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Abstract: Let n1, n2, . . . , nd be positive integers and H be the numerical semigroup generated by n1, n2, . . . , nd . Let
A := k[H] := k[tn1 , tn2 , . . . , tnd ] ∼= k[x1, x2, . . . , xd]/I be the numerical semigroup ring of H over k. In this paper we
give a condition (∗) that implies that the minimal number of generators of the defining ideal I is bounded explicitly by
its type. As a consequence for semigroups with d = 4 satisfying the condition (∗) we have µ(in(I)) ≤ 2(t(H)) + 1 .

Key words: Frobenius number, pseudo-Frobenius number, almost Gorenstein ring, semigroup rings, monomial curve

1. Introduction
Let n1 < n2 < . . . < nd be positive integers such that gcd(n1, n2, . . . , nd) = 1 and H = ⟨n1, n2, . . . , nd⟩ =

{
∑d

i=1 cini | ci ∈ N for all 1 ⩽ i ⩽ n} be the numerical semigroup minimally generated by n1, n2, . . . , nd , where
N stands for the set of nonnegative integers. Let k be a field, A := k[H] := k[tn1 , tn2 , . . . , tnd ] the numerical
semigroup ring of H and R := k[x1, x2, . . . , xd] , the polynomial ring in d variables over k . We can regard R

and A as graded rings by R0 = A0 = k, deg t = 1 and degxi = ni for all 1 ⩽ i ⩽ d . If we set I := I(H) the
kernel of the graded ring homomorphism Φ : R → A defined by Φ(xi) = tni for each 1 ⩽ i ⩽ d, then the ring
A ⊂ k[t] has a presentation as a quotient R/I and I is called the defining ideal of H . Now let consider the
affine monomial curve C in the affine d -space Ad(k) defined parametrically by

x1 = tn1 , . . . , xd = tnd .

The vanishing ideal I(C) of C is the kernel of the k -algebra homomorphism Φ : R → k[t] defined by Φ(xi) = tni

for all 1 ⩽ i ⩽ d. If k is infinite we have I(C) = I(H) , the defining ideal of the corresponding semigroup. In
this paper we work from the algebraic point of view. From now on we do not need any hypothesis on the field
k .

One of the important problems in commutative algebra is finding the minimal system of generators µ(I)

and the minimal free resolution of I . When the embedding dimension d = 3, Herzog [11] proved that µ(I) ⩽ 3.

When d = 4 , the problem is rather wild and there are some results for special cases. Namely, if H is symmetric,
then Bresinsky [6] gave a complete description of the defining ideal I and he has proved that µ(I) ⩽ 5. Komeda
in [12] was the first person to give 5 binomials generating the toric ideal of a pseudo-symmetric semigroup.
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The full resolution is given by Barucci et al. in [5]. When d = 4 and n1 = 5 , the complete list of numerical
semigroups H = ⟨5, b, c, d⟩ which are almost symmetric is given by Nari et al. [16]. In that paper, the authors
proved that µ(I) = 5 if H is pseudo-symmetric and µ(I) = 6 if H is almost symmetric with t(H) = 3.

Moscariello in [15] proved that if H is pseudo-symmetric then its type is at most 3 . More recently, Eto in
[9] classified almost symmetric semigroups and gave minimal generators as well as free resolutions for the toric
ideal.

The purpose of the present paper is to show the relation between the reduced Gröbner basis of the defining
ideal I and the minimal number of generators of I . To state the main result, we need additional definitions
and notations. Recall that for two natural numbers d < r , the cyclic polytope Cd(r) is the convex hull of
any r distinct points on the moment curve t 7→ (t, t2, . . . , td) . The number of i−dimensional faces of Cd(r) is
denoted by Ci,d,r (see [13]). Throughout this paper, we use the degree revlex lexicographical order ≺degrevlex

on the monomials of the ring R with x1 ≺degrevlex · · · ≺degrevlex xd and degxi = ni for all 1 ⩽ i ⩽ d. Let
G(H) be the reduced Gröbner basis of the ideal I . We say that the semigroup H (or the ring k[H]) satisfies
the condition (*) if for every binomial Mi − Ni ∈ G(H) , with Ni ≺degrevlex Mi , the variable x1 divides the
monomial Ni for all i . With this notation, the main result is stated as follows.

