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Abstract: Suppose that c , m , and a are positive integers with a ≡ 11, 13 (mod 24) . In this work, we prove that when
2c + 1 = a2 , the Diophantine equation in the title has only solution (x, y, z) = (1, 1, 2) where m ≡ ±1 (mod a) and
m > a2 in positive integers. The main tools of the proofs are elementary methods and Baker’s theory.

Key words: Exponential Diophantine equation, Jacobi symbol, lower bound for linear forms in logarithms

1. Introduction
As usual, we denote the set of all integers by Z and the set of positive integers by N . Suppose that a, b, c are
pairwise coprime positive integers. Then we call the equation

ax + by = cz, x, y, z ∈ N (1)

an exponential Diophantine equation. Many authors have studied the above equation for given a, b, c ∈ N.
Eq. (1) was first considered by Mahler [10]. He proved that Eq. (1) has finitely many solutions with

a, b, c > 1 . Since his method was based on a p -adic generalization of Thue–Siegel method, it was ineffective as
it provided no bounds for the size of possible solutions. Later, Gel’fond [4] gave an effective result for solutions
of (1). His method was based on Baker’s theory, which uses linear forms in the logarithms of algebraic numbers.

Using elementary number theory methods such as congruences, the Jacobi symbol, and standard divisi-
bility arguments in algebraic number theory involving ideals in quadratic (or cubic) number fields, the complete
solutions of Eq. (1) where a, b, c are distinct primes ≤ 17 were determined by some authors (see [5, 14, 24]).

Consider Eq. (1) for Pythagorean numbers a , b , c . A famous unsolved problem concerning the
exponential Diophantine equation (1) was suggested by Jeśmanowicz [6]. He conjectured that the unique
solution in positive integers of Eq. (1) is only (x, y, z) = (2, 2, 2) , where a, b, c satisfy a2+ b2 = c2 , i.e. they are
Pythagorean triples. This conjecture have been solved for many special cases. Different conjectures concerning
Eq. (1) were identified and discussed. One of these conjectures, which is an extension of Jeśmanowicz’s
conjecture, was suggested by Terai. Terai conjectured that the unique solution of the Diophantine equation (1)
is (x, y, z) = (u, v, w) except for some (a, b, c) where a, b, c, u, v, w ∈ N are fixed, u, v, w ≥ 2 and gcd(a, b) = 1 ,
and satisfying au+ bv = cw (see [2, 9, 11, 12, 19, 20]). The correctness of this conjecture for many special cases
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has been proved. Nevertheless, it remains unsolved. Recently, a survey paper on the conjectures of Jeśmanowicz
and Terai was published by Soydan et al. (see [17] for details about these conjectures).

Now take the Diophantine equation

(am2 + 1)x + (bm2 − 1)y = (cm)z, (2)

where a, b,m, c are given positive integers such that a+ b = c2 . Some authors studied Eq. (2) for some special
values (see [1, 18, 21, 22]).

Miyazaki and Terai [13] considered Eq. (2) where c ≡ 3, 5 (mod 8) and a = 1 . They showed that the
unique solution of Eq. (2) in positive integers is (x, y, z) = (1, 1, 2) where m ≡ ±1 (mod c) , and they also
found the exceptional case (m, b, c) = (1, 8, 3) , which gives the solutions (x, y, z) = (5, 2, 4) and (1, 1, 2) .

Recently, Terai and Hibino [23] studied Eq. (2) where a = p(p− 3) , b = 3p , c = p , m ≥ 1 , and p prime.
As m ≡ 1 (mod 4) , m ̸≡ 0 (mod 3) , p ≡ 1 (mod 4) , and p < 3784 , they proved that the unique solution of
Eq. (2) in positive integers is (x, y, z) = (1, 1, 2) . Later, Fu and Yang [3] considered Eq. (2) where 2 | a , 2 ∤ c
and m > 1 . They proved that the only solution of Eq. (2) in positive integers is (x, y, z) = (1, 1, 2) where c | m
and m > 36c3 log c . Thirdly, Pan [15] considered Eq. (2) again where a + b = c2 , 2 ∤ c , m > 1 and m ≡ ±1

(mod c) . She proved that if a ≡ 4, 5 (mod 8) , ((a+ 1)/c) = −1 , and m > 6c2 log c , where (∗/∗) is the Jacobi
symbol, then Eq. (2) has no other solution than (x, y, z) = (1, 1, 2) in positive integers.

Here, we are interested in the exponential Diophantine equation

((c+ 1)m2 + 1)x + (cm2 − 1)y = (am)z (3)

with m > 0 . The following result is the main theorem of this paper:

Theorem 1.1 (Main theorem) Suppose that a and c are positive integers with a ≡ 11, 13 (mod 24) and
2c + 1 = a2 . Then the unique solution of Eq. (3) in positive integers is (x, y, z) = (1, 1, 2) , where m ≡ ±1

(mod a) and m > a2 .

