Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: $2657-2663$
© TÜBİTAK
doi:10.3906/mat-1609-77

On matrix rings with the SIP and the Ads

Figen TAKIL MUTLU* ${ }^{*}$
Department of Mathematics, Anadolu University, Eskişehir, Turkey

| Received: 25.09 .2016 | Accepted/Published Online: 01.08 .2018 | Final Version: 27.09 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper, matrix rings with the summand intersection property (SIP) and the absolute direct summand (ads) property (briefly, $S A$) are studied. A ring R has the right SIP if the intersection of two direct summands of R is also a direct summand. A right R-module M has the ads property if for every decomposition $M=A \oplus B$ of M and every complement C of A in M, we have $M=A \oplus C$. It is shown that the trivial extension of R by M has the SA if and only if R has the SA, M has the ads, and $(1-e) M e=0$ for each idempotent e in R. It is also shown with an example that the SA is not a Morita invariant property.

Key words: Ads property, summand intersection property, trivial extension

1. Introduction

The purpose of this paper is to study matrix rings that have both the summand intersection property (SIP) and the absolute direct summand (ads) property (briefly, $S A$).

Wilson [11] defines a right R-module M to have the SIP if the intersection of every pair of direct summands of M is a direct summand of M. The ring R has the right SIP provided that the right R-module R has the SIP.

Fuchs [4] introduced the ads property for abelian groups. Burgess and Raphael [3] define a right R-module M to have the $a d s$ if for every decomposition $M=A \oplus B$ of M and every complement C of A in M we have $M=A \oplus C$. The ring R has the right ads provided that the right R-module R has the ads.

Takıl Mutlu [10] defines a right R-module M to have the $S A$ property (or briefly have the SA), if M has the SIP and the ads. In [10], the author studied the class of modules with the $S A$ and investigated some properties of these modules. The ring R has the right SA provided that the right R-module R has the SA.

The motivation of the current study comes from the following question: When does the full matrix ring over a ring have the SA property?

In this paper we provide necessary and sufficient conditions for rings and trivial extensions to have the SA.

Throughout the paper all rings are associative with unity and R always denotes such a ring. Modules are unital and for an abelian group M we use M_{R} to indicate that M is a right R-module. For any right R-module M, Soc M will denote the socle of M. The notions that are not explained here can be found in [12].

We begin with the following lemmas and a proposition that are useful in determining the ads property and the SA property of a module.

[^0]Lemma 1.1 ([3], Proposition 1.1) A module M_{R} is an ads-module if and only if for any decomposition $M_{R}=A \oplus B, B$ is A-injective .

Proposition 1.2 ([10], Proposition 2.6.) A module M_{R} has the $S A$ if and only if the following statements are satisfied:
for any decomposition $M_{R}=A \oplus B$,
i) for every homomorphism f from A to B, the kernel of f is a direct summand.
ii) for any complement C of A in M_{R} and the projection map $\pi: M \longrightarrow B$, the restricted map $\pi_{\mid C}: C \longrightarrow B$ is an isomorphism.

Lemma 1.3 ([10], Lemma 2.7.) Every direct summand of a module that has the $S A$ has again the $S A$.
The following example shows that a direct sum of modules that have the SA may not have the SA.
Example 1.4 This example is taken from [10].
(i) Consider a right \mathbb{Z}-module \mathbb{Z}. It is clear that \mathbb{Z} is indecomposable and hence it has the $S A$. Since \mathbb{Z} is not \mathbb{Z}-injective, $\mathbb{Z} \oplus \mathbb{Z}$ is not an ads-module by Lemma 1.1 and hence it does not have the $S A$.
(ii) Consider a right \mathbb{Z}-module Prüfer p-group $\mathbb{Z}_{p \infty}$. It is clear that $\mathbb{Z}_{p \infty}$ is indecomposable and hence it has the SA. Now define a homomorphism f from $\mathbb{Z}_{p^{\infty}}$ to $\mathbb{Z}_{p^{\infty}}$ as the multiplication by p

$$
f\left(\frac{n}{p^{t}}+\mathbb{Z}\right)=\frac{n}{p^{t-1}}+\mathbb{Z} \text { with } n \in \mathbb{Z} \text { and } t \in \mathbb{N}
$$

It is clear that $\operatorname{Ker} f=\left(\frac{1}{p}+\mathbb{Z}\right)$. However, $\mathbb{Z}_{p^{\infty}}$ is indecomposable and hence $\operatorname{Ker} f$ is not a direct summand of $\mathbb{Z}_{p^{\infty}}$. By Proposition 1.2, $\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ does not have the $S A$.