Theorem 1.1 If the semigroup H satisfies the condition (*) then we have µ(in(I)) ≤ Cd−2,d−1,(t(H)+d−1) − 1 .
Moreover, G(H) is a minimal set of generators of I .

This paper is divided into 3 sections. In the next section, we recall some results about corner elements. In
section 3 , by using the condition (∗) , we will prove that the minimal number of generators of the defining ideal
I is bounded explicitly by its type (Theorem 1.1). As a consequence for semigroups satisfying the condition
(∗) and the ring A being almost Gorenstein, we have µ(I) ≤ 7 (Corollary 3.7).

2. Corner elements of monomial ideals
Let m := (x1, . . . , xd) be the maximal ideal of R , and J ⊂ R be a monomial ideal. We denote by [[R]] the set
of all monomials of R and µ(J) the number of minimal generators of J . For any vector a = (a1, . . . , ad) ∈ Nd ,
set a + 1 = (a1 + 1, . . . , ad + 1) ∈ Nd , ma := (xa1

1 , . . . , xad

d ) and xa = xa1
1 . . . xad

n . Now we need some results
from the book still not published and cited here as [MRS]: Monomial ideals and their decompositions by W.
Frank Moore, Mark Rogers, Sean Sather-Wagstaff.

Definition 2.1 A monomial z ∈ [[R]] is a J-corner element if z /∈ J but x1z, . . . , xdz ∈ J. The set of corner
elements of J in [[R]] is denoted by CR(J).

Fact 2.2 (i) It is clear that the J -corner elements are precisely the monomials in (J :R m) \ J , or, in other
words, CR(J) = [[(J :R m)]] \ [[J ]].

(ii) The set CR(J) is finite.

(iii) If rad(J) = m , it is well known that t(R/J) = Card(CR(J)) is the type of the ring R/J .

The following theorem gives us some methods for computing m-irreducible decompositions in general (see
[MRS], Theorem 6.3.5, Theorem 7.5.3, and Theorem 7.5.5).
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Theorem 2.3 (i) Let J ⊂ R be a monomial ideal such that rad(J) = m . If the set of corner elements is given

by CR(J) = {xbj | bj ∈ Nd, j = 1, . . . , t(R/J)} then J = ∩t(R/J)
j=1 mbj+1 is the unique irredundant irreducible

decomposition of J .

(ii) Assume that rad(J) ̸= m and J = (xbj | bj ∈ Nd, j = 1, . . . , µ(J))R. Let m be an integer strictly bigger
than any of the coordinates of the vectors bj . Set J ′ := J + (xm

1 , . . . , xm
d )R and CR(J

′) = {xcj | cj ∈

Nd, j = 1, . . . , t(R/J ′)} . Then J ′ = ∩t(R/J′)
j=1 mcj+1 is the unique irredundant irreducible decomposition of J ′

and J = ∩t(R/J′)
j=1 m̃cj+1 is the unique irredundant irreducible decomposition of J , where m̃cj+1 is obtained from

mcj+1 by deleting all monomials of the type xm
1 , . . . , xm

d from its generators.

Example 2.4 (i) Let R = k[x, y] be a polynomial ring of 2 variables over k and monomial ideal J =

(x6, x5y2, x2y4, y6)R . We can find the set of corner elements CR(J) = {xy5, x4y3, x5y}. Therefore, by Theorem
2.3, (i) the irredundant irreducible decomposition of J is

J = ∩t(R/J)
j=1 mbj+1 = (x2, y6)R ∩ (x5, y4)R ∩ (x6, y2)R.

(ii) Let R = k[x, y, z] be a polynomial ring of 3 variables over k and monomial ideal J = (xy, xz, yz)R . By
Theorem 2.3, (ii) we may set m = 2 and

J ′ := (xy, xz, yz)R+ (x2, y2, z2)R = (xy, xz, yz, x2, y2, z2)R = (x, y, z)2R.

Since the set of corner elements is CR(J) = {x, y, z} , we have that

J ′ = ∩t(R/J′)
j=1 mcj+1 = (x2, y, z)R ∩ (x, y2, z)R ∩ (x, y, z2)R.

By removing x2, y2, z2 from these ideals, we get the irredundant irreducible decomposition of J

J = (y, z)R ∩ (x, z)R ∩ (x, y)R.

