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Abstract: In this paper, matrix rings with the summand intersection property (SIP) and the absolute direct summand
(ads) property (briefly, SA) are studied. A ring R has the right SIP if the intersection of two direct summands of R is
also a direct summand. A right R -module M has the ads property if for every decomposition M = A ⊕ B of M and
every complement C of A in M , we have M = A ⊕ C . It is shown that the trivial extension of R by M has the SA
if and only if R has the SA, M has the ads, and (1− e)Me = 0 for each idempotent e in R . It is also shown with an
example that the SA is not a Morita invariant property.
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1. Introduction
The purpose of this paper is to study matrix rings that have both the summand intersection property (SIP)
and the absolute direct summand (ads) property (briefly, SA).

Wilson [11] defines a right R -module M to have the SIP if the intersection of every pair of direct
summands of M is a direct summand of M . The ring R has the right SIP provided that the right R -module
R has the SIP.

Fuchs [4] introduced the ads property for abelian groups. Burgess and Raphael [3] define a right R -module
M to have the ads if for every decomposition M = A⊕B of M and every complement C of A in M we have
M = A⊕ C . The ring R has the right ads provided that the right R -module R has the ads.

Takıl Mutlu [10] defines a right R -module M to have the SA property (or briefly have the SA), if M

has the SIP and the ads. In [10], the author studied the class of modules with the SA and investigated some
properties of these modules. The ring R has the right SA provided that the right R -module R has the SA.

The motivation of the current study comes from the following question:
When does the full matrix ring over a ring have the SA property?

In this paper we provide necessary and sufficient conditions for rings and trivial extensions to have the
SA.

Throughout the paper all rings are associative with unity and R always denotes such a ring. Modules
are unital and for an abelian group M we use MR to indicate that M is a right R -module. For any right
R -module M , SocM will denote the socle of M . The notions that are not explained here can be found in [12].

We begin with the following lemmas and a proposition that are useful in determining the ads property
and the SA property of a module.
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Lemma 1.1 ([3], Proposition 1.1) A module MR is an ads-module if and only if for any decomposition
MR = A⊕B , B is A− injective .

Proposition 1.2 ([10], Proposition 2.6.) A module MR has the SA if and only if the following statements
are satisfied:
for any decomposition MR = A⊕B ,

i) for every homomorphism f from A to B , the kernel of f is a direct summand.

ii) for any complement C of A in MR and the projection map π : M −→ B , the restricted map π|C : C −→ B

is an isomorphism.

Lemma 1.3 ([10], Lemma 2.7.) Every direct summand of a module that has the SA has again the SA .

The following example shows that a direct sum of modules that have the SA may not have the SA.

Example 1.4 This example is taken from [10].

(i) Consider a right Z-module Z . It is clear that Z is indecomposable and hence it has the SA . Since Z is
not Z-injective, Z⊕ Z is not an ads-module by Lemma 1.1 and hence it does not have the SA .

(ii) Consider a right Z-module Prüfer p-group Zp∞ . It is clear that Zp∞ is indecomposable and hence it has
the SA . Now define a homomorphism f from Zp∞ to Zp∞ as the multiplication by p

f

(
n

pt
+ Z

)
=

n

pt−1
+ Z with n ∈ Z and t ∈ N.

It is clear that Kerf =
(

1
p + Z

)
. However, Zp∞ is indecomposable and hence Kerf is not a direct

summand of Zp∞ . By Proposition 1.2, Zp∞ ⊕ Zp∞ does not have the SA .

Lemma 1.5 ([5], Lemma 3.1) Let R be a product of rings, R =
∏
I

Ri . Then R has the SIP on the left if and

only if each Ri has the SIP on the left.

