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Abstract: In this paper, we find explicit formulas for higher-order derivatives of the inverse tangent function. More
precisely, we study polynomials that are induced from the higher-order derivatives of arctan(x) . Successively, we
give generating functions, recurrence relations, and some particular properties for these polynomials. Connections to
Chebyshev, Fibonacci, Lucas, and matching polynomials are established.
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1. Introduction
The problem of establishing closed formulas for the n -derivative of the function arctan(x) is not straightforward
and has been proved to be important for deriving rapidly convergent series for π [2, 3, 14]. Recently, many
authors investigated the aforementioned problem and derived simple explicit closed-form higher derivative
formulas for some classes of functions. In [1, 6, 8] and references therein, the authors found explicit forms
of the derivative polynomials of the hyperbolic, trigonometric tangent, cotangent, and secant functions. Several
new closed formulas for higher-order derivatives have been established for trigonometric and hyperbolic functions
in [19], tangent and cotangent functions in [16], and arc-sine functions in [17].

We note from entries 1.1.7(3) and 1.1.7(4) in chapter 1 of Brychkov’s handbook [7, p. 14] that the
higher-order derivatives of arctan(x) can be expressed in terms of Chebyshev polynomials as follows:

d2n

dx2n
(arctan(ax)) = (−1)

n
(2n− 1)!a2n+1x

(
1 + a2x2

)−n−1/2
U2n−1

(
1√

1+a2x2

)
(n ≥ 1)

d2n+1

dx2n+1
(arctan(ax)) = (−1)

n
(2n)!a2n+1

(
1 + a2x2

)−n−1/2
T2n+1

(
1√

1+a2x2

)
(n ≥ 0)

.

In the present work and in order to simplify the above formulas, we study polynomials that are induced from
the higher-order derivatives of arctan(x) . Then our main result is

dn

dxn
(arctan(ax)) = an (n− 1)!

(1 + a2x2)
n+1
2

Un−1

(
− ax√

1 + a2x2

)
(n ≥ 1) ,

where Un is the nth Chebyshev polynomial of the second kind. In the rest of paper, without loss of generality,
we assume a = 1 .
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2. The fundamental properties of the alpha and beta polynomials

We consider the problem of finding the nth derivative of arctan(x) . It is easy to see that there exists a real
sequence of polynomials

Pn(x) = (−1)nn! Im((x+ i)n+1)

such that

dn

dxn
(arctanx) =

dn−1

dxn−1

[
1

2i

(
1

x− i
− 1

x+ i

)]

=
dn−1

dxn−1

[
Im
(

1

x− i

)]
=

Pn−1 (x)

(1 + x2)
n , (1)

where Im (z) denotes the imaginary part of z .
By differentiation (1) with respect to x , we get the recursion relation [14]

P0 (x) = 1, Pn+1 (x) =
(
1 + x2

)
P ′
n (x)− 2 (n+ 1)xPn (x) . (2)

An explicit expression of Pn (x) is obtained by using the binomial formula

Pn (x) = (−1)
n
n!

⌊n/2⌋∑
k=0

(−1)
k

(
n+ 1

2k + 1

)
xn−2k, (3)

where ⌊x⌋ denotes the integral part of x , that is, the greatest integer not exceeding x . We may rewrite

βn (x) := (−1)
n Pn (x)

n!

= Im((x+ i)n+1) (4)

=

n∑
k=0

(
n+ 1

k + 1

)
cos
(
kπ

2

)
xn−k.

In particular, we have

βn (1) = 2
n+1
2 cos

(
(n− 1)

π

4

)
= 2

n+1
2 sin

(
(n+ 1)

π

4

)
.

In 1755 , Euler derived the well-known formula [11, p. 39]

arctan (x) =
∑
n≥0

22n (n!)
2

(2n+ 1)!

x2n+1

(1 + x2)
n+1 .

As an immediate application of (4), we obtain another expansion of the inverse tangent function.