Definition 2.5 Given two vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) ∈ Nd with b ⪯ a (that is, bi ≤ ai for
all i = 1, . . . , d). Let a \ b denote the vector whose i−th coordinate is

ai \ bi =

{
ai + 1− bi if bi ⩾ 1

0 if bi = 0.

If J is a monomial ideal whose minimal generators all divide xa , then the Alexander dual of J with respect to
a is

J [a] =
∩

{ma\b | xb is a minimal generator of J}.

The basic idea of the following theorem in Miller and Sturmfels [13] is making the irreducible components
into generators.

Theorem 2.6 ([13, Theorems 5.24, 5.27]) If all minimal generators of J divide xa , then
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(i) All minimal generators of J [a] divide xa , and (J [a])[a] = J .

(ii) J has a unique irredundant irreducible decomposition, and it is given by

J =
∩

{ma\b | xb is a minimal generator of J [a]}.

Equivalently, the Alexander dual of J with respect to a is given by minimal generators as

J [a] =
⟨

xa\b, where mb is an irreducible component of J
⟩
.

Example 2.7 Let R = k[x, y, z] be a polynomial ring over k , J = (xz2, y)R be the monomial ideal of R , and
a = (3, 3, 3) ∈ N3. Then we have by the above relation b1 = (1, 0, 2) , b2 = (0, 1, 0) and a \ b1 = (3, 0, 2) ,
a \ b2 = (0, 3, 0). Therefore we have by Theorem 2.6 that

J [(3,3,3)] = m(3,0,2) ∩m(0,3,0) = (x3, z2)R ∩ (y3)R = (x3y3, y3z2)R.

Now we set c1 = (3, 3, 0) and c2 = (0, 3, 2) be the vector components of x3y3, y3z2. Then we have a \ c1 =

(1, 1, 0) , a \ c2 = (0, 1, 2). By Theorem 2.6 again we have

(J [(3,3,3)])[(3,3,3)] = m(1,1,0) ∩m(0,1,2) = (x, y)R ∩ (y, z2)R = (xy, y, yz2, xz2)R = (xz2, y)R = J.

3. Initial ideals
In this part we study some properties of the initial ideal in(I) . Recall that for two natural numbers d < r , the
cyclic polytope Cd(r) is the convex hull of any r distinct points on the moment curve t 7→ (t, t2, . . . , td) . The
number of i−dimensional faces of Cd(r) is denoted by Ci,d,r . It is well known that

Cd−1,d,r = 2

(
r − d+1

2

r − d

)
if d is odd, (1)

Cd−1,d,r =

(
r − d

2

r − d

)
+

(
r − d

2 − 1

r − d

)
if d is even. (2)

Recall that any graded ideal J of a polynomial ring R has a minimal finite free resolution

0 −→ Rβs(J) −→ Rβs−1(J) −→ . . . −→ Rβ0(J) −→ J −→ 0.

The number βi(J) is called the i-Betti number. For i = 0 , we have β0(J) = µ(J) and if R/J is Cohen–
Macaulay then s = ht(J) − 1 and βs(J) is the type of R/J . The following theorem is an important result
given by [13, Theorem 6.29].

Theorem 3.1 The number βi(J) of minimal ith−syzygies of the monomial ideal J ⊂ R minimally generated
by µ(J) > d monomials is bounded above by Ci,d,µ(J) the number of i-dimensional faces of the cyclic d-polytope
with µ(J) vertices. For i = d− 1 this bound is strict.

As a consequence we will prove the following theorem.
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Theorem 3.2 Suppose that the monomial ideal J ⊂ R is minimally generated by µ(J) monomials and
rad(J) = m . Then µ(J) ≤ Cd−1,d,(t(R/J)+d) − 1 . In particular for d = 3 we have µ(J) ≤ 2(t(R/J)) + 1 .

Proof By Theorem 2.6 we have that J [a] is minimally generated by t(R/J) monomials since rad(J) = m .
Let m be an integer strictly bigger than the highest power of any variables appearing in the set of generators
of J [a] ; hence (J [a])′ := J [a] + (xm

1 , . . . , xm
d )R is minimally generated by t(R/J) + d monomials.