2. Rings with the SA property
We shall give the following examples that do not have the SA.

Example 2.1 i) Let R be the algebra of matrices, over a field K , of the form

R =


a x 0 0 0 0
0 b 0 0 0 0
0 0 c y 0 0
0 0 0 a 0 0
0 0 0 0 b z
0 0 0 0 0 c

 .

as in [7]. Let e = e11 + e22 + e44 + e55 , where eii denotes the matrix in R with (i, i) entry 1 and all other
entries 0 . Then e is an idempotent of R and ReR ̸= R . By [9], S = eRe does not have the ads. Hence, S

does not have the SA.
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ii) Let R =
( Z3 Z3

0 Z
)

be the formal triangular matrix ring. Then the only direct summands (as right ideals) of
R are 0 , R , ( 0 0

0 Z ) ,
( Z3 Z3

0 0

)
,
(
0 1
0 1

)
R , and

(
0 2
0 1

)
R . Since ( 0 0

0 Z ) ∩
(
0 1
0 1

)
R is not a direct summand of R , R

does not have the SIP. It follows that R does not have the SA.

Let R be a ring, e an idempotent in R such that R = ReR , and S the subring eRe . It is clear that if
M is a right R -module, then Me is a right S -module.

Lemma 2.2 ([1], Lemma 5(i)) With the above notation, C is a complement of X in M if and only if Ce is
a complement of Xe in Me .

Proof Suppose that C is a complement of X in M . Since C ∩X = 0 , Ce ∩Xe = 0 . Then there exists a
complement Ke of Xe in Me such that Ce ≤ Ke . Hence C ≤ K ≤ M . On the other hand, (K ∩X)e = 0 .
Therefore (K ∩ X)eR = 0 or (K ∩ X)ReR = (K ∩ X)R = 0 . It follows that K ∩ X = 0 . By assumption,
K = C and so Ke = Ce .

For the converse, assume that Ce is a complement of Xe in Me . We show that C is a complement of
X . Since Ce ∩Xe = 0 , by the above proof, C ∩X = 0 . Then there exists a complement L of X in M such
that C ≤ L . Then Ce ≤ Le and Le∩Xe = 0 . As Ce is a complement of Xe in Me , Le = Ce . Thus L = C .

2

Lemma 2.3 With the above notation, M = X ⊕ Y if and only if Me = Xe⊕ Y e .

Proof Suppose that M = X ⊕ Y . Since X ∩ Y = 0 , Xe ∩ Y e = 0 . On the other hand, for every M ∈ M ,
there exist x ∈ X and y ∈ Y such that m = x+ y . Therefore me = xe+ ye . Hence Me = Xe⊕ Y e .

For the converse, assume that Me = Xe⊕Y e . For every m ∈ M , we have me = xe+ye for some x ∈ X

and y ∈ Y . Then mer1er2 = xer1er2 + yer1er2 and hence MR ≤ XR + YR . It follows that MR = XR + YR .
Let

∑
ixiri =

∑
j yjsj , where xi ∈ X , yj ∈ Y , and ri, sj ∈ R . For all r ∈ R , we obtain that∑

i

xi(rire) =
∑
j

yj(sjre) ∈ Xe ∩ Y e.

Since Xe ∩ Y e = 0 , we have
∑

i xi(rire) = 0 , which implies that (
∑

i xiri)Re = 0 , and by the assumption
ReR = R , (

∑
i xiri) = 0 . Thus, MR = XR ⊕ YR . 2

Theorem 2.4 With the above notation, if the module (Me)S has the ads, then the module MR has the ads.

Proof Let M = X ⊕Y and C be a complement of X . Then Me = Xe⊕Y e and Ce is a complement of Xe

in Me by Lemma 2.2 and Lemma 2.3. Since Me has the ads, Me = Xe⊕ Ce . By Lemma 2.3, M = X ⊕ C ,
i.e. M has the ads. 2

Theorem 2.5 With the above notation, the module MR has the SA if and only if the module (Me)S has the
SA.

