acts trivially on C(K)l . It is well
known that the Galois module structure of C(K)l is determined by the dimensions

λi = dimZ/lZ

(
C(K)I

i−1

l /C(K)I
i

l

)
, i ≥ 1.

We assume that l ∤ h(OF ) in the remainder of this section. Under this condition, it is not hard to
check that C(K)ll ⊂ C(K)Il , and furthermore, C(K)l ⊂ C(K)I when C(F ) is trivial (see [22]). Notice that
quotient groups C(K)l/C(K)ll , C(K)l/C(K)Il , and C(K)Il /C(K)ll are all elementary abelian l -groups. This
remark implies that

rl(C(K)l) = rl
(
C(K)l/C(K)ll

)
= rl

(
C(K)l/C(K)Il

)
+ rl

(
C(K)Il /C(K)ll

)
.

Accordingly, if C(F ) is trivial, then we observe that

C(K)/C(K)I ∼= C(K)l/C(K)Il ,

C(K)I/C(K)l ∼= C(K)Il /C(K)ll,

since the action of I on the non- l -part of C(K) is invertible. We note that the action of N on C(K)l is trivial,
and N acts trivially also on C(K) when C(F ) is trivial. These facts tell us that C(K)Gl is an elementary
abelian l -group, and so is C(K)G when C(F ) is trivial. Combining these facts yields the following conclusion.

Lemma 2.3 ([22]) Let K/F be a cyclic function fields extension of prime degree l with Galois group G =

Gal(K/F ) =< σ > . If l ∤ h(OF ) , then

rl
(
C(K)Gl

)
= rl

(
C(K)l/C(K)Il

)
;

if C(F ) is trivial, then
rl
(
C(K)G

)
= rl

(
C(K)/C(K)I

)
.

As mentioned above, when l = 3 , the Galois module structure of C(K)3 is determined by the dimensions

dimZ/3Z
(
C(K)3/C(K)I3

)
and dimZ/3Z

(
C(K)I3/C(K)I

2

3

)
. However, we note that C(K)I

2

3 = C(K)33 if 3 ∤ h(OF ) .

Thus, in order to determine the Galois module structure of C(K)3 , it suffices to describe explicitly the dimensions
dimZ/3Z

(
C(K)3/C(K)I3

)
and dimZ/3Z

(
C(K)I3/C(K)33

)
. The following result provides the 3-rank of C(K) under

some mild conditions.
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Theorem 2.4 ([22]) Let K/F be a cyclic extension of degree 3 of global function fields with G = Gal(L/K) =<

σ > . Suppose that 3 ∤ h(OF ) , t = r3(C(K)G3 ) and s = r3
(
C(K)G3 C(K)I3/C(K)I3

)
. Then,

(i) r3(C(K)) = 2t− s ;

(ii) C(K)3 is isomorphic to the direct product of an abelian 3-group of rank 2(t−s) and an elementary abelian
3-group of rank s , where each element of the elementary abelian 3-group of rank s is an ambiguous ideal
class.

With the help of this result, we shall focus our attention on the 3-rank of cyclic extension of degree 3 in
the following sections.

3. 3-Rank of class groups of cubic cyclic function fields

Using the results of the previous section, this section is devoted to studying the structure of the Sylow 3-subgroup
of cubic cyclic function fields in the general case.

Unless otherwise specified, suppose that F/Fq is a global function field with 3 | q − 1 and 3 ∤ h(OF ) . It
follows readily from the Kummer theory that cubic cyclic extension K/F is a Kummer extension. Then there
is some element α ∈ K∗ such that K = F ( 3

√
α) . Suppose that G = Gal(K/F ) =< σ > . By the genus theory

for function fields mentioned in the previous section, we get an isomorphism induced by the Artin reciprocity
law map

C(K)/C(K)I ∼= Gal(GK/K).

We note that I acts as an isomorphism on the non-3-part of C(K) . It can be easily seen that

C(K)3/C(K)I3
∼= C(K)/C(K)I .

Thus, it follows from C(K)33 ⊂ C(K)I3 that C(K)/C(K)I is an elementary abelian 3-group, and this implies
in turn that the genus field GK is a 3-extension of K of degree 3t in HK , where t = r3

(
C(K)3/C(K)I3

)
=

r3
(
C(K)G3

)
. In view of the Galois theory and Kummer theory, we infer that there are elements x1, x2, · · · , xt

in K , such that
GK = K( 3

√
x1, 3

√
x2, · · · , 3

√
xt).