Theorem 1 We have

arctan (x) =
∑
n≥0

βn(x)

n+ 1

xn+1

(1 + x2)
n+1 .
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Proof From (1) and [14, p. 228, Eq. (9)]

arctan (x) =
∑
n≥1

(−1)
n+1 dn

dxn
arctan (x)

xn

n!
,

we get the desired result. 2

Now we give some fundamental results concerning βn(x) .

Theorem 2 (Generating function) The ordinary generating function of βn (x) is given by

fx (z) =
∑
n≥0

βn (x) z
n =

1

1− 2xz + (1 + x2) z2
(x ∈ R; |z| < 1) (5)

Proof We have

fx (z) =
∑
n≥0

(xz)
n
∑
k≥0

(
n+ 1

k + 1

)
cos
(
kπ

2

)
(−x)

−k

=
∑
n≥0

(xz)
n Re

∑
k≥0

(
n+ 1

k + 1

)(
− i

x

)k


=
∑
n≥0

(xz)
n Re

(
i

xn
(x− i)

n+1 − ix

)

=
1

2

∑
n≥0

zn
(
i (x− i)

n+1 − ix (x+ i)
n+1
)

=
1

2
i (x− i)

∑
n≥0

(z (x− i))
n − 1

2
i (x+ i)

∑
n≥0

(z (x+ i))
n

=
1

2

(
i (x− i)

1− z (x− i)
− i (x+ i)

1− z (x+ i)

)
.

Thus, the proof of the theorem is completed. 2

Theorem 3 (Generating function) The exponential generating function of βn (x) is given by

∑
n≥0

βn (x)
zn

n!
= (cos(z) + x sin(z))exz. (6)

Proof From (4), we have

∑
n≥0

Im
(
(x+ i)

n+1
) zn

n!
= Im

(x+ i)
∑
n≥0

((x+ i) z)
n

n!


= Im ((x+ i) exp ((x+ i) z))

= exz Im((x+ i)eiz)

= exz (cos z + x sin z) .
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Thus, the proof of the theorem is completed. 2

Theorem 4 (Recurrence relation) The βn (x) satisfy the following three-term recurrence relation:

βn+1 (x) = 2xβn (x)−
(
1 + x2

)
βn−1 (x) , (7)

with initial conditions β0 (x) = 1 and β1 (x) = 2x .

Proof By differentiation (5) with respect to z , we obtain

(
1− 2xz +

(
1 + x2

)
z2
) ∂

∂z
fx (z) =

(
2x− 2

(
1 + x2

)
z
)
fx (z) ,

or equivalently (
1− 2xz +

(
1 + x2

)
z2
)∑
n≥0

nβn (x) z
n−1 =

(
2x− 2

(
1 + x2

)
z
)∑
n≥0

βn (x) z
n.

After some rearrangement, we get∑
n≥0

(n+ 1)βn+1 (x) z
n =

∑
n≥0

(
2x (n+ 1)βn (x)−

(
1 + x2

)
(n+ 1)βn−1 (x)

)
zn.

Equating the coefficient of zn , we get the result. 2

The first few βn (x) are listed in Eq. (8).

β0(x) = 1,
β1(x) = 2x,
β2(x) = 3x2 − 1,
β3(x) = 4x3 − 4x,
β4(x) = 5x4 − 10x2 + 1,
β5(x) = 6x5 − 20x3 + 6x.

(8)

Theorem 5 The leading coefficient of xn in βn (x) is n+ 1 and the following result holds true:

βn (−x) = (−1)
n
βn (x) . (9)

Proof From (4) we may rewrite βn (x) as

βn (x) = (n+ 1)xn − 1

6
n
(
n2 − 1

)
xn−2 + · · · ,

in which the leading coefficient of xn in βn (x) is n+ 1 . On the other hand, since

f−x (−z) = fx (z)∑
n≥0

βn (−x) (−z)
n
=
∑
n≥0

βn (x) z
n.