2. Preliminaries
In this section, under certain conditions, we give a useful result to find an upper bound for y , which is a solution
in Pillai’s equation W z − V y = U . The theory needed in this result is based on finding lower bounds for linear
forms in logarithms of two algebraic numbers called Baker’s theory. To do this, we first present some notations.
For two real algebraic numbers β1 and β2 with |β1| ≥ 1 and |β2| ≥ 1 , denote the field of rational numbers by
Q . We consider the linear form

Ω = c2 logβ2 − c1 logβ1,

where c1 and c2 are positive integers. Let β be any nonzero algebraic number with minimal polynomial over
Z being a0

∏n
i=1(X − β(i)) , which is of degree n over Q . We denote by

h(β) =
1

n

(
log |a0|+

n∑
i=1

log max
{
1, |β(i)|

})

its absolute logarithmic height, where (β(i))1≤i≤n are conjugates of β . Suppose that B1 and B2 are real
numbers ≥ 1 such that

logBj ≥ max{h(βj), | logβj |/K, 1/K } (j = 1, 2),
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where the number field Q(β1, β2) over Q has degree K . Define

d′ =
c1

K logB2
+

c2
K logB1

.

To use Laurent’s result in [8, Corollary 2], we take m = 10 and C2 = 25.2 .

Proposition 2.1 (Laurent, [8]) Suppose that Ω is given as above and β1 > 1 and β2 > 1 are multiplicatively
independent. Then

log |Ω| ≥ −25.2K4(max{log d′ + 0.38, 10/K})2(logB1)(logB2).

3. Proof of Theorem 1.1
3.1. The case m = 1

Lemma 3.1 Suppose that a ≡ 11, 13 (mod 24) with a > 0 . Then the unique solution in positive integers of
the equation

(c+ 2)x + (c− 1)y = az

is (x, y, z) = (1, 1, 2) where 2c+ 1 = a2 .

Proof Consider Eq. (3) with m = 1 . Recall that 2c+ 1 = a2 . Then Eq. (3) becomes

[ (a2 + 3)/2 ]x + [ (a2 − 3)/2 ]y = az. (4)

Taking this equation modulo (a− 1)/2 and (a+ 1)/2 , one sees that

2x + (−1)y ≡ 1 mod (a− 1)/2,

2x + (−1)y ≡ (−1)z mod (a+ 1)/2,

respectively. In particular, since a > 5 and a ≡ 3, 5 (mod 8) , it follows from the above congruences that z is
even and y is odd. Put z = 2Z . Therefore, Eq. (4) becomes

(c+ 2)x + (c− 1)y = (2c+ 1)Z .

Since 4 | c , one takes this equation modulo 4 to find that 2x ≡ 2 (mod 4) , so x = 1 , and thereby

c+ 2 + (c− 1)y = (2c+ 1)Z . (5)

It is clear that Z ≤ y < 2Z . Let y > 1 and let us get a contradiction. We get y ≥ 3 and y < 2Z . If 1+y = 2Z ,

then Eq. (5) yields (2c + 1)
1+y
2 − (c − 1)y = c + 2 > 0 , and thereby 3

2 < 2y
1+y < log(2c+1)

log(c−1) ≤ log 17
log 7 , which is

absurd. Thus, 1 + y < 2Z . On the other hand, by taking Eq. (5) modulo c2 , one has

c+ 2 + (−1 + cy) ≡ 1 + 2cZ (mod c2),

so
1 + y ≡ 2Z (mod c).

Since 1 + y < 2Z , this congruence gives
c ≤ 2Z − (1 + y).
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Otherwise, using Proposition 2.1, one can get

y < 2521 log(2c+ 1).

To show this, by (5) we are first interested in the following linear form in two logarithms:

Ω = Z log(2c+ 1)− y log(c− 1) (> 0).

As log(1 + k) < k where k > 0 , one gets

0 < Ω = log
(
(2c+ 1)Z

(c− 1)y

)
= log

(
1 +

c+ 2

(c− 1)y

)
<

c+ 2

(c− 1)y
.

Hence, we have
logΩ < log(c+ 2)− y log(c− 1). (6)

Otherwise, using Proposition 2.1, we want to find a lower bound for Ω . By Proposition 2.1, we obtain
the following inequality:

logΩ ≥ −25.2(max{log d′ + 0.38, 10})2 log(c− 1) log(2c+ 1), (7)

where d′ = y
log(2c+1) +

Z
log(c−1) .

It can be seen that (c− 1)y+1 > (2c+ 1)Z . Indeed,

(c− 1)y+1 − (2c+ 1)Z = (c− 1)((2c+ 1)Z − (c+ 2))− (2c+ 1)Z

= (c− 2)(2c+ 1)Z − (c− 1)(c+ 2)

≥ c2 − 4c > 0,

since c ≡ 12 (mod 24) . Hence, d′ < 2y+1
log(2c+1) .

Set T = y
log(2c+1) . Using inequalities (6) and (7), we obtain

y log(c− 1) < log(c+ 2)+25.2(max{log(2T +
1

log(2c+ 1)
) + 0.38, 10})2

× log(c− 1) log(2c+ 1),

so
T < 1 + 25.2(max{log(2T + 1) + 0.38, 10})2

as log(2c+ 1) ≥ log(25) > 3 . Therefore, we get T < 2521 .
These inequalities together with the fact that Z ≤ y give that

c ≤ 2Z − (1 + y) < y < 2521 log(2c+ 1).