With the aid of these preparations and the class field theory, we will present explicitly the 3-rank of
C(K)G3 C(K)I3/C(K)I3 , and then describe the structure of the Sylow 3-group of ideal class group of K .

To state the following conclusion, we first introduce some necessary notation. We fix γ as a generator of

F∗
q and put η = γ

q−1
3 . Then η is a primitive 3-root of unit in F . For a finite abelian function fields extension

L/K and an unramified prime ideal P ∈ I(K) , denote by
(

L/K
P

)
the associated Artin symbol.

Theorem 2.4 tells us that the key to describing the structure of the Sylow 3-subgroup of C(K) is to
compute the 3-ranks of C(K)G3 and C(K)G3 C(K)I3/C(K)I3 . Under some specific conditions, the 3-rank of
C(K)G3 is relatively easy to determine. The following theorem provides a method for computing the 3-rank
of C(K)G3 C(K)I3/C(K)I3 via Artin symbols associated with multiple Kummer extension.
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Theorem 3.1 Let F/Fq be a global function field with 3 | q − 1 and 3 ∤ h(OF ) , and let K/F be a cubic
cyclic function fields extension with G = Gal(K/F ) =< σ > . Suppose that GK = K( 3

√
x1, 3

√
x2, · · · , 3

√
xt) is

the genus field of K , where t = r3
(
C(K)3/C(K)I3

)
= r3

(
C(K)G3

)
and x1, x2, · · · , xt ∈ K , and ambiguous ideal

classes [A1], [A2], · · · , [At] ∈ C(K)G3 are a basis for C(K)G3 .
Let s be the rank of the matrix A = (aij)1≤i≤t,1≤j≤t , where the rank of A is the rank over Z/3Z , and

aij ∈ Z/3Z are determined by the following relation:

τij( 3
√
xi)

3
√
xi

= ηaij , τij =

(
K( 3

√
xi)/K

Aj

)
.

Then s = r3
(
C(K)G3 C(K)I3/C(K)I3

)
.

One remark is in order about this theorem before finishing the proof of it. When s is computed by the
method of this theorem, it follows from Thorem 2.4 that r3(C(K)) = 2t− s , and the Sylow 3-subgroup of C(K)

is isomorphic to the direct product of an abelian 3-group of rank 2(t − s) and an elementary abelian 3-group
of rank s , where each element of the elementary abelian 3-group of rank s is an ambiguous ideal class.

Proof of Theorem 3.1. To ease notation, we denote by Ki the field K( 3
√
xi) for 1 ≤ i ≤ t . Now we begin

the proof of the following equation:

rank(A) = r3
(
C(K)G3 C(K)I3/C(K)I3

)
.

We first define the following composite homomorphism:

Φ : C(K)G3 → C(K)3/C(K)I3
∼= Gal(GK/K),

where the first map is induced by the inclusion C(K)G3 ⊂ C(K)3 , and the isomorphism is induced by the Artin
map. Thus, we get that for any ideal class [A] ∈ I(K) ,

Φ([A]) =

(
GK/K

A

)
.

We note that Φ is a linear map of Z/3Z -vector spaces from C(K)G3 to Gal(GK/K) , and kerΦ = C(K)G3 ∩C(K)I3 .
Since GK = K1K2 · · ·Kt and Ki ∩Kj = K for 1 ≤ i ̸= j ≤ t , we get an isomorphism as follows:

Ψ : Gal(GK/K) → Gal(K1/K)× Gal(K2/K)× · · · × Gal(Kt/K),

ϕ 7→ (ϕ|K1
, ϕ|K2

, · · · , ϕ|Kt
) ,

where ϕ|Ki
denotes the restriction of ϕ ∈ Gal(GK/K) to Ki . Notice that Ki/K, i = 1, · · · , t , are all Kummer

extensions. It follows from the Kummer theory that there is an isomorphism for every 1 ≤ i ≤ t

χi : Gal(Ki/K) → Z/3Z, φ 7→ bφ,

where bφ satisfies the relation φ( 3
√
xi)

3
√
xi

= ηbφ . Therefore, we can take the composite of the above three
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homomorphisms to establish the following map:

Π =

(
t∏

i=1

χi

)
◦Ψ ◦ Φ : C(K)G3 → Z/3Z× · · · × Z/3Z︸ ︷︷ ︸

t

,

[A] 7→
(
b(K1/K

A

), · · · , b(Kt/K
A

)) .