Lemma 1.5 ([5], Lemma 3.1) Let R be a product of rings, $R=\prod_{I} R_{i}$. Then R has the SIP on the left if and only if each R_{i} has the SIP on the left.

2. Rings with the SA property

We shall give the following examples that do not have the SA.
Example 2.1 i) Let R be the algebra of matrices, over a field K, of the form

$$
R=\left(\begin{array}{llllll}
a & x & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & y & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & b & z \\
0 & 0 & 0 & 0 & 0 & c
\end{array}\right) .
$$

as in [7]. Let $e=e_{11}+e_{22}+e_{44}+e_{55}$, where $e_{i i}$ denotes the matrix in R with (i, i) entry 1 and all other entries 0. Then e is an idempotent of R and ReR \mathcal{R}. By [9], $S=e$ Re does not have the ads. Hence, S does not have the $S A$.
ii) Let $R=\left(\begin{array}{cc}\mathbb{Z}_{3} & \mathbb{Z}_{3} \\ 0 & \mathbb{Z}\end{array}\right)$ be the formal triangular matrix ring. Then the only direct summands (as right ideals) of R are $0, R,\left(\begin{array}{ll}0 & 0 \\ 0 & \mathbb{Z}\end{array}\right),\left(\begin{array}{cc}\mathbb{Z}_{3} & \mathbb{Z}_{3} \\ 0 & 0\end{array}\right),\left(\begin{array}{l}\overline{0} \\ 0 \\ 0\end{array}\right) R$, and $\left(\begin{array}{l}\overline{0} \\ 0 \\ 0\end{array}\right) R$. Since $\left(\begin{array}{ll}0 & 0 \\ 0 & \mathbb{Z}\end{array}\right) \cap\left(\begin{array}{l}\overline{0} \\ 0 \\ 0\end{array}\right) R$ is not a direct summand of R, R does not have the SIP. It follows that R does not have the $S A$.

Let R be a ring, e an idempotent in R such that $R=R e R$, and S the subring $e R e$. It is clear that if M is a right R-module, then $M e$ is a right S-module.

Lemma 2.2 ([1], Lemma 5(i)) With the above notation, C is a complement of X in M if and only if $C e$ is a complement of Xe in Me .

Proof Suppose that C is a complement of X in M. Since $C \cap X=0, C e \cap X e=0$. Then there exists a complement $K e$ of $X e$ in $M e$ such that $C e \leq K e$. Hence $C \leq K \leq M$. On the other hand, $(K \cap X) e=0$. Therefore $(K \cap X) e R=0$ or $(K \cap X) R e R=(K \cap X) R=0$. It follows that $K \cap X=0$. By assumption, $K=C$ and so $K e=C e$.

For the converse, assume that $C e$ is a complement of $X e$ in $M e$. We show that C is a complement of X. Since $C e \cap X e=0$, by the above proof, $C \cap X=0$. Then there exists a complement L of X in M such that $C \leq L$. Then $C e \leq L e$ and $L e \cap X e=0$. As $C e$ is a complement of $X e$ in $M e, L e=C e$. Thus $L=C$.

Lemma 2.3 With the above notation, $M=X \oplus Y$ if and only if $M e=X e \oplus Y e$.
Proof Suppose that $M=X \oplus Y$. Since $X \cap Y=0, X e \cap Y e=0$. On the other hand, for every $M \in M$, there exist $x \in X$ and $y \in Y$ such that $m=x+y$. Therefore $m e=x e+y e$. Hence $M e=X e \oplus Y e$.

For the converse, assume that $M e=X e \oplus Y e$. For every $m \in M$, we have $m e=x e+y e$ for some $x \in X$ and $y \in Y$. Then mer $_{1} e r_{2}=$ xer $_{1} e r_{2}+$ yer $_{1} e r_{2}$ and hence $M_{R} \leq X_{R}+Y_{R}$. It follows that $M_{R}=X_{R}+Y_{R}$. Let $\sum_{i} x_{i} r_{i}=\sum_{j} y_{j} s_{j}$, where $x_{i} \in X, y_{j} \in Y$, and $r_{i}, s_{j} \in R$. For all $r \in R$, we obtain that

$$
\sum_{i} x_{i}\left(r_{i} r e\right)=\sum_{j} y_{j}\left(s_{j} r e\right) \in X e \cap Y e
$$

Since $X e \cap Y e=0$, we have $\sum_{i} x_{i}\left(r_{i} r e\right)=0$, which implies that $\left(\sum_{i} x_{i} r_{i}\right) R e=0$, and by the assumption $R e R=R,\left(\sum_{i} x_{i} r_{i}\right)=0$. Thus, $M_{R}=X_{R} \oplus Y_{R}$.