Comparing these two series, we get (9). 2
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Remark 1 Using (9) we can write
Pn (x) = n!βn (−x) , (10)

and the exponential generating function of Pn (x) is given by

∑
n≥0

Pn (x)
zn

n!
=

1

1 + 2xz + (1 + x2) z2
.

and (2) becomes

βn+1 (x) = 2xβn (x)−
1 + x2

n+ 1
β′
n (x) . (11)

Theorem 6 For n ≥ 1 , we have
d

dx
βn (x) = (n+ 1)βn−1 (x) . (12)

Proof By differentiation of βn (x) with respect to x , we obtain

d

dx
βn (x) = (n+ 1) Im ((x+ i)

n
)

= (n+ 1)βn−1 (x) .

2

Theorem 7 (Differential Equation) βn (x) satisfies the linear second order ODE(
1 + x2

)
β′′
n (x)− 2nxβ′

n (x) + n (n+ 1)βn (x) = 0 (13)

Proof By differentiating (11) and using (12), we find (13). 2

Remark 2 It is well known that the classical orthogonal polynomials are characterized by being solutions of the
differential equation

A (x) γ′′
n (x) +B (x) γ′

n (x) + λnγn (x) = 0,

where A and B are independent of n and λn is independent of x . It is obvious that the βn (x) are nonclassical
orthogonal polynomials.

Using matrix notation, (7) can be written as

(
βr+1 (x) βr+2 (x)

)
=
(
βr (x) βr+1 (x)

)(0 −
(
1 + x2

)
1 2x

)
.

Therefore (
βn+r (x) βn+r+1 (x)

)
=
(
βr (x) βr+1 (x)

)(0 −
(
1 + x2

)
1 2x

)n

for n ≥ 0. Letting r = 0, we get

(
βn (x) βn+1 (x)

)
=
(
1 2x

)(0 −
(
1 + x2

)
1 2x

)n

.
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Theorem 8 We have

βn (x) =
(
1 2x

)(0 −
(
1 + x2

)
1 2x

)n(
1
0

)
.

It follows from the general theory of determinant [18] that βn (x) is the following n× n determinant:

βn (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x −
(
1 + x2

)
0 · · · 0

−1 2x −
(
1 + x2

) ...

0 −1
. . . . . . 0
. . . . . . −

(
1 + x2

)
0 · · · 0 −1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In order to compute the above determinant, we recall that the Chebyshev polynomials Un (x) of the second
kind is a polynomial of degree n in x defined by

Un (x) =
sin (n+ 1) θ

sin θ
when x = cos θ,

and can also be written as determinant identity

Un (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x 1 0 · · · 0

1 2x 1
...

0 1
. . . . . . 0
. . . . . . 1

0 · · · 0 1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (14)

The next lemma is used in the proof of Theorem 9

Lemma 1 For a, b, c nonzero, we have∣∣∣∣∣∣∣∣∣∣∣∣∣

b c 0 · · · 0

a b c
...

0 a
. . . . . . 0

... . . . . . . c
0 · · · 0 a b

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(√

ac
)n

Un

(
b

2
√
ac

)
. (15)

Proof From (14), we have

(√
ac
)n

Un

(
b

2
√
ac

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

b
√
ac 0 · · · 0

√
ac b

√
ac

...

0
√
ac

. . . . . . 0
... . . . . . . √

ac
0 · · · 0

√
ac b

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, by the symmetrization process [4], we get the result. 2
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Theorem 9 For n ≥ 1, we have

dn

dxn
(arctan (x)) =

(n− 1)!

(1 + x2)
n Im((i− x)n)

=
(n− 1)!

(1 + x2)
n+1
2

Un−1

(
−x√
1 + x2

)
,

where Un is the n th Chebyshev polynomial of the second kind.

Proof We apply Lemma 1 with a = −1, b = 2x , and c = −
(
1 + x2

)
to obtain

βn (x) =
(√

1 + x2
)n

Un

(
x√

1 + x2

)
. (16)

From (1) and (10), we get the desired result. 2

Corollary 1 We have
d2n

dx2n
(arctan(x)) = (−1)

n
(2n− 1)!x

(
1 + x2

)−n−1/2
U2n−1

(
1√

1 + x2

)
(n ≥ 1)

d2n+1

dx2n+1
(arctan(x)) = (−1)

n
(2n)!