It is obvious that the composite Π is a linear map of Z/3Z -vector spaces with the same kernel as Φ since∏t
i=1 χi and Ψ are both isomorphisms.

By the definition of the matrix A , we get that it is exactly the matrix of linear map Π with respect to
the basis [A1], [A2], · · · , [At] of C(K)G3 . Thus, the following equation can be established easily by the facts from
linear space

r3
(
C(K)G3 ∩ C(K)I3

)
= dimZ/3Z(kerΠ) = t− dimZ/3Z(imΠ)

= t− rank(A). (1)

Using the second isomorphism theorem of groups, we have

C(K)G3 /C(K)G3 ∩ C(K)I3
∼= C(K)G3 C(K)I3/C(K)I3 .

Combining this isomorphism with equation (1) yields that

rank(A) = t− r3
(
C(K)G3 ∩ C(K)I3

)
= r3

(
C(K)G3 C(K)I3/C(K)I3

)
,

which is just what we wanted to prove, and this completes our proof. 2

Remark 3.2 With notation as in the above theorem, it is clear that s ≤ t , and C(K)3 = C(K)G3 , i.e. all
elements in C(K)3 are ambiguous ideal classes, if s = t . As for the equation r3 (C(K)) = 2t − s , we can
approach it using another method as follows. We first observe that if 3 ∤ h(OF ) , then

C(K)33 = C(K)I
2

3 ,

and

r3(C(K)) = r3
(
C(K)3/C(K)33

)
= r3

(
C(K)3/C(K)I3

)
+ r3

(
C(K)I3/C(K)33

)
. (2)

However, it is easy to see that

|C(K)I3/C(K)I
2

3 | = |C(K)G3 ∩ C(K)I3 |. (3)

C(K)G3 /C(K)G3 ∩ C(K)I3
∼= C(K)G3 C(K)I3/C(K)I3 together with (3) yields that

s = r3
(
C(K)G3 C(K)I3/C(K)I3

)
= r3

(
C(K)G3 /C(K)G3 ∩ C(K)I3

)
= r3

(
C(K)G3

)
− r3

(
C(K)G3 ∩ C(K)I3

)
. (4)
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It follows from (2) and (4) that r3 (C(K)) = 2t− s . Although the way to the 3-rank of C(K) presented here is
simpler compared with that in Theorem 2.4, we should point out that we cannot obtain the results of the second
part of Theorem 2.4 from this simple method.

From the above theorem, we see that one should find explicitly the number t , the elements x1, x2, · · · , xt ,
and the ambiguous ideal classes [A1], [A2], · · · , [At] , which is not easy work in general, when one applies the
above theorem to a concrete case. However, when we focus our attention on the cubic Kummer function fields
over a rational function field, the computations mentioned above become relatively easy. In the remainder of
this paper, we consider the cubic Kummer function fields over k = Fq(T ) with 3 | q−1 , show how to determine
explicitly t , x1, · · · , xt and [A1], · · · , [At] , and present explicitly the 3-rank of cubic Kummer function fields
over k in some special cases.

4. Kummer function fields over rational function field
Let S∞(k) = {∞ = 1

T } . Then the integral domain of k with respect to S∞(k) is the polynomial ring
Ok = Fq[T ] , O∗

k = F∗
q , and C(k) is trivial. It is worth noting here that the finite prime divisor of k corresponds

to the monic irreducible polynomial of positive degree in Ok . Suppose that K = k( 3
√
D) is a cubic Kummer

function field, where D is a 3-power free polynomial in Ok of positive degree. It is not hard to check that two
cubic Kummer function fields k( 3

√
D) and k( 3

√
D′) are equal if and only if D′ = x3Di for some x ∈ k∗ and

positive integer 1 ≤ i ≤ 2 .