By Theorem 2.3 (ii), the number of irreducible components of (J [a])′ is the number of irreducible
components of J [a] and the number of irreducible components of J [a] coincides with the number of generators
of (J [a])[a] = J by Theorem 2.6. Now by applying Theorem 3.1 we get that βd−1((J

[a])′) = t(R/(J [a])′) ≤
Cd−1,d,(t(R/J)+d) − 1 . However, t(R/(J [a])′) equals the number of irreducible components of (J [a])′ and by

Theorem 2.3 (i) it equals the number of irreducible components of J [a] , which is µ(J) . Hence we have that
µ(J) ≤ Cd−1,d,(t(R/J)+d) − 1 .

For d = 3 , by formula (1) we have C2,3,r = 2r − 4 . Hence µ(J) ≤ 2(t(R/J)) + 1 . 2

Example 3.3 Let consider the case of two variables. Let R = k[x, y] , J ⊂ R be a monomial ideal such that
rad(J) = m . The generators of J can be represented in Figure 1 and so the monomials in J are in the up part
of a stair. The corner elements can also be drawn. It follows that the number of corner elements is µ(J) − 1 ,
that is t(R/J) = µ(J)− 1 .

Figure 1. Two variables case.

On the other hand, the cyclic polytope C2(r) is a convex polygon with r vertices and r faces (see Figure
2).

In particular, we have C1,2,(t(R/J)+2) − 1 = t(R/J) + 1 = µ(J) . Hence the bound in the above theorem
is tight.

Recall that the Frobenius number, denoted by F (H) , is the biggest integer not belonging to H and an
integer x is called a pseudo-Frobenius number if x /∈ H and x + h ∈ H , for all h ∈ H \ {0}. We denote
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Figure 2. Cyclic polytope.

by PF (H) the set of pseudo-Frobenius numbers of H. The type of H , denoted by t(H) , is the cardinality of
PF (H). A numerical semigroup H is called symmetric if for any integer x ∈ Z , either x ∈ H or F (H)−x ∈ H ,
and H is called pseudo-symmetric if F (H) is even and for any integer x ∈ Z \ {F (H)/2} , either x ∈ H or
F (H)− x ∈ H. A larger class of semigroups than pseudo-symmetric class defined in [4] (see also [10]) is called
almost symmetric, namely H is almost symmetric if for any x /∈ H such that x ≤ F (H) we have either
F (H)− x ∈ H or x ∈ PF (H).

Now let us go back to the case of monomial curves. Let in(I) be the initial ideal of the reduced Gröbner
basis G(H) for ≺degrevlex . Set R′ = k[x2, . . . , xd] and denote by [[R′]] the set of all monomials of R′. Let

φ : [[R′]] → N be the map defined by φ(M) = k2n2 + . . .+ kdnd for every monomial M = xk2
2 . . . xkd

d ∈ [[R′]] .
Recall that the Apéry set as defined in [1] with respect to n1 in H is

Ap(H,n1) = {h ∈ H | h− n1 /∈ H} = {0 = ω(0), ω(1), . . . , ω(n1 − 1)},

where ω(i) is the least element of H congruent to i modulo n1 . We consider two sets

˜Ap(H,n1) = {M ∈ [[R′]] | M /∈ in(I)}

and
P̃F (H) = {M ∈ ˜Ap(H,n1) | ∀i ̸= 1,∃Ni ∈ R such that Mxi − xαi

1 Ni ∈ I, αi > 0}.

Theorem 3.4 ([14]) (i) The polynomial ring k[x1] ⊂ A is a Noether normalization and

A ≃ ⊕
x
k2
2 ...x

kd
d /∈in(I)k[t

n1 ][tk2n2+...+kdnd ].

(ii) The restriction of φ to ˜Ap(H,n1) is injective and φ( ˜Ap(H,n1)) = Ap(H,n1) . In particular ♯({M ∈ [[R′]] |
M /∈ in(I)}) = n1.

(iii) The Frobenius number F (H) = max{φ(M) | M ∈ ˜Ap(H,n− 1)} − n1 .

Remark 3.5 From the definition of the pseudo-Frobenius set PF (H) and the above theorem we have that

every element ω ∈ PF (H) corresponds to exactly one monomial Mω ∈ P̃F (H) such that ω = φ(Mω)− n1 .

Recall that the semigroup H (or the ring k[H]) satisfies the condition (*) if for every binomial Mi −Ni

in the reduced Gröbner basis G(H) with Ni ≺degrevlex Mi , the variable x1 divides the monomial Ni , that is
Ni = xai

1 N ′
i with N ′

i ∈ [[R′]], N ′
i /∈ in(I), ai > 0 for all i = 1, . . . , µ(in(I)) .
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The following lemma is an improvement of Bresinsky [7, Corollary 1]. For the commodity of the reader
we give here a short proof.