(
1 + x2

)−n−1/2
T2n+1

(
1√

1 + x2

)
(n ≥ 0)

. (17)

Proof Formula (17) is an immediate consequence of Theorem 9, upon considering even and odd cases for n

and using the relations

U2n−1

(
−x√
1 + x2

)
= (−1)

n
xU2n−1

(
1√

1 + x2

)
,

U2n

(
−x√
1 + x2

)
= (−1)

n
√

1 + x2T2n+1

(
1√

1 + x2

)
,

where Tn is the nth Chebyshev polynomial of the first kind. 2

Corollary 2 For n ≥ 1, we have

dn

dxn

(
tanh−1 (x)

)
=

(n− 1)!

2 (1− x2)
n ((x+ 1)n − (x− 1)n)

=
1

in−1

(n− 1)!

(1− x2)
n+1
2

Un−1

(
ix√
1− x2

)

Proof Since tanh−1 (x) = 1
i arctan(ix), we have

dn

dxn

(
tanh−1 (x)

)
=

(−1)n

in+1

Pn−1 (ix)

(1− x2)
n

=
1

in−1

Pn−1 (−ix)

(1− x2)
n .

Thus, the proof of the Corollary is completed. 2
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Theorem 10 The roots of βn (x) of degree n ≥ 1 have n simple zeros in R at

xk = cot
(

kπ

n+ 1

)
, for each k = 1, . . . , n. (18)

Proof Since the zeros of Un (z) are

zk = cos
(

kπ

n+ 1

)
, k = 1, . . . , n,

it follows from (16) and by setting

zk =
xk√
1 + x2

k

that the zeros of βn (x) are given by (18) . 2

It is well known that for any sequence of monic polynomials pn (x) whose degrees increase by one from
one member to the next they satisfy an extended recurrence relation [10]

pn+1 (x) = xpn (x)−
n∑

j=0

[
n

j

]
pn−j (x) ,

and the zeros of pn (x) are the eigenvalues of the n × n Hessenberg matrix of the coefficients
[
n
j

]
arranged

upward in the j th column

Hn =



[
0
0

] [
1
1

] [
2
2

]
· · ·

[
n−2
n−2

] [
n−1
n−1

]
1

[
1
0

] [
2
1

]
· · ·

[
n−2
n−3

] [
n−1
n−2

]
0 1

[
2
0

]
· · ·

[
n−2
n−4

] [
n−1
n−3

]
...

...
...

...
0 0 0 · · ·

[
n−2
0

] [
n−1
1

]
0 0 0 · · · 1

[
n−1
0

]


.

Let

πn (x) :=
βn (x)

n+ 1
, (19)

be the monic polynomial of degree n .

Theorem 11 For n ≥ 0, we have

π0 (x) = 1; πn+1 (x) = xπn (x)−
n∑

j=1

2j+1

j + 1

(
n

j

)
|Bj+1|πn−j (x) . (20)

where Bn denote the Bernoulli numbers.
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Proof By using generating function techniques, we can verify (20) directly. From (19) and (6), we have

∑
n≥0

xπn (x)−
n∑

j=1

2j+1

j + 1

(
n

j

)
|Bj+1|πn−j (x)

 zn

n!
= x

∑
n≥0

πn (x)
zn

n!
−
∑
j≥1

2j+1

(j + 1)!
|Bj+1|

∑
n≥0

πn−j (x)
zn

(n− j)!

=
1

z

x− 1

z

∑
j≥2

2j

j!
|Bj | zj

∑
n≥1

βn−1 (x)
zn

n!
.

Since

cot (z)− 1

z
= −

∑
j≥2

2j

j!
|Bj | zj−1,

and ∑
n≥1

βn−1 (x)
zn

n!
=

∫
exz (cos z + x sin z) dz

= exz sin z.

We get

∑
n≥0

xπn (x)−
n∑

j=1

2j+1

j + 1

(
n

j

)
|Bj+1|πn−j (x)

 zn

n!
=

exz

z2
((xz − 1) sin z + z cos z) .

On the other hand, we have

∑
n≥0

πn+1 (x)
zn

n!
=
∑
n≥0

βn+1 (x)

n+ 2

zn

n!