As for the cubic Kummer function field K = k( 3
√
D) with the Galois group G = Gal(K/k) =< σ > , let

D = a
∏g

i=1 P
ei
i , where a ∈ F∗

q , Pi are monic irreducible polynomials and 1 ≤ ei ≤ 2, 1 ≤ i ≤ g . In fact, we

may take a as an element in F∗
q/
(
F∗
q

)3 . We can assume that the leading coefficient of D is either 1 or γ , i.e.
a ∈ {1, γ} , where γ is a fixed generator of F∗

q . In order to go on with the discussion, we determine firstly how
the prime divisors of k ramify in K . The following conclusion, which can be verified easily, is well known (see
Lemma 3 in [17]).

Lemma 4.1 With notation defined as in the previous paragraph, the finite prime divisor P of k ramifies in K

if and only if P | D . With respect to the infinite prime divisor ∞ , if 3 ∤ degD , then ∞ ramifies totally in K ;

if 3 | degD and D is monic modulo
(
F∗
q

)3 , then ∞ splits completely in K ; otherwise, ∞ is inert in K .

In terms of this lemma, we can compute t = r3
(
C(K)3/C(K)I3

)
= r3

(
C(K)G3

)
as follows (see Corollary

2.2.10 in [1] or Corollary 3.6 in [22]).

Lemma 4.2 Let K = k( 3
√
D)/k be a cubic Kummer extension with D = a

∏g
i=1 P

ei
i . Suppose that κ is equal

to 0 or 1 accordingly as ∞ splits completely in K or not. Then,

t = r3
(
C(K)G3

)
= g + κ− 1− log3

(
[F∗

q : F∗
q ∩NK/k(K

∗)]
)
,

where NK/k denotes the norm map from K to k .

The following lemma characterizes when the generator γ of F∗
q can be a norm of some elements in K∗

(see Lemma 3.4 in [2]).
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Lemma 4.3 Let K = k( 3
√
D) with D = a

∏g
i=1 P

ei
i . If 3 | degPi for every 1 ≤ i ≤ g , then F∗

q ∩NK/k(K
∗) =

F∗
q ; otherwise F∗

q ∩NK/k(K
∗) =

(
F∗
q

)3 .

We observe that
(
F∗
q

)3 ⊂ NK/k(O∗
K) ⊂ F∗

q ∩NK/k(K
∗) ⊂ F∗

q and [F∗
q :
(
F∗
q

)3
] = 3 . Combining this fact

along with the above three lemmas, we can determine t explicitly as follows.

Proposition 4.4 Let K = k( 3
√
D) with D = a

∏g
i=1 P

ei
i , where a ∈ {1, γ} and 1 ≤ ei ≤ 2, i = 1, · · · , g . For

t = r3
(
C(K)G3

)
, we have

(i) if a = 1 , 3 | degD and 3 | degPi for every 1 ≤ i ≤ g , then t = g − 1 ;

(ii) if a = 1 , 3 | degD and 3 ∤ degPi for some Pi , then t = g − 2 ;

(iii) if a = γ , 3 | degD and 3 | degPi for every 1 ≤ i ≤ g , then t = g ;

(iv) if a = γ , 3 | degD and 3 ∤ degPi for some Pi , then t = g − 1 ;

(v) if 3 ∤ degD , then then t = g − 1 .

It has to be pointed out that the conclusion of the above proposition, which is established from a different
point of view compared with Peng’s, is a special case of Lemma 5 in [17]. Actually, Peng [17] described explicitly
the genus field of Kummer function fields (see also Theorem 2.5 in [20]). For the sake of completeness, we present
the result here without proof.

Lemma 4.5 With notation defined as above, suppose that 3 ∤ degP1, · · · ,degPm , and 3 | degPm+1, · · · ,degPg .
We have:

(i) if a = 1 , 3 | degD and m = 0 , then GK = k( 3
√
P1, · · · , 3

√
Pg) ;

(ii) if a = 1 , 3 | degD and m > 1 , then

GK = k( 3

√
P1P

a2
2 , · · · , 3

√
P1P

am
m , 3

√
Pm+1, · · · , 3

√
Pg),

where ai are integers in {1, 2} such that 3 | degP1 + ai degPi , i = 2, · · · ,m ;

(iii) if a = γ , 3 | degD and m = 0 , then GK = k( 3
√
γ, 3

√
P1, · · · , 3

√
Pg) ;

(iv) if a = γ , 3 | degD and m > 1 , then

GK = k( 3
√
γ, 3

√
P1P

a2
2 , · · · , 3

√
P1P

am
m , 3

√
Pm+1, · · · , 3

√
Pg),

where ai are defined as the case (ii);

(v) if a = 1 and 3 ∤ degD , then GK = k( 3
√
P1, · · · , 3

√
Pg) ;
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(vi) if a = γ and 3 ∤ degD , then

GK = k( 3
√
γb1P1, · · · , 3

√
γbmPm, 3

√
Pm+1, · · · , 3

√
Pg),

where bi are integers in {1, 2} such that 3 | degPi − bi degD , i = 1, · · · ,m .

