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Abstract: The aim of this article is to discuss the existence of certain kinds of derivations and *-derivations that are of
period 2. Moreover, we obtain the form of generalized reverse derivations and generalized left derivations of period 2 .
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1. Introduction
Throughout this paper, R will represent an associative ring with center Z(R) . An ideal U of R is said to
be central ideal if U ⊆ Z(R) . Given an integer n ≥ 2 , a ring R is said to be n -torsion free if for x ∈ R ,
nx = 0 implies x = 0 . For x, y ∈ R , the symbol [x, y] stands for the commutator xy − yx . R is said
to be domain if for a, b ∈ R , ab = 0 implies a = 0 or b = 0 . A domain with identity is called a unital
domain. R is said to be prime if for a, b ∈ R , aRb = {0} implies a = 0 or b = 0 , and is said to be
semiprime if for a ∈ R , aRa = {0} implies a = 0 . Its clear that every domain is prime. An additive mapping
d : R → R is called a derivation (Jordan derivation, respectively) if d(xy) = d(x)y + xd(y) for all x, y ∈ R

(d(x2) = d(x)x+xd(x) for all x ∈ R , respectively). As in [9] by Bell and Daif and in [14] by Gölbaşi and Kaya,
a right (left, respectively) generalized derivation F of R is an additive map of R associated with a derivation d

of R such that F (xy) = F (x)y + xd(y) for allx, y ∈ R (F (xy) = xF (y) + d(x)y for allx, y ∈ R , respectively).
If F is both a right and left generalized derivation with the same associated derivation, then F is said to
be a generalized derivation. In [1] Aboubakr and González referred to a right (left, respectively) generalized
Jordan derivation F of R to be an additive map of R associated with a Jordan derivation d of R such that
F (x2) = F (x)x + xd(x) for allx ∈ R (F (x2) = xF (x) + d(x)x for allx ∈ R , respectively). If F is both a
right and left generalized Jordan derivation with the same associated Jordan derivation, then F is said to be a
generalized Jordan derivation. An additive mapping d : R → R is called a reverse derivation (or sometimes
antiderivation ) if d(xy) = d(y)x + yd(x) for all x, y ∈ R . The authors of [1] gave the following definition: a
right (left, respectively) generalized reverse derivation F of R is an additive map of R associated with a reverse
derivation d of R such that F (xy) = F (y)x + yd(x) for allx, y ∈ R (F (xy) = yF (x) + d(y)x for allx, y ∈ R ,
respectively). If F is both a right and left generalized reverse derivation with the same associated reverse
derivation, then F is said to be a generalized reverse derivation. In [13] Bres̆ar and Vukman defined a left
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derivation to be an additive mapping d : R → R satisfying d(xy) = xd(y) + yd(x) for all x, y ∈ R . In [6]
Ashraf and Ali gave the definition of a generalized left derivation to be an additive map F of R associated
with a left derivation d of R such that F (xy) = xF (y) + yd(x) for allx, y ∈ R . Reverse derivations and left
derivations have been studied in some papers (see [1, 5, 13]). An additive bijective mapping g of R is called an
anti-automorphism if g(xy) = g(y)g(x) for all x, y ∈ R . An anti-automorphism ∗ of period 2 on a ring R is
said to be an involution. A ring R equipped with an involution ∗ is called a ∗ -ring or a ring with involution.
An ideal U of R is called a ∗ -ideal if U∗ = U . In [12] Bres̆ar defined a ∗ -derivation to be an additive map
d of R satisfying d(xy) = d(x)y∗ + xd(y) for all x, y ∈ R . Accordingly, a reverse ∗ -derivation of R is an
additive map d of R such that d(xy) = d(y)x∗+ yd(x) for allx, y ∈ R . In [4] Ali et al. gave the notion of a left
∗ -derivation of R to be an additive map d of R such that d(xy) = xd(y) + y∗d(x) for allx, y ∈ R . For results
on *-derivations, reverse *-derivations, left *-derivations, and their generalizations, see [2–4, 7, 12]. Let S be a
nonempty subset of R and f a map of R . If [x, f(x)] = 0 for all x ∈ S , then f is said to be commuting on S ,
and if [f(x), f(y)] = [x, y] for all x, y ∈ S , then f is said to be strong commutativity-preserving on S (see [8]).