Theorem 2.4 With the above notation, if the module $(M e)_{S}$ has the ads, then the module M_{R} has the ads.
Proof Let $M=X \oplus Y$ and C be a complement of X. Then $M e=X e \oplus Y e$ and $C e$ is a complement of $X e$ in $M e$ by Lemma 2.2 and Lemma 2.3. Since $M e$ has the ads, $M e=X e \oplus C e$. By Lemma 2.3, $M=X \oplus C$, i.e. M has the ads.

Theorem 2.5 With the above notation, the module M_{R} has the $S A$ if and only if the module $(M e)_{S}$ has the $S A$.

Proof By ([6], Theorem 6), the module M_{R} has the SIP if and only if the module $(M e)_{S}$ has the SIP. By Theorem 2.4, if the module $(M e)_{S}$ has the ads, then the module M_{R} has the ads. To finish the proof, we prove that if the module M_{R} has the ads, then the module $(M e)_{S}$ has the ads.

Let $M e=X e \oplus Y e$ and $C e$ be a complement of $X e$. By Lemma 2.2 and Lemma 2.3, C is a complement of X and $M=X \oplus Y$. Since M has the ads, $M=X \oplus C$. Thus $M e=X e \oplus C e$, i.e. $M e$ has the ads.

Example 2.6 Let A be a right Ore domain, D the division ring that is the classical right ring of quotients of A, and R the ring of 2×2 matrices over D. Let $e=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in R$. Then e is an idempotent and Re $R=R$. Let $M=R$ and S the subring $e R e=\left[\begin{array}{ll}0 & 0 \\ 0 & D\end{array}\right]$. Hence, $(M e)_{S}=\left[\begin{array}{ll}0 & D \\ 0 & D\end{array}\right]$ is indecomposable. Therefore, $(M e)_{S}$ has the $S A$ and hence M_{R} has the $S A$ by Theorem 2.5.

Corollary 2.7 With the above notation, the ring R has the right $S A$ if and only if the module $(R e)_{e R e}$ has the $S A$.

Proof This follows immediately from Theorem 2.5.

Now let S be a ring, n a positive integer, $M_{n}(S)$ denote the ring of $n \times n$ matrices over S, and e_{11} be the matrix in $M_{n}(S)$ with $(1,1)$ entry 1 and all other entries 0 . It is well known that e_{11} is idempotent and $S \cong e_{11} M_{n}(S) e_{11}$ and $M_{n}(S)=M_{n}(S) e_{11} M_{n}(S)$.

Thus, Theorem 2.5 gives the following result, which was mentioned above without proof.

Theorem 2.8 With the above notation, the ring $M_{n}(S)$ has the $S A$ if and only if the free module S_{S}^{n} has the $S A$.

Example 2.9 Let p be any prime integer and S the polynomial ring $\mathbb{Z}_{p}[x]$. Consider the ring of 2×2 matrices over $\mathbb{Z}_{p}[x]$, i.e.

$$
M_{2}(S)=\left[\begin{array}{ll}
\mathbb{Z}_{p}[x] & \mathbb{Z}_{p}[x] \\
\mathbb{Z}_{p}[x] & \mathbb{Z}_{p}[x]
\end{array}\right]=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{Z}_{p}[x]\right\}
$$

Since \mathbb{Z}_{p} is a right Noetherian domain, $S=\mathbb{Z}_{p}[x]$ is also a right Noetherian domain. Hence, $\mathbb{Z}_{p}[x]$ is a right Ore domain. Thus, by ([2], Proposition 4), $S_{S}^{2}=\mathbb{Z}_{p}[x] \oplus \mathbb{Z}_{p}[x]$ has the SIP. On the other hand, since $f(x) \in \mathbb{Z}_{p}[x]$ is idempotent iff its constant term is idempotent and other coefficients are zero, $\mathbb{Z}_{p}[x]$ is indecomposable. Then $S_{S}^{2}=\mathbb{Z}_{p}[x] \oplus \mathbb{Z}_{p}[x]$ is indecomposable and hence it has the ads. Finally, S_{S}^{2} has the $S A$. Then, by Theorem 2.8, $M_{2}(S)$ has the $S A$.