Combining Proposition 4.4 along with Lemma 4.5, we get explicitly the number t and elements x1, · · · , xt

for the Kummer function field K = k( 3
√
D) . We summarize these results as follows for ease of use.

Proposition 4.6 Let K = k( 3
√
D) with D = a

∏g
i=1 P

ei
i , where a ∈ {1, γ} and 1 ≤ ei ≤ 2, i = 1, · · · , g , and

t = r3
(
C(K)G3

)
. Suppose that 3 ∤ degP1, · · · ,degPm , and 3 | degPm+1, · · · ,degPg . We get that:

(i) if a = 1 , 3 | degD and m = 0 , then t = g − 1 and GK = K( 3
√
P1, · · · , 3

√
Pg−1) ;

(ii) if a = 1 , 3 | degD and m > 1 , then t = g − 2 and

GK = K( 3

√
P1P

a2
2 , · · · , 3

√
P1P

am−1

m−1 , 3
√

Pm+1, · · · , 3
√
Pg),

where ai are integers in {1, 2} such that 3 | degP1 + ai degPi , i = 2, · · · ,m− 1 ;

(iii) if a = γ , 3 | degD and m = 0 , then t = g and GK = K( 3
√
P1, · · · , 3

√
Pg) ;

(iv) if a = γ , 3 | degD and m > 1 , then t = g − 1 and

GK = K( 3

√
P1P

a2
2 , · · · , 3

√
P1P

am
m , 3

√
Pm+1, · · · , 3

√
Pg),

where ai are integers in {1, 2} such that 3 | degP1 + ai degPi , i = 2, · · · ,m ;

(v) if a = 1 and 3 ∤ degD , then t = g − 1 and GK = K( 3
√
P1, · · · , 3

√
Pg−1) ;

(vi) if a = γ and 3 ∤ degD , then t = g − 1 and

GK = K( 3
√
γb1P1, · · · , 3

√
γbm−1Pm−1,

3
√

Pm+1, · · · , 3
√

Pg),

where bi are integers in {1, 2} such that 3 | degPi − bi degD , i = 1, · · · ,m− 1 .

Finally, we need to describe explicitly the basis of C(K)G3 for cubic Kummer function field K , which
is our main goal of the rest of this section. In fact, Wittmann determined explicitly in [20] the generators of
C(K)G3 by considering the long exact cohomological sequence attached to a classical exact sequence.

For the cubic Kummer function field K = k( 3
√
D) with D = a

∏g
i=1 P

ei
i , denote by p1, · · · , pg the prime

ideals of OK lying above the finite prime ideals P1Ok, · · · , PgOk of k , which are exactly the ramified finite
prime divisors in K/k . Suppose that a is an integral ideal in OK such that all the prime ideals dividing it split

completely in K/k , and satisfies σa = βa where β ∈ K∗ with NK/k(β) ∈ F∗
q\
(
F∗
q

)3 . We refer to the remark
of Corollary 2.4 in [20] for the reason that we can make this assumption. With the help of Corollary 2.4 in [20],
we can describe the basis of C(K)G3 as follows.
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Proposition 4.7 With notation defined as above, we can obtain

(i) if a = 1 , 3 | degD and m = 0 , then [p1], · · · , [pg−2], [a] is a basis for C(K)G3 ;

(ii) if a = 1 , 3 | degD and m > 1 , then [p1], · · · , [pg−2] is a basis for C(K)G3 ;

(iii) if a = γ , 3 | degD and m = 0 , then [p1], · · · , [pg−1], [a] is a basis for C(K)G3 ;

(iv) if a = γ , 3 | degD and m > 1 , then [p1], · · · , [pg−1] is a basis for C(K)G3 ;

(v) if 3 ∤ degD , then [p1], · · · , [pg−1] is a basis for C(K)G3 .