=
∑
n≥0

(n+ 1)βn+1 (x)
zn

(n+ 2)!

=
∑
n≥1

(n− 1)βn−1 (x)
zn−2

n!

=
1

z

∑
n≥0

βn (x)
zn

n!
− 1

z2

∑
n≥1

βn−1 (x)
zn

n!

=
1

z
exz (cos z + x sin z)− 1

z2
exz sin z

=
1

z2
exz (z cos z + (zx− 1) sin z) .

The theorem is verified. 2

Now, using the fact that B2n+1 = 0 for n > 1, we can write

[
n

2j

]
= 0 and

[
n

2j + 1

]
=

22j+2

2j + 2

(
n

2j + 1

)
|B2j+1| .
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Then the n× n Hessenberg matrix Hn takes the form

Hn =



0 1
3 0 2

15 0 16
63 · · · 2n

n |Bn|
1 0 2

3 0 8
15 0 · · · 2n−1 |Bn−1|

0 1 0 1 0 32
21 · · · (n− 1) 2n−3 |Bn−2|

0 0 1 0 4
3 0 · · · (n− 1) (n− 2) 2n−4

3 |Bn−3|
0 0 0 1 0 5

3 · · · (n− 1) (n− 2) (n− 3) 2n−7

3 |Bn−4|
...

...
... . . . . . . . . . ...

0 0 0 0 0 · · · 0 1
3 (n− 1)

0 0 0 0 0 · · · 1 0


,

in which the eigenvalues are λk = cot
(

kπ
n+1

)
, for k = 1, . . . , n .

It is convenient to define a companion sequence αn (x) of βn (x) by

αn (x) = Re((x+ i)
n
)

=

⌊n/2⌋∑
k=0

(−1)
k

(
n

2k

)
xn−2k (21)

=

n∑
k=0

(−1)
k

(
n

k

)
cos
(
kπ

2

)
xn−k,

where Re (z) denotes the real part of z . By direct computation from (21), we find

α0(x) = 1,
α1(x) = x,
α2(x) = x2 − 1,
α3(x) = x3 − 3x,
α4(x) = x4 − 6x2 + 1,
α5(x) = x5 − 10x3 + 5x.

Similarly, we obtain

Theorem 12

1. The ordinary generating function of αn (x) is given by∑
n≥0

αn (x) z
n =

1− xz

1− 2xz + (1 + x2) z2
. (22)

2. The exponential generating function of αn (x) is given by∑
n≥0

αn (x)
zn

n!
= cos(z)exz. (23)

3. The αn (x) satisfy the following three-term recurrence relation:

αn+1 (x) = 2xαn (x)−
(
1 + x2

)
αn−1 (x) ,

with initial conditions α0 (x) = 1 and α1 (x) = x.
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4. We have

αn (x) =
(
1 x

)(0 −
(
1 + x2

)
1 2x

)n(
1
0

)
(24)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −
(
1 + x2

)
0 · · · 0

−1 2x −
(
1 + x2

) ...

0 −1
. . . . . . 0
. . . . . . −

(
1 + x2

)
0 · · · 0 −1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣
(25)

=
(√

1 + x2
)n

Tn

(
x√

1 + x2

)
, (26)

where Tn is the n th Chebyshev polynomial of the first kind defined by

Tn (x) = cos(nθ) when x = cos θ.

5. The following result holds true
αn (−x) = (−1)

n
αn (x) . (27)

6. We have
d

dx
αn (x) = nαn−1 (x) . (28)

7. αn (x) satisfies the linear second order ODE(
1 + x2

)
α′′
n (x)− 2(n− 1)xα′

n (x) + n (n− 1)αn (x) = 0 (29)

8. The roots of αn (x) of degree n ≥ 1 have n simple zeros in R at

xk = cot
(
(2k − 1)π

2n

)
, for each k = 1, . . . , n. (30)

9. For n ≥ 0, we have

α0 (x) = 1; αn+1 (x) = xαn (x)−
n∑

j=1

2j+1(2j+1 − 1)

j + 1

(
n

j

)
|Bj+1|αn−j (x) . (31)

Theorem 13 For all n ≥ 1, we have

αn (x) = βn (x)− xβn−1 (x)

βn (x) = x
(
1 + x2

)
αn−1 (x)−

(
x2 − 1

)
αn (x) .