Recall that a ring theoretic property \mathcal{P} is said to be a Morita invariant property if and only if all the following hold:
whenever a ring R has \mathcal{P} then
i. $\quad M_{n}(R)$ has \mathcal{P} for all $n \geq 2$,
ii. $e R e$ has \mathcal{P} for all $e^{2}=e \in R$ such that $R=R e R$.

The following example shows that the SA property is not a Morita invariant property.

Example 2.10 Let $R=\mathbb{Z}$. Consider the $\operatorname{ring} R^{2}=\mathbb{Z} \times \mathbb{Z}$. Since $\mathbb{Z} \times\{0\}$ is not $(\{0\} \times \mathbb{Z})$-injective, R^{2} does not have the ads by Lemma 1.1. Hence, $M_{2}(R)$ does not have the $S A$ by Theorem 2.8. Thus, the $S A$ property is not a Morita invariant property.

TAKIL MUTLU/Turk J Math

Given a ring R and a $R-R$-bimodule M, the trivial extension of a ring R by M is defined to be the ring whose additive group is the direct sum $R \oplus M$ with multiplication given by

$$
(r, m) \cdot\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+m r^{\prime}\right)
$$

Now we give the following result on trivial extensions.

Theorem 2.11 Let R be any ring, M be an $R-R$-bimodule, and T be the corresponding trivial extension of R by M. Then T has the $S A$ if and only if all the following hold:
(i) R has the $S A$,
(ii) M has the ads,
(iii) $(1-e) M e=0$ for each idempotent e of R.

Proof Suppose that T has the SA. Then, by ([6], Theorem 11) and ([9], Theorem 3.6), (i), (ii), and (iii) hold.
Assume that (i), (ii), and (iii) hold. Then, by ([6], Theorem 11), T has the SIP and each direct summand of T is $(e R, e M)$ for some idempotent element e of R. To finish the proof, we show that T has the ads. Let $T=(e R, e M) \oplus(f R, f M)$ for some idempotent element e, f of R and (K, L) a complement of $(e R, e M)$. Then K is a complement of $e R$ and L is a complement of $e M$. By hypothesis, $R=e R \oplus K$ and $M=e M \oplus L$, and so $T=(e R, e M) \oplus(K, L)$. Hence, T has the ads, as desired.

Example 2.12 Let $R=\mathbb{Z}_{6}$. Consider the R - R bimodule $M=2 \mathbb{Z}_{6}$. Let

$$
T=\left[\begin{array}{cc}
\mathbb{Z}_{6} & 2 \mathbb{Z}_{6} \\
0 & \mathbb{Z}_{6}
\end{array}\right]=\left\{\left[\begin{array}{cc}
r & m \\
0 & r
\end{array}\right] r \in \mathbb{Z}_{6}, m \in 2 \mathbb{Z}_{6}\right\} .
$$

denote the trivial extension of R by M. Since \mathbb{Z}_{6} is semisimple, the only nontrivial decomposition of R_{R} is $2 \mathbb{Z}_{6} \oplus 3 \mathbb{Z}_{6}$ and $2 \mathbb{Z}_{6}$ is $3 \mathbb{Z}_{6}$-injective, R_{R} has the $S A$ by Lemma 1.1, and hence \mathbb{Z}_{6} and $2 \mathbb{Z}_{6}$ have the SA by Lemma 1.3. On the other hand, all idempotent elements of \mathbb{Z}_{6} are $\overline{0}, \overline{1}, \overline{3}$, and $\overline{4}$ and for each idempotent e of $\mathbb{Z}_{6},(1-e) M e=0$. Then, by Theorem 2.11, T has the $S A$.

From now on this paper, let T be the formal triangular matrix ring $\left[\begin{array}{cc}S & M \\ 0 & R\end{array}\right]$, where R and S are rings with identities and M is a $S-R$-bimodule.

Theorem 2.13 If T has the $S A$, then R has the $S A$.
Proof The result is a consequence of ([6], Theorem 15) and ([9], Theorem 3.6).
Note that the converse of Theorem 2.13 is not always true. In fact, let $T=\left[\begin{array}{ll}R & M \\ 0 & S\end{array}\right]=\left[\begin{array}{c}\mathbb{Z} \\ 0\end{array} \oplus \mathbb{Z}\right]$. The $\mathbb{Z} \oplus \mathbb{Z}$ as a right \mathbb{Z}-module is not ads since \mathbb{Z} is not \mathbb{Z}-injective. Thus, T does not have the SA by ([9], Theorem 3.6), although \mathbb{Z} has the ads.