In view of Proposition 4.6 and 4.7, we can now determine explicitly in this special case the rank of
A mentioned in Theorem 3.1 by computing the appropriate power residue symbols. Since the procedure of
computations is similar, we only give the details for case (i) in Proposition 4.6.

In order to do the computation, we need to recall what the l th power residue symbol in Fq[T ] . Let
P ∈ Fq[T ] be an irreducible polynomial and l a prime number with l | q− 1 . For A ∈ Fq[T ] with P ∤ A , define
the l th power residue symbol

(
A
P

)
l

as the unique element in F∗
q such that

A(qdeg P−1)/l ≡
(
A

P

)
l

(mod P ).

If P | A , define
(
A
P

)
l
= 0 . We can extend the definition of the l th power residue symbol to the case that P is

replaced with an arbitrary 0 ̸= B ∈ Fq[T ] . For polynomial B =
∏m

i=1 P
ni
i ∈ Fq[T ] , define

(
A
B

)
l

as

(
A

B

)
l

=

m∏
i=1

(
A

Pi

)ni

l

.

For further details and the properties of the l th power residue symbol, we refer to Chapter 3 in [19].
With notation defined as in the previous two propositions, we now compute matrix A in Theorem 3.1.

In order to simplify the calculation and demonstrate the procedure, we make an assumption in case (i) that
every prime ideal pi splits completely in K( 3

√
Pi)/K .

In case (i), t = g− 1 , GK = K( 3
√
P1, · · · , 3

√
Pg−1) , and [p1], · · · , [pg−2], [a] is a basis for C(K)G3 . Denote

by Pi the prime ideal of K( 3
√
Pi) lying above pi for 1 ≤ i ≤ g − 1 . For 1 ≤ i ̸= j ≤ g − 2 , since Pi and Pj

are prime to each other,(
K( 3

√
Pi)/K
pj

)
3
√
Pi

3
√
Pi

≡ 3
√
Pi

Npj−1
= P

(qdeg Pj−1)/3
i ≡

(
Pi

Pj

)
3

(mod Pj). (5)

This congruence implies that

ηaij =

(
Pi

Pj

)
3

, 1 ≤ i ̸= j ≤ g − 2. (6)

Similarly, we have

ηag−1 j =

(
Pg−1

Pj

)
3

, 1 ≤ j ≤ g − 2, ηai g−1 =

(
Pi

a

)
3

, 1 ≤ i ≤ g − 1. (7)
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Thus, for 1 ≤ i ̸= j ≤ g−1 , aij and ag−1g−1 can be determined by the above three equations (6) and (7). Now
there are only the diagonal entries aii, 1 ≤ i ≤ g − 2 that need to be determined. As it is well known that if pi

splits completely in K( 3
√
Pi)/K , then the Artin symbol

(
K( 3

√
Pi)/K
pi

)
is an identity, and thus aii = 0 . Hence,

matrix A is determined completely in this case.
Some remarks are in order before giving an example to illustrate our computational method. We note

here that the congruence (
K( 3

√
Pi)/K

pi

)
3
√
Pi ≡ 3

√
Pi

Npi

(mod Pi)

holds also for Pi and pi . However, we cannot divide both sides of the above congruence by 3
√
Pi as (5) because

ηaii ̸≡ P
(Npi−1)/3
i (mod Pi) . Thus, the above method for computing aij for i ̸= j cannot be applied here to

determine aii when the assumption that every prime ideal pi splits completely in K( 3
√
Pi)/K is removed. We

point out that the computation of
(

K( 3
√
Pi)/K
pi

)
3
√
Pi/

3
√
Pi is complicated and associated with the local Hilbert

symbol for local fields extension Kpi(
3
√
Pi)/Kpi whose Galois group is isomorphic to the decomposition group

of pi .

Example 4.1 Let k = F7(T ) , P1 = T , P2 = T 2+2 , P3 = T 2+3T +4 , D = P1P2P3 , and K = k( 3
√
D) . Then

3 ∤ degD , and this means by Proposition 4.6 and 4.7 in turn that t = 3 , GK = K( 3
√
P1,

3
√
P2) , and [p1], [p2] is

a basis for C(K)G3 . We observe that 3 is a generator of F∗
7 and 2 is a primitive 3-root of unit in k .