Proof By ([6], Theorem 6), the module MR has the SIP if and only if the module (Me)S has the SIP. By
Theorem 2.4, if the module (Me)S has the ads, then the module MR has the ads. To finish the proof, we prove
that if the module MR has the ads, then the module (Me)S has the ads.

Let Me = Xe⊕Y e and Ce be a complement of Xe . By Lemma 2.2 and Lemma 2.3, C is a complement
of X and M = X ⊕ Y . Since M has the ads, M = X ⊕ C . Thus Me = Xe⊕ Ce , i.e. Me has the ads. 2
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Example 2.6 Let A be a right Ore domain, D the division ring that is the classical right ring of quotients of

A , and R the ring of 2× 2 matrices over D . Let e =

[
0 0
0 1

]
∈ R . Then e is an idempotent and ReR = R .

Let M = R and S the subring eRe =

[
0 0
0 D

]
. Hence, (Me)S =

[
0 D
0 D

]
is indecomposable. Therefore, (Me)S

has the SA and hence MR has the SA by Theorem 2.5.

Corollary 2.7 With the above notation, the ring R has the right SA if and only if the module (Re)eRe has the
SA.

Proof This follows immediately from Theorem 2.5. 2

Now let S be a ring, n a positive integer, Mn(S) denote the ring of n× n matrices over S , and e11 be
the matrix in Mn(S) with (1, 1) entry 1 and all other entries 0 . It is well known that e11 is idempotent and
S ∼= e11Mn(S)e11 and Mn(S) = Mn(S)e11Mn(S) .

Thus, Theorem 2.5 gives the following result, which was mentioned above without proof.

Theorem 2.8 With the above notation, the ring Mn(S) has the SA if and only if the free module Sn
S has the

SA.

Example 2.9 Let p be any prime integer and S the polynomial ring Zp[x] . Consider the ring of 2×2 matrices
over Zp[x] , i.e.

M2(S) =

[
Zp[x] Zp[x]

Zp[x] Zp[x]

]
=

{[
a b
c d

]
| a, b, c, d ∈ Zp[x]

}
.

Since Zp is a right Noetherian domain, S = Zp[x] is also a right Noetherian domain. Hence, Zp[x] is a right Ore
domain. Thus, by ([2], Proposition 4), S2

S = Zp[x]⊕ Zp[x] has the SIP. On the other hand, since f(x) ∈ Zp[x]

is idempotent iff its constant term is idempotent and other coefficients are zero, Zp[x] is indecomposable. Then
S2
S = Zp[x]⊕Zp[x] is indecomposable and hence it has the ads. Finally, S2

S has the SA. Then, by Theorem 2.8,
M2(S) has the SA.

Recall that a ring theoretic property P is said to be a Morita invariant property if and only if all the
following hold:
whenever a ring R has P then

i. Mn(R) has P for all n ≥ 2 ,

ii. eRe has P for all e2 = e ∈ R such that R = ReR .

The following example shows that the SA property is not a Morita invariant property.

Example 2.10 Let R = Z . Consider the ring R2 = Z×Z . Since Z×{0} is not ({0}×Z)-injective, R2 does
not have the ads by Lemma 1.1. Hence, M2(R) does not have the SA by Theorem 2.8. Thus, the SA property
is not a Morita invariant property.
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Given a ring R and a R − R -bimodule M , the trivial extension of a ring R by M is defined to be the
ring whose additive group is the direct sum R⊕M with multiplication given by

(r,m) · (r
′
,m

′
) = (rr

′
, rm

′
+mr

′
).

Now we give the following result on trivial extensions.

Theorem 2.11 Let R be any ring, M be an R−R -bimodule, and T be the corresponding trivial extension of
R by M . Then T has the SA if and only if all the following hold:

(i) R has the SA,

(ii) M has the ads,

(iii) (1− e)Me = 0 for each idempotent e of R .