Theorem 2.14 Let SocT be a direct summand of T. If T has the $S A$, then both R and S have the $S A$.

Proof Since $S o c T$ is a direct summand of T by assumption, $M=0$ by ([6], Lemma 12). Hence, $T \cong S \times R$. Then R and S have the SA by Lemma 1.3.

Now we provide the following example for comparison to Theorem 2.14.
Example 2.15 Let F be a field and T the formal triangular matrix ring over F, i.e.

$$
\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \right\rvert\, a, b, c \in F\right\}
$$

Routine calculations show that any nontrivial idempotent of T has one of the following forms, where $f \in F$:

$$
c=\left[\begin{array}{ll}
0 & f \\
0 & 1
\end{array}\right], e=\left[\begin{array}{ll}
1 & f \\
0 & 0
\end{array}\right]
$$

It can be easily seen that $c T \cap e T=0$. Hence, T has the SIP. Consider the decomposition $T=c T \oplus e T$. One can then verify that the only complement of $c T$ is $A=\left[\begin{array}{cc}F & F \\ 0 & 0\end{array}\right]$ and the complement of eT has one of the following forms:

$$
B=\left[\begin{array}{cc}
0 & 0 \\
0 & F
\end{array}\right], C=\left\{\left.\left[\begin{array}{cc}
0 & f x \\
0 & x
\end{array}\right] \right\rvert\, 0 \neq x, f \in F\right\}
$$

Moreover, $T=c T \oplus A, T=e T \oplus B$, and $T=e T \oplus C$. Hence, T has the ads. Therefore, T has the $S A$. On the other hand, F has the $S A$ and $S o c T=\left[\begin{array}{cc}0 & F \\ 0 & F\end{array}\right]$ is not a direct summand of T.

Theorem 2.16 Let R and S be mutually injective $C S$ rings. Assume that $S o c T$ is a direct summand of T. Then T has the $S A$ if and only if R and S have the $S A$.

Proof (\Longrightarrow) It is clear from Theorem 2.14.
(\Longleftarrow) Let R and S have the SA. Then $S \times R$ has the SIP by Lemma 1.5. Furthermore, since both R and S are CS and ads, both R and S are quasicontinuous. Hence, $S \times R$ is quasicontinuous by ([8], Corollary 2.14). Therefore, $S \times R$ has the ads by ([8], Theorem 2.8). It follows that T has the SA.

Acknowledgment

This study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1503F139.

References

[1] Akalan E, Birkenmeier GF, Tercan A. Goldie Extending rings, Comm Algebra 2012; 40: 423-428.
[2] Birkenmeier GF, Karabacak F, Tercan A. When is the SIP (SSP) property inherited by Free modules? Acta Math Hungar 2006; 112: 103-106.
[3] Burgess WD, Raphael R. On modules with the absolute direct summand property. In: Jain SL, Tariq Rizvi S, editors. Ring Theory, Proceedings of the Biennial Ohio State-Denison Conference 1992. River Edge, NJ, USA: World Scientific, 1993, pp. 137-148.
[4] Fuchs L. Infinite Abelian Groups, vol I. Pure Appl Math, Ser monogr Textb, vol 36, New York, NY, USA: Academic Press, 1970.
[5] Garcia JL. Properties of direct summands of modules. Comm Algebra 1989; 17: 73-92.
[6] Karabacak F, Tercan A. Matrix rings with summand intersection property. Czech Math J 2003; 53: 621-626.
[7] Koike K. Dual rings and cogenerator rings. Math J Okayama Univ 1995; 37: 99-103.
[8] Mohamed SH, Muller BJ. Continuous and Discrete Modules. London Math Soc Lecture Note Ser, vol 147, New York, NY, USA: Cambridge University Press, 1990.
[9] Quynh TC, Koşan MT. On Ads modules and rings. Comm Algebra 2014; 42: 3541-3551.
[10] Takıl Mutlu F. On Ads-modules with the SIP. Bull Iran Math Soc 2015; 41: 1355-1363.
[11] Wilson GV. Modules with the direct summand intersection property. Comm Algebra 1986; 14: 21-38.
[12] Wisbauer R. Foundations of Module and Ring Theory. Philadelphia, PA, USA: Gordon and Breach, 1991.

[^0]: *Correspondence: figent@anadolu.edu.tr
 2010 AMS Mathematics Subject Classification: Primary 16D10; Secondary 16D20, 16D25