It is easy to check by the l th power reciprocity law that
(

P1

P2

)
3
=
(

P2

P1

)
3
= 4 . By the relation

2a12 =

(
P1

P2

)
3

= 4 =

(
P2

P1

)
3

= 2a21 ,

a12 = a21 = 2 . In what follows, we compute a11 . Notice that P1 is ramified totally in K/k and unramified
in k( 3

√
P2P3)/k , and K( 3

√
P1) = k( 3

√
P1,

3
√
P2P3) . This implies that the ramified index of P1 in K( 3

√
P1)/k is

3 , and implies in turn that the prime ideal p1 of K lying above P1 is unramified in K( 3
√
P1)/K . Furthmore,

we can assert by the Kummer theorem that p1 splits completely in K( 3
√
P1)/K . This tells us that the Artin

symbol
(

K( 3
√
P1)/K
p1

)
is an identity, and thus a11 = 0 . No matter what value a22 takes, the determinant of A

is nonzero in Z/3Z , and thus the rank of A is 2 . Therefore, s = 2 .
By the remark of Theorem 3.1, the 3-rank of C(K) is equal to 2 , and the Sylow 3-subgroup C(K)3 of

C(K) is an elementary abelian group. This implies clearly that

C(K)3 ∼= Z/3Z× Z/3Z.

5. Further remarks
Generally speaking, characterizing explicitly the structure of class groups of global fields is an important and
difficult issue in number theory. In this paper, we concentrate our attention on the 3-rank of cubic cyclic
function fields. For the global function field F/Fq with 3 | q − 1 , we determined in Theorem 3.1 the 3-rank of
the ideal class group of cubic cyclic function field K by our previous results for arbitrary cyclic extensions.
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From the proof of our theorem, we see that the difficulties in computing r3(C(K)) lie in the determination
of s = r3

(
C(K)G3 C(K)I3/C(K)I3

)
. With the help of the class field theory, we convert this problem into calculating

a matrix, which is determined by the Artin symbol for Kummer function fields. Furthermore, our theorem tells
us also that the Sylow 3-group of C(K) is isomorphic to the direct product of an abelian 3-group and an
elementary abelian 3-group, and this allows us to understand more clearly the structure of C(K) . However,
we should also point out that the computation of matrix A in our theorem is not an ordinary thing. In fact,

Wittmann and Bae’s result on λ2 = dimZ/lZ

(
C(K)Il /C(K)I

2

l

)
(see [2] and [20]) can be used to calculate s . We

describe in detail in the remainder of this section how to make use of Wittmann and Bae’s result to determine
s for the Kummer function fields over a rational function field.

Note that
|C(K)I3/C(K)I

2

3 | = |C(K)G3 ∩ C(K)I3 |, (8)

and
C(K)G3 /C(K)G3 ∩ C(K)I3

∼= C(K)G3 C(K)I3/C(K)I3 . (9)

Since C(k) is trivial, all groups involved above are elementary abelian 3-group. Combining (8) with (9) yields
that

s = r3
(
C(K)G3 C(K)I3/C(K)I3

)
= r3

(
C(K)G3

)
− r3

(
C(K)G3 ∩ C(K)I3

)
= t− λ2.

Hence, with the aid of computation of λ2 provided by Wittmann and Bae, we can determine explicitly the
3-rank of C(K) also. However, as mentioned before, this only tells us the rank of C(K) ; we cannot know more
clearly in this way the structure of C(K) as Theorem 2.4 described.

Finally, we conclude our paper with an example by the method of Theorem 2.4 given along with the
computation of λ2 provided by Wittmann and Bae.

Example 5.1 Let k = F7(T ) , P1 = T , P2 = T 2 + 2 , P3 = T 2 + 3T + 5 , P4 = T 3 + T + 1 , D = P 2
1P2P3P4 ,

and K = k( 3
√
D) . This corresponds to case (ii) in Proposition 4.6, and thus t = 2 . Bae’s computation in [2]

implies that λ2 = 0 . Combining this fact with arguments mentioned in this section yields that s = t− λ2 = 2 .
It follows from Theorem 2.4 that the 3-rank of C(K) is equal to 2 , and the Sylow 3-subgroup C(K)3 of C(K)

is an elementary abelian group. This implies in turn that

C(K)3 ∼= Z/3Z× Z/3Z.
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