Proof Since

αn (x) =
(x+ i)

n
+ (x− i)

n

2
(32)
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and

βn (x) =
(x+ i)

n+1 − (x− i)
n+1

2i
, (33)

we get the desired result. 2

In the same manner, we can prove the Turán’s inequalities for αn (x) and βn (x) .

Theorem 14 Turán’s inequalities for αn (x) and βn (x) are

α2
n (x)− αn−1 (x)αn+1 (x) =

(
x2 + 1

)n−1
> 0, for n ≥ 1

β2
n (x)− βn−1 (x)βn+1 (x) =

(
x2 + 1

)n
> 0, for n ≥ 0.

3. Connection with other sequences

It is well known that tan (n arctan (x)) is a rational function and is equal to the following identity: [5]

tan (n arctan (x)) =
1

i

(1 + ix)
n − (1− ix)

n

(1 + ix)
n
+ (1− ix)

n .

It follows from (32) and (33) that for all n ≥ 1 we have

tan (n arctan (x)) =


−βn−1 (x)

αn (x)
, n even

αn (x)

βn−1 (x)
, n odd

=


x−

(
1 + x2

) αn−1 (x)

αn (x)
, n even

βn (x)

βn−1 (x)
− x, n odd

.

3.1. Fibonacci polynomial

Let h (x) be a polynomial with real coefficients. The link between Fibonacci polynomials and Chebyshev
polynomials of the second kind is given by

Fn,h (x) = in−1Un−1

(
h (x)

2i

)
;

now using (16) we get

Fn,h (x) =

(
i

2

)n−1 (√
h2 (x) + 4

)n−1

βn−1

(
−ih (x)√
h2 (x) + 4

)

=
1

2n−1

⌊n/2⌋∑
k=0

(
n+ 1

2k + 1

)
hn−2k (x)

(
h2 (x) + 4

)k (34)
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3.2. Lucas polynomial
In the same manner, Lucas polynomials and Chebyshev polynomials of the first kind are related by

Ln,h (x) = 2inTn

(
h (x)

2i

)
,

Using (26), we get

Ln,h (x) =
in

2n−1

(√
h2 (x) + 4

)n
αn

(
−ih (x)√
h2 (x) + 4

)

=
1

2n−1

⌊n/2⌋∑
k=0

(
n

2k

)
hn−2k (x)

(
h2 (x) + 4

)k (35)

Note that the above formulas (34) and (35) are given in [15] and they generalize the Catalan formulas
for Fibonacci and Lucas numbers (see Koshy [13] page 162).

3.3. Matching polynomial

The matching polynomial [9] is a well-known polynomial in graph theory and is defined by

MG(x) =

⌊n/2⌋∑
k=0

(−1)km(G, k)xn−2k.

We know from Hosoya in [12] about transformation of a matching polynomial into typical orthogonal polynomials
by

MPn
(x) = Un(x/2),

MCn
(x) = 2Tn(x/2),

where Pn and Cn are the path and the cycle graph, respectively.
Now, by using (16) and (26) with an appropriate change of variables, we get

MPn(x) =
1

2n

⌊n/2⌋∑
k=0

(−1)k
(
n+ 1

2k + 1

)
xn−2k

(
4− x2

)k
, (36)

MCn
(x) =

1

2n−1

⌊n/2⌋∑
k=0

(−1)k
(

n

2K

)
xn−2k

(
4− x2

)k
. (37)

4. Conclusion
In our present investigation, we have studied polynomials induced from the higher-order derivatives of arctan(x) .
We have derived some explicit formula for higher-order derivatives of the inverse tangent function, generating
functions, recurrence relations, and some particular properties for these polynomials. As a consequence, we
have established connections to Chebyshev, Fibonacci, Lucas, and matching polynomials. We did not examine
the orthogonality of αn(x) and βn(x) polynomials. We think that these polynomials are a nice example for
Sobolev orthogonal polynomials.
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