Proof Suppose that T has the SA. Then, by ([6], Theorem 11) and ([9], Theorem 3.6), (i), (ii), and (iii) hold.
Assume that (i), (ii), and (iii) hold. Then, by ([6], Theorem 11), T has the SIP and each direct summand

of T is (eR, eM) for some idempotent element e of R . To finish the proof, we show that T has the ads. Let
T = (eR, eM)⊕(fR, fM) for some idempotent element e, f of R and (K,L) a complement of (eR, eM) . Then
K is a complement of eR and L is a complement of eM . By hypothesis, R = eR⊕K and M = eM ⊕L , and
so T = (eR, eM)⊕ (K,L) . Hence, T has the ads, as desired. 2

Example 2.12 Let R = Z6 . Consider the R -R bimodule M = 2Z6 . Let

T =

[
Z6 2Z6

⧹
0 Z6

]
=

{[
r m

0 r

]
r ∈ Z6, m ∈ 2Z6

}
.

denote the trivial extension of R by M . Since Z6 is semisimple, the only nontrivial decomposition of RR is
2Z6 ⊕ 3Z6 and 2Z6 is 3Z6 -injective, RR has the SA by Lemma 1.1, and hence Z6 and 2Z6 have the SA by
Lemma 1.3. On the other hand, all idempotent elements of Z6 are 0, 1, 3 , and 4 and for each idempotent e

of Z6 , (1− e)Me = 0 . Then, by Theorem 2.11, T has the SA.

From now on this paper, let T be the formal triangular matrix ring [ S M
0 R ] , where R and S are rings

with identities and M is a S −R -bimodule.

Theorem 2.13 If T has the SA, then R has the SA.

Proof The result is a consequence of ([6], Theorem 15) and ([9], Theorem 3.6). 2

Note that the converse of Theorem 2.13 is not always true. In fact, let T = [R M
0 S ] =

[ Z Z⊕Z
0 Z

]
. The Z⊕Z

as a right Z -module is not ads since Z is not Z -injective. Thus, T does not have the SA by ([9], Theorem 3.6),
although Z has the ads.

Theorem 2.14 Let SocT be a direct summand of T . If T has the SA, then both R and S have the SA.
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Proof Since SocT is a direct summand of T by assumption, M = 0 by ([6], Lemma 12). Hence, T ∼= S ×R .
Then R and S have the SA by Lemma 1.3. 2

Now we provide the following example for comparison to Theorem 2.14.

Example 2.15 Let F be a field and T the formal triangular matrix ring over F , i.e.{[
a b
0 c

]
| a, b, c ∈ F

}
.

Routine calculations show that any nontrivial idempotent of T has one of the following forms, where f ∈ F :

c =

[
0 f
0 1

]
, e =

[
1 f
0 0

]
.

It can be easily seen that cT ∩ eT = 0 . Hence, T has the SIP. Consider the decomposition T = cT ⊕ eT .
One can then verify that the only complement of cT is A = [ F F

0 0 ] and the complement of eT has one of the
following forms:

B =

[
0 0
0 F

]
, C =

{[
0 fx
0 x

]
| 0 ̸= x, f ∈ F

}
.

Moreover, T = cT ⊕ A , T = eT ⊕B , and T = eT ⊕ C . Hence, T has the ads. Therefore, T has the SA. On
the other hand, F has the SA and SocT = [ 0 F

0 F ] is not a direct summand of T .

Theorem 2.16 Let R and S be mutually injective CS rings. Assume that SocT is a direct summand of T .
Then T has the SA if and only if R and S have the SA.

Proof (=⇒) It is clear from Theorem 2.14.
(⇐=) Let R and S have the SA. Then S × R has the SIP by Lemma 1.5. Furthermore, since both R and S

are CS and ads, both R and S are quasicontinuous. Hence, S ×R is quasicontinuous by ([8], Corollary 2.14).
Therefore, S ×R has the ads by ([8], Theorem 2.8). It follows that T has the SA. 2
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