In [9] Bell and Daif mentioned a map f on R of period 2 on a subset S of R to be a map satisfying
f2(x) = x for all x ∈ S . Involutions are much studied examples. They proved in a semiprime ∗ -ring R that ∗
is commuting on a ∗ -ideal U of R if and only if ∗ is strong commutativity-preserving on R [[9], Theorem 1].
They also showed the following results:

Theorem 1.1 [ [9], Theorem 3 ] Let R be a semiprime ring and U a nonzero right ideal of R . Then R admits
no derivation d of period 2 on U .

Theorem 1.2 [ [9], Theorem 9 ] Let R be a (not necessarily commutative) unital domain and with char(R) ̸= 2 .
If F is a right generalized derivation of period 2 on R , then F must be the identity map or its negative.

Theorem 1.3 [ [9], Theorem 11 ] Let R be a prime ring with Z(R) ̸= {0} and with char(R) ̸= 2 . If F is a
generalized derivation of period 2 on R with associated derivation d , then F is the identity map or its negative.

Motivated by their results, we shall prove that a semiprime ring R cannot admit a reverse derivation
that is of period 2 on a nonzero ideal of R and also cannot admit a left derivation that is of period 2 on a
nonzero one-sided ideal of R . Furthermore, we show that a semiprime *-ring R cannot admit a *-derivation, a
reverse *-derivation, or a left *-derivation of period 2 on a nonzero ∗ -ideal U of R . Moreover, we shall discuss
the form of generalized reverse derivations and generalized left derivations of period 2 in prime rings.

To prove our results, we need the following.

Lemma 1.1 [ [15], Lemma 1.1 ] Let R be a ring and U be a nonzero right ideal of R . Suppose that given
a ∈ U , an = 0 for a fixed integer n , R has a nonzero nilpotent ideal.

Lemma 1.2 [ [10], Remark(iii) ] In a semiprime ring R , the center of a nonzero one-sided ideal is contained
in Z(R) ; in particular, any commutative one-sided ideal is contained in Z(R) .

Theorem 1.4 [ [11], Theorem 1 ] Let R be a 2-torsion free semiprime ring and let d : R −→ R be a Jordan
derivation. In this case, d is a derivation.
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Theorem 1.5 [ [16], Theorem 2.5 ] Let R be a prime ring with char(R) ̸= 2 . Then every right generalized
Jordan derivation on R is a right generalized derivation.

Theorem 1.6 [ [6], Proposition 3.1 ] Let R be a prime ring with char(R) ̸= 2 . If R admits a generalized left
derivation with associated Jordan left derivation d of R , then either d = 0 or R is commutative.

Theorem 1.7 [ [2], Theorem 2.1 ] Let R be a semiprime ∗-ring. If R admits a generalized ∗ -derivation F

associated with a nonzero ∗ -derivation d of R , then F maps R into Z(R) .

Theorem 1.8 [ [2], Theorem 2.3 ] Let R be a semiprime ∗-ring. If R admits a generalized reverse ∗ -derivation
F associated with a nonzero reverse ∗ -derivation d of R , then d maps R into Z(R) .

2. Reverse and left derivations
Our aim in this section is to discuss the existence of reverse and left derivations of period 2 on suitable subsets
of a semiprime ring R .

Theorem 2.1 Let R be a 2-torsion free semiprime ring and U a nonzero right ideal of R . Then R admits
no reverse derivation of period 2 on U .

Proof Assuming that there is a reverse derivation d such that d is of period 2 on U , then d(xy) = d(y)x+yd(x)

for all x, y ∈ R. Therefore, d(x2) = d(x)x+xd(x) for all x ∈ R . By Theorem 1.4, we obtain that d is a derivation
of period 2 on U , contrary to Theorem 1.1. 2

Theorem 2.2 Let R be a 3-torsion free semiprime ring and U a nonzero ideal of R . Then R admits no
reverse derivation of period 2 on U .

Proof Assume that there is a reverse derivation d such that d is of period 2 on U , i.e. d2(x) = x for all
x ∈ U . Then for all x, y ∈ U , we have xd(y) = d2(xd(y)) = d(yx+ d(y)d(x)) = d(x)y+ xd(y) + xd(y) + d(x)y ,
which implies

2d(x)y + xd(y) = 0 for all x, y ∈ U. (2.1)

Similarly, d(x)y = d2(d(x)y) = d(d(y)d(x)+yx) = xd(y)+d(x)y+d(x)y+xd(y) for all x, y ∈ U , which reduces
to

2xd(y) + d(x)y = 0 for all x, y ∈ U. (2.2)

Adding (2.1) and (2.2) and using the 3 -torsion freeness of R , we get xd(y) + d(x)y = 0 for all x, y ∈ U .
Substituting in (2.1), we obtain d(x)y = 0 for all x, y ∈ U . Substituting in (2.2), we get xd(y) = 0 for x, y ∈ U .
Therefore, d(xy) = 0 , which implies xy = 0 for all x, y ∈ U . Then x2 = 0 for all x ∈ U , contrary to Lemma
1.1 since R is semiprime.