Lemma 3.6 Let R = k[x1, . . . , xd] be the polynomial ring with the order ≺degrevlex , I ⊂ R an homogeneous
ideal. Let G = {F1, . . . , Fs} be a reduced Gröbner basis of I for a monomial order ≺degrevlex . If no leading
monomial in G is a multiple of a non-leading monomial of G , then G is a minimal set of generators for I .

Proof We know that a Gröbner basis of I is a system of generators for I . Suppose that G is not minimal.
We can assume that F1 belongs to the ideal generated by F2, . . . , Fs , hence we have

F1 = H2F2 + . . .+HsFs (3)

for some polynomials H2, . . . , Hs . Let M be the leading monomial of F1 , this monomial should appear on the
right side of equality (3) , and so is a multiple of a monomial of some of the F2, . . . , Fs . The hypothesis implies
that M is a multiple of a leading monomial of some F2, . . . , Fs . This is a contradiction to the hypothesis that
G is a reduced Gröbner basis of I . 2

Proof [of Theorem 1.1] By Theorem 3.4 the generators of in(I) are contained in R′ . Let J ⊂ R′ be the
ideal generated by the generators of in(I) . In order to apply Theorem 3.2 for J ⊂ R′ , we need to prove that

t(R′/J) = t(H) . Indeed, it is clear from Remark 3.5 that P̃F (H) ⊂ CR′(J) , hence t(H) ≤ t(R′/J) . Let
M ∈ CR′(J) . Then for any i = 2, . . . , d we have Mxi ∈ J , hence there exists a generator Mj of J such
that Mj divides Mxi , say Mxi = MjL for some monomial L ∈ [[R′]] . Since H satisfies the condition (*),

for any i = 2, . . . , d we have Mxi − xai
1 N ′

jL ∈ I , where ai > 0 . Hence M ∈ P̃F (H) , which implies that
t(R′/J) ≤ t(H) .

Note that if H satisfies the condition (*) then no Ni divides any Mj . Hence by Lemma 3.6, G(H) is a
minimal set of generators for I . Our claim is done. 2

The following result is a consequence of Theorem 1.1.

Corollary 3.7 Assume that H satisfies the condition (*) and d = 4 . Then µ(in(I)) ≤ 2(t(H)) + 1 . In
particular, if H is almost symmetric then µ(I) ≤ µ(in(I)) ≤ 7.

Proof Applying Theorem 1.1 and the formula (1) for d = 4 , we have the first claim. For the second claim,
since H is almost symmetric we have by [15] that t(H) ⩽ 3 and now applying the first claim we get the result.

2

Now we investigate the condition (*) in the cases of 4 variables.

Lemma 3.8 Let R = k[x, y, z, w] . Then zβwα − yγ ∈ G(H) if and only if γ is the smallest integer such that
γn2 ∈ ⟨n3, n4⟩ and γn2 ∈ Ap(H,n1) . In particular, there is at most one generator of the type zβwα − yγ in
G(H) .

Proof Assume that zβwα − yγ ∈ G(H) . Since yγ ̸∈ in(I), we have yγ ∈ ˜Ap(H,n1) by the definition of
˜Ap(H,n1) and then γn2 ∈ Ap(H,n1) by Theorem 3.4. We need only to show that γ is the smallest integer
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such that γn2 ∈ ⟨n3, n4⟩ . Let b be the smallest integer such that bn2 = cn3 + dn4 , then b ≤ γ . If b < γ then
we have an equation zβwα − yγ−bzcwd ∈ I , it implies that zβwα is a generator of in(I) . We have three cases:

Case 1. zβ−c− yγ−bwd−α ∈ I . This implies zβ−c ∈ in(I) and hence divides zβwα , which is a generator
of in(I) .

Case 2. wα−d−yγ−bzc−β ∈ I . It is impossible since this implies wα−d ∈ in(I) and divides zβwα , which
is a generator of in(I) .

Case 3. zβ−cwα−d − yγ−b ∈ I . It is also impossible since this implies zβ−cwα−d ∈ in(I) and divides
zβwα , which is a generator of in(I) .

Conversely, since γn2 ∈ Ap(H,n1) by hypothesis, we have by Theorem 3.4 that yγ ∈ ˜Ap(H,n1) , that is
yγ ̸∈ in(I) .

The hypothesis γn2 ∈ ⟨n3, n4⟩ implies that an equation zαwβ − yγ ∈ I . If this equation is not in G(H) ,
then there is an equation zcwd − xayb ∈ G(H) , with c ≤ α, d ≤ β . We have to consider two cases.

Case 1. If a > 0 then b < γ , and multiplying by yγ−b we have

zcwdyγ−b − xayγ = zcwdyγ−b − xazαwβ .

Therefore yγ−b − xazα−cwβ−d ∈ G(H) , hence yγ−b ∈ in(I) , a contradiction.

Case 2. If a = 0 then b ≥ γ. By similar arguments, we have yb−γ − zα−cwβ−d ∈ G(H) , hence
yγ−b ∈ in(I) , a contradiction except b = γ, α = c, β = d. 2

Lemma 3.9 Let n1, n3 be positive integers such that gcd(n1, n3) = 1 and a, b ∈ N∗ such that an1 + n3 ∈
2Z, (2b+ a)n1 + 3n3 ∈ 4Z and 3a+ 2b /∈ n3Z . Let n2 := (an1 + n3)/2, n4 := ((2b+ a)n1 + 3n3)/4 and H the
semigroup generated by n1, n2, n3, n4 . Assume that H cannot be generated by less than 4 elements. Then the
reduced Gröbner basis G(H) satisfies the condition (*) with respect to the order ≺degrevlex with w, z, y, x and
degx = n1,deg y = n2,deg z = n3,degw = n4 .

Proof By the definitions of n2, n4 , we have the equations y2−xaz, w2−xbyz ∈ I , which implies y2, w2 ∈ in(I)
and they are generators of in(I) . The elements of G(H) such that x eventually does not appear are of the
form zαwγ − yβ or zα − yβwγ for some integers α, β, γ . Let us study each case. If zαwγ − yβ ∈ G(H) then
since y2 ∈ in(I), we have β = 1 , which implies that H is generated by less than 4 elements, a contradiction. If
zα − yβwγ ∈ G(H) then since y2, w2 ∈ in(I) we have β ⩽ 1 and γ ⩽ 1 . The case β = 0 or γ = 0 implies that
H is generated by less than 4 elements, a contradiction. Thus β = 1 and γ = 1 , which implies αn3 = n2 + n1 .
After some computations we have (4(α − 1)− 1)n3 = (3a+ 2b)n1 , it cannot be possible since gcd(n1, n3) = 1

and 3a+ 2b /∈ n3Z. Hence G(H) satisfies the condition (*). 2

Note that Eto [9] has recently given the classification of almost Gorenstein numerical semigroup rings
generated by 4 elements into families named UF1, UF2, nUF1, and nUF2. He also gave a minimal system of
generators for their defining ideals. By inspecting the generators of the defining ideal in each case, we can see
that the cases UF1, UF2 satisfy the condition (*). Moreover, it can be proved that in all cases the generators
of the defining ideal form a Gröbner basis for the order ≺degrevlex and a suitable order of the variables.
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In the following Lemma 3.10, we will give a family of rings that satisfies the condition (*) and the rings
R/I are almost Gorenstein. This family corresponds to the case UF1 by Eto and was found by the author
independently.

Lemma 3.10 Let n1, n2 be positive integers such that gcd(n1, n2) = 1 , n1 is even and a ∈ N∗ an odd number.
Set n3 := (an1)/2, n4 := ((a − 2)n1 + 2n2)/2 and H the semigroup generated by n1, n2, n3, n4 . Assume that
H cannot be generated by less than 4 elements. Then the reduced Gröbner basis G(H) satisfies the condition
(*) with respect to the order ≺degrevlex with w, z, y, x and degx = n1,deg y = n2,deg z = n3,degw = n4 .
Moreover, the ring R/I is almost Gorenstein.