2

Theorem 2.3 Let R be a semiprime ring and U a nonzero one-sided ideal of R . Then R admits no left
derivation of period 2 on U .

2666



NABIEL/Turk J Math

Proof Suppose there exists a left derivation d on R that is of period 2 on U . For x, y ∈ U , we have
xy = d2(xy) = d(xd(y) + yd(x)) = xy + d(y)d(x) + yx+ d(x)d(y) for all x, y ∈ U . Thus,

d(y)d(x) + d(x)d(y) + yx = 0 for all x, y ∈ U. (2.3)

Similarly,
d(x)d(y) + d(y)d(x) + xy = 0 for all x, y ∈ U. (2.4)

By (2.3) and (2.4) we conclude that xy = yx for all x, y ∈ U . That is, U is commutative. By Lemma 1.2, we
get that U is a two-sided central ideal.

For x, y ∈ U , we have xd(y) = d2(xd(y)) = d(xy + d(y)d(x)) = xd(y) + yd(x) + d(y)x+ d(x)y , but U is
central ideal, so 2d(x)y + d(y)x = 0 , and

2d(y)x+ d(x)y = 0 for all x, y ∈ U. (2.5)

Thus,
d(y)x = d(x)y for all x, y ∈ U. (2.6)

Applying d for (2.6) we obtain d(y)d(x) + xy = d(x)d(y) + yx for all x, y ∈ U , so

d(y)d(x) = d(x)d(y) for all x, y ∈ U. (2.7)

Recalling (2.4), we obtain
2d(y)d(x) + xy = 0 for all x, y ∈ U. (2.8)

Substituting yz for y in (2.8), z ∈ U , and using (2.8) we get 2d(z)yd(x) = 0 for all x, y, z ∈ U . Therefore,
(2d(x)y)R(2d(x)y) = 0 for all x, y ∈ U , but R is semiprime, so 2d(x)y = 0 for all x, y ∈ U , and by (2.5) we
obtain d(y)x = 0 for all x, y ∈ U . Applying d , we get 0 = d(d(y)x) = d(y)d(x) + xy for all x, y ∈ U , so
0 = 2d(y)d(x) + 2xy for all x, y ∈ U . By (2.4) and (2.7), we can see that xy = 0 for all x, y ∈ U , which is
contrary to Lemma 1.1 since R is semiprime. 2

3. Generalized reverse derivations and generalized left derivations

In this section we discuss the form of generalized reverse derivations and generalized left derivations that are of
period 2 .

Theorem 3.1 Let R be a (not necessarily commutative) unital domain, with char(R) ̸= 2 . If F is a right
generalized reverse derivation of period 2 on R associated with a reverse derivation d of R , then F must be
the identity map or its negative.

Proof Suppose there exists a right generalized reverse derivation F of period 2 on R associated with a reverse
derivation d of R . Then F (xy) = F (y)x + yd(x) for all x, y ∈ R . Therefore, F (x2) = F (x)x + xd(x) for all
x, y ∈ R . By Theorem 1.5, F is a right generalized derivation that is of period 2 on U . By Theorem 1.2, we
get the result. 2

In a similar way we can prove the following theorem, by using Theorem 1.3.
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Theorem 3.2 Let R be a prime ring with Z(R) ̸= {0} and with char(R) ̸= 2 . If F is a generalized reverse
derivation of period 2 on R with associated reverse derivation d on R , then F is the identity map or its
negative.

Theorem 3.3 Let R be a (not necessarily commutative) unital domain, with char(R) ̸= 2 . If F is a generalized
left derivation of period 2 on R associated with a left derivation d of R , then F must be the identity map or
its negative.

Proof By our assumption we have F (xy) = xF (y) + yd(x) for all x, y ∈ R . By Theorem 1.6 we have d = 0

or R is commutative. If R is commutative, then F (xy) = F (yx) = yF (x) + xd(y) = F (x)y + xd(y) for all
x, y ∈ R . That is, F is a right generalized derivation of period 2 on R . Theorem 1.2 yields that F is the
identity map or its negative.