Proof We have the equations z2−xa, w2−xa−2y2 ∈ I by the definitions of n3 and n4 . It implies z2, w2 ∈ in(I)
and hence they are generators of in(I) . From these equations we get zw − xa−1y, yz − xw ∈ G(H) . Since
z2, w2 ∈ in(I) , there is an equation yc−xdzewf ∈ G(H) such that d ≥ 1 and e, f ≤ 1 , hence yc is a generator
of in(I) . Combining the last equation with yz−xw we get the equation xyc−1w−xdze+1wf ∈ I . Suppose that
f = 1 , then we have yc−1−xd−1ze+1 ∈ I , but since yc−1 /∈ in(I) we must have d = 1 , that is ze+1−yc−1 ∈ I .
If e = 0 we get z − yc−1 ∈ I , a contradiction, and if e = 1 we get z2 − yc−1 ∈ I , that is yc−1 − xa ∈ I , a
contradiction since yc is a generator of in(I) .

Hence we have f = 0 , and thus yc − xdze ∈ G(H) and yc−1w − xd−1ze+1 ∈ I . If e = 0 then since

gcd(n1, n2) = 1 we have c = n1, d = n2 , but if yn1 is a generator of in(I) then the set ˜Ap(H,n1) would
contain the monomials 1, z, w, y, . . . , yn1−1 and hence has more than n1 +1 elements, which is a contradiction.
Therefore, we can conclude that yc − xdz ∈ G(H) and yc−1w − xd−1+a ∈ I .

We will prove that the set of six equations

z2 − xa, w2 − xa−2y2, zw − xa−1y, yz − xw, yc − xdz, yc−1w − xd−1+a

is a Gröbner basis of I . Since z2, w2, yz, zw, yc are a part of a system of generators of in(I) , and yc−1w −
xd−1+a ∈ I we have to look for a generator ygw of in(I) , where g ≤ c−1 . If g = c−1 , then yc−1w−xd−1+a ∈
G(H) and the proof is done. Assume that g < c − 1 . Then we have an element ygw − xhzi ∈ G(H) , with
h ≥ 1, i ≤ 1 . By combining this element with zw − xa−1y we get the equation xhzi+1 − xa−1yg+1 ∈ I . We
have to consider two cases:

(1) If h > a− 1 , then we have yg+1 − xh−(a−1)zi+1 ∈ I . Hence yg+1 ∈ in(I) , a contradiction.
(2) If h ≤ a − 1 , then in this case i = 1 and we have yg+1 − xh+1 ∈ I . Hence yg+1 ∈ in(I) , a

contradiction.
Both cases lead to a contradiction, hence the set of these 6 equations is a Gröbner basis of I . It then

follows that the elements of P̃F (H) are z, yc−1, yc−2w and they satisfy the relation zyc−1− yc−2wx ∈ I . Thus
R/I is almost Gorenstein. 2

Thanks are due to the referee for suggesting some interesting examples related to our result. Namely,
Bresinsky [8] and Arslan [2] gave a family of examples in 4 -space with a toric ideal generated by an arbitrarily
large number of binomials. Arslan [2] proved that their tangent cones are Cohen–Macaulay. We will show that
both families of examples satisfy the condition (*). As we will see, in both families, the Gröbner basis obtained

2120



DUNG/Turk J Math

by Arslan in order to compute the tangent cone coincides with the Gröbner basis with respect to the order
≺degrevlex .

Firstly, we need the following lemma, which will appear in [14]. We give here a short proof for the
convenience of the reader.

Lemma 3.11 Let R = k[x1, . . . , xd] be the ring with respect to the order ≺degrevlex , R′ = k[x2, . . . , xd] and
[[R′]] the set of all monomials of R′. Let G be a finite family of reduced binomials in I := I(H) and J the
monomial ideal generated by the leading monomials of the elements in G . If ♯([[R′]] \ J) = n1 then G is a
Gröbner basis of I .

Proof Since J ⊆ in(I) we have the exact sequence

0 → in(I)R′/JR′ → R′/JR′ → R′/in(I)R′ → 0.

We have by Theorem 3.4, (ii) that dimk R
′/in(I)R′ = n1 and by the hypothesis that dimk R

′/JR′ = n1 . Hence
we have J = in(I) , which implies that G is a Gröbner basis of I . 2

From now on, let R = k[x, y, z, w] be the polynomial ring with respect to the order ≺degrevlex such that
degx = n1,deg y = n2,deg z = n3,degw = n4 , R′ = k[y, z, w] and [[R′]] the set of all monomials of R′.

The following family is based on Bresinsky [8]. Note that his aim was to show that when d ≥ 4 the first
Betti number of the resolution of I is unbounded while we show that not only the first Betti number but all
the Betti numbers of the resolution of I can be unbounded.