Now assume that d = 0 . Hence, F (xy) = xF (y) for all x, y ∈ R . Note that F (x) = xF (1) = xa for
all x ∈ R , where a = F (1) . Since F is of period 2 , we have x = xa2 , implying x(1 − a2) = 0 for all x ∈ R .
However, R is a domain, so a = 1 or a = −1 . Hence, F is the identity map or its negative. 2

4. *-Maps in rings with involution

In Theorem 1.7 Ali proved that the range of any generalized *-derivation of a semiprime ring R is contained in
Z(R) . For the sake of completeness, we prove here a special case of his result.

Lemma 4.1 [ [2], Corollary 2.3 ] Let R be a semiprime ∗-ring. If R admits a ∗ -derivation d , then
d(x) ∈ Z(R) for all x ∈ R .

Proof For x, y, z ∈ R we have

d(x(yz)) = d(x)z∗y∗ + xd(y)z∗ + xyd(z) for all x, y, z ∈ R. (4.1)

On the other hand,
d((xy)z) = d(x)y∗z∗ + xd(y)z∗ + xyd(z) for all x, y, z ∈ R. (4.2)

Comparing (4.1) and (4.2) we get d(x)[y∗, z∗] = 0 for all x, y, z ∈ R , which implies

d(x)[y, z] = 0 for all x, y, z ∈ R. (4.3)

Replacing y by yd(x) in (4.3) and using (4.3) we obtain

d(x)R[d(x), z] = 0 for all x, z ∈ R. (4.4)

From (4.4) we get [d(x), z]R[d(x), z] = 0 for all x, z ∈ R . The semiprimeness of R completes our result. 2

Similarly, we can get a special case of Theorem 1.8.

Lemma 4.2 [ [2], Corollary 2.5 ] Let R be a semiprime ∗-ring. If R admits a reverse ∗ -derivation d , then
d(x) ∈ Z(R) for all x ∈ R .

In the same vein, we can prove the following.
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Lemma 4.3 Let R be a semiprime ∗-ring. If R admits a left ∗ -derivation d , then d(x) ∈ Z(R) for all x ∈ R .

Proof For x, y, z ∈ R we have

d(x(yz)) = xyd(z) + xz∗d(y) + z∗y∗d(x) for all x, y, z ∈ R. (4.5)

On the other hand,
d((xy)z) = xyd(z) + z∗xd(y) + z∗y∗d(x) for all x, y, z ∈ R. (4.6)

Comparing (4.5) and (4.6) we get [x, z∗]d(y) = 0 for all x, y, z ∈ R , which implies

[x, z]d(y) = 0 for all x, y, z ∈ R. (4.7)

Replacing z by d(y)z in (4.7) and using (4.7) we obtain

[x, d(y)]Rd(y) = 0 for all x, y ∈ R. (4.8)

Therefore, [x, d(y)]R[x, d(y)] = 0 for all x, y ∈ R . The semiprimeness of R completes our proof. 2

Now we discuss the existence of *-derivations of period 2 in semiprime *-rings.

Lemma 4.4 Let R be a semiprime ∗-ring and U be a nonzero one-sided ideal of R . If R admits a *-derivation
d that is of period 2 on U , then U is a two-sided central ideal of R .

Proof For all x ∈ U and r ∈ R we have by Lemma 4.1 that d(d(x))r = rd(d(x)) . Therefore,

xr = rx for all x ∈ U, r ∈ R. (4.9)

That is, U is a two-sided central ideal. 2

A *-derivation d commutes with ∗ if d(x∗) = d(x)∗ .

Theorem 4.1 Let R be a semiprime ∗-ring and U a nonzero one-sided ∗-ideal of R . Then R admits no
*-derivation d that commutes with ∗ and is of period 2 on U .