Example 3.12 Let m ⩾ 2 be any integer and H = ⟨n1, n2, n3, n4⟩ be a semigroup, where n1 = (2m)(2m −
1), n2 = (2m+1)(2m−1), n3 = (2m)(2m+1), n4 = (2m)(2m+1)+2m−1 . Then we have the following results.

1. The following family of binomials is the Gröbner basis of I with respect to the order ≺degrevlex

z2m−1 − x2m+1 y2m − x2m+1

z2m−2w − x2my y2m−1w − x2mz
z2m−3w2 − x2m−1y2 y2m−2w2 − x2m−1z2

· · · · · ·
zw2m−2 − x3y2m−2 y2w2m−2 − x3z2m−2

w2m−1 − x2y2m−1 yz − xw.

Indeed, let J be the monomial ideal generated by the leading monomials of the above binomials

J = (z2m−1, z2m−2w, . . . , zw2m−2, w2m−1, y2m, y2m−1w, . . . , y2w2m−2, yz).

From Figure 3, it is very simple to count the monomials ♯([[R′]] \ J) = n1. Hence by Lemma 3.11, the
above families are a Gröbner basis of I with respect to the order ≺degrevlex .

2. It is clear that the condition (*) is satisfied. Moreover, we have by the definition of the set P̃F (H) (see
the red triangles in Figure 3)

P̃F (H) = {z2m−2, z2m−3w, . . . , zw2m−3, y2m−1, y2m−2w, . . . , yw2m−2},

and so ♯(P̃F (H)) = 4m− 3 and we have the free resolution of R/I

0 → R4m−3 → R8m−4 → R4m → R → R/I → 0.
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Figure 3. Bresinsky’s example.

With the same method as in Example 3.12, we can study the following family, which is based on Arslan
[2].

Example 3.13 Let m ⩾ 2 be any integer and H = ⟨n1, n2, n3, n4⟩ be a semigroup, where n1 = m(m+1), n2 =

m(m+ 1) + 1, n3 = (m+ 1)2, n4 = (m+ 1)2 + 1 . Then

1. It follows by Lemma 3.11 that the following family of binomials is the Gröbner basis of I with respect to
the order ≺degrevlex

zm − xm+1 ym+1 − xmz
zm−1w − xmy ymw − xm−1z2

zm−2w2 − xm−1y2 ym−1w2 − xm−2z3

· · · · · ·
z2wm−2 − x3ym−2 y3wm−2 − x2zm−1

zwm−1 − x2ym−1 y2wm−1 − xm+2

wm − xym yz − xw.

(In Figure 4, we present the ideal J and all monomials in [[R′]] \ J, where J is generated by the leading
monomials of the above binomials).

Figure 4. Arslan’s example.
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2. We have the set P̃F (H) (see the red triangles in Figure 3)

P̃F (H) = {zm−1, zm−2w, . . . , zwm−2, ym, ym−1w, . . . , ywm−1},

and hence ♯(P̃F (H)) = 2m− 1 and we have the free resolution of R/I

0 → R2m−1 → R4m → R2(m+1) → R → R/I → 0.

In the rest of this section, we give the following example of a numerical semigroup satisfying the condition
(*) but the tangent cone of R/I is not a Cohen–Macaulay ring.

Example 3.14 Let n1 = 23, n2 = 35, n3 = 56, n4 = 78 . Then the following binomials are a Gröbner basis of
I with respect to the order ≺degrevlex

−z2y + wx3, −wy2 + zx4, −zy3 + x7,
−w2y + z3x, w2z2 − y7x, z5 − w3x2,
−y8 + w3x2, w3z − y5x5, wz4 − y6x4,
w4 − y3x9.

It is clear that the condition (*) is satisfied. By a computation with the software Cocoa, we get the ideal
generated by

wy2, w2y, z2y, w3z, w4, w2z2, zy3, wz4, z5, w3x2, wz3x3, w2zx6,−z4x7 + y11

that defines the tangent cone. Since x divides several leading monomials, we have by Aslan et al. [3] [Lemma
2.7] that the tangent cone of R/I is not a Cohen–Macaulay ring.

Acknowledgment I would like to thank to Professor Marcel Morales for his help on this subject. I also thank
the referee, who read the paper carefully and improved it by interesting remarks.
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