Proof Assume that R has a *-derivation d such that d2(x) = x for all x ∈ U . Then xy = d2(xy) =

d(d(x)y∗ + xd(y)) = xy + 2d(x)d(y∗) + xy for all x, y ∈ U , which yields

2d(x)d(y∗) + xy = 0 for all x, y ∈ U. (4.10)

Since xd(y) ∈ U for all x, y ∈ U , we have xd(y) = d2(xd(y)) = d(d(x)d(y∗) + xy) = xd(y) + 2d(x)y∗ + xd(y)

for all x, y ∈ U , which implies
2d(x)y∗ + xd(y) = 0 for all x, y ∈ U. (4.11)

Replacing x by y∗x in (4.10) and using (4.10), we get 2d(y∗)x∗d(y∗) = 0 for all x, y ∈ U . Since d(y∗) is in
the center of R , we have 2d(y∗)Rx∗d(y∗) = 0 . This yields
(2x∗d(y∗))R(2x∗d(y∗)) = 0 . However, R is semiprime, and hence 2x∗d(y∗) = 0 for all x, y ∈ U , and since U

is a ∗ -ideal we obtain 2x∗d(y) = 0 for all x, y ∈ U . By Lemma 4.1 we get 2d(y)x∗ = 0 for all x, y ∈ U , and
using (4.11) we obtain

xd(y) = 0 for all x, y ∈ U. (4.12)
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Applying d on (4.12) gives 0 = d(xd(y)) = d(x)d(y∗) + xy for all x, y ∈ U . Therefore, 2d(x)d(y∗) + 2xy = 0 ,
and by (4.10) we get xy = 0 for all x, y ∈ U , which implies x2 = 0 for all x ∈ U , contrary to Lemma 1.1 since
R is semiprime. 2

In a similar manner we obtain the following result for reverse *- derivations.

Lemma 4.5 Let R be a semiprime ∗-ring and U a nonzero one-sided ideal of R . If R admits a reverse
∗ -derivation d that is of period 2 on U , then U is a two-sided central ideal of R .

Theorem 4.2 Let R be a semiprime ∗-ring and U a nonzero one sided ∗-ideal of R . Then R admits no
reverse ∗ -derivation d that commutes with ∗ and is of period 2 on U .

Proof Assume that R has a reverse *-derivation d such that d2(x) = x for all x ∈ U . Since d(x) ∈ Z(R)

for all x ∈ U , by Lemma 4.2, and d is of period 2 on U , we have xy = d2(xy) = d(d(y)x∗ + yd(x)) =

d(x∗d(y) + d(x)y) = yx+ 2d(y)d(x∗) + yx for all x, y ∈ U . By Lemma 4.5 this yields

2d(y)d(x∗) + yx = 0 for all x, y ∈ U. (4.13)

Replacing y by y∗y in (4.13), we have 2d(y∗y)d(x∗) + y∗yx = 0 for all x, y ∈ U , and by Lemma 4.5 we
get 2d(yy∗)d(x∗) + y∗yx = 0 for all x, y ∈ U . Thus, 2(d(y∗)y∗ + y∗d(y))d(x∗) + y∗yx = 0 for all x, y ∈ U ,
and using (4.13) we obtain 2d(y∗)y∗d(x∗) = 0 for all x, y ∈ U . Since d(y∗) is in the center of R , we have
2d(y∗)Rx∗d(y∗) = 0 for all x, y ∈ U , which implies that (2y∗d(x∗))R(2y∗d(x∗)) = 0 for all x, y ∈ U . Hence,
2y∗d(x∗) = 0 for all x, y ∈ U , and since U is a ∗ -ideal we obtain

2yd(x∗) = 0 for all x, y ∈ U. (4.14)

Since xd(y) ∈ U for x, y ∈ U , we have xd(y) = d(y)x + 2yd(x∗) + d(y)x , using Lemma 4.5 and Lemma 4.2.
Therefore, 2yd(x∗) + d(y)x = 0 for all x, y ∈ U . Using (4.14) we obtain

d(y)x = 0 for all x, y ∈ U. (4.15)

Applying d on (4.15) and using (4.13) we get xy = 0 for all x, y ∈ U , which implies x2 = 0 for all x ∈ U ,
contrary to Lemma 1.1 since R is semiprime. 2

Lemma 4.6 Let R be a semiprime *-ring and U be a nonzero one-sided ideal of R . If R admits a left
*-derivation d that is of period 2 on U , then U is a two-sided central ideal.

Proof Follows from Lemma 4.3 . 2

Theorem 4.3 Let R be a semiprime ∗-ring and U a nonzero one-sided ∗-ideal of R . Then R admits no left
*-derivation d that commutes with ∗ and is of period 2 on U .

Proof Assuming that R has a left *-derivation d such that d2(x) = x for all x ∈ U , then d(xy) =

xd(y) + y∗d(x) for all x, y ∈ R . We have by Lemma 4.6 that d(xy) = d(x)y∗ + xd(y) for all x, y ∈ R . Thus, d
is a *-derivation that is of period 2 on U , which contradicts Theorem 4.1.

2
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