Thus, c ≤ 27518 . Finally, using the PARI/GP program [16], we found that Eq. (5) has no solution where
c ≤ 27518 . Hence, the proof is completed. 2
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3.2. The case m ≥ 2

Suppose that (x, y, z) satisfies (3). By the conclusion of the previous section, assuming m ≥ 2 , we want to fix
parities for x, y, z . Using m ≡ ±1 (mod a) and a ≡ 11, 13 (mod 24) with m > a2 , we prove the following.

Lemma 3.2 Suppose that (x, y, z) = (1, 1, 2) is a solution for Eq. (3). Then z is even and y and x are both
odd.

Proof Suppose that (x, y, z) is a solution for (3) and all of our conditions are satisfied.

Now it follows from 1 + 2c = a2 that cm2 − 1 = ((a
2−1
2 )m2 − 1) > am . Hence, z ≥ 2 from (3).

Considering (3) modulo m2 requires that 1 + (−1)y ≡ 0 (mod m2) . Hence, y is odd when m ≥ 2 . Using
1 + 2c = a2 and m ≡ ±1 (mod a) , (3) carries away to

(−c)x ≡ −cy (mod a),

so
(−c

a

)x
=
(−c

a

)y . Then y and x are the same parities. This means that x is odd.

We now prove that
(

m
cm2−1

)
= 1 and

(
a

cm2−1

)
= −1 . Note that cm2 − 1 ≡ 3 (mod 8) and c ≡ 12

(mod 24) . Write m = 2γr with γ ≥ 0 and r odd. Then

(
m

cm2 − 1

)
=

(
2

cm2 − 1

)γ (
r

cm2 − 1

)
=

(
r

cm2 − 1

)

=

(
r

cm2 − 1

)
= 1.

If a ≡ 11 (mod 24) , then

(
a

cm2 − 1

)
= −

(
cm2 − 1

a

)
= −

(
c− 1

a

)
=

(
c+ 2

a

)

=

(
3

a

)(
c+ 1

a

)
= −1,

since
(
3
a

)
= 1,

(
2
a

)
= −1 and

(
2c+2
a

)
=
(
2
a

) (
c+1
a

)
= 1 .

If a ≡ 13 (mod 24) , then

(
a

cm2 − 1

)
=

(
cm2 − 1

a

)
=

(
c− 1

a

)
=

(
c+ 2

a

)

=

(
3

a

)(
c+ 1

a

)
= −1,

since
(
3
a

)
= 1,

(
2
a

)
= −1 and

(
2c+2
a

)
=
(
2
a

) (
c+1
a

)
= 1 .

Thus, (
am

cm2 − 1

)
=

(
a

cm2 − 1

)(
m

cm2 − 1

)
= (−1) · 1 = −1.
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Since 1 + 2c = a2 ,(
(c+ 1)m2 + 1

cm2 − 1

)
=

(
(c+ 1)m2 + cm2

cm2 − 1

)
=

(
a2m2

cm2 − 1

)
= 1.

In view of these, we have that z is even from (3). 2

Considering (3) modulo m3 , (3) has only solution (x, y, z) = (1, 1, 2) in positive integers with m even,
as will be shown.

Lemma 3.3 The unique solution of Eq. (3) in positive integers is (x, y, z) = (1, 1, 2) where m is even.

Proof Since z ≤ 2 , then from (3), one gets (x, y, z) = (1, 1, 2) . Therefore, we can assume that z ≥ 3 . By
Lemma 3.2, we know that y and x are both odd.

Considering (3) modulo m3 one gets

(c+ 1)m2x+ 1 + cm2y − 1 ≡ 0 (mod m3),

so
(c+ 1)x+ cy ≡ 0 (mod m),

but the fact that m is even, c is even, and x is odd contradicts the above congruence. The proof is thus
completed. 2

Lemma 3.4 As m is odd, we have x = 1 in (3).

Proof By Lemma 3.2, we get that z is even while y is odd. Assume that x ≥ 2 . Considering (3) modulo 4

results that
(−1)y ≡ 1 (mod 4).

Hence, we obtain that y is even, which contradicts Lemma 3.2. Therefore, we get x = 1 . 2

3.3. Pillai’s equation W z − V y = U

By Lemmas 3.2 and 3.4, we get that y is odd and x = 1 . Since we get z = 2 from (3) where y = 1 , then we
may assume that y ≥ 3 . Therefore, our result is induced to the solution of Pillai’s equation

W z − V y = U (8)

with y ≥ 3 , where U = (c+ 1)m2 + 1 , V = cm2 − 1 , and W = am .
We first desire to get a lower bound for the exponent y .

Lemma 3.5 In (8), y ≥ (m2 − 1)/c− 1 .

Proof If y ≥ 3 , by (8) we obtain

(am)z = (c+ 1)m2 + 1 + (cm2 − 1)y ≥ (c+ 1)m2 + 1 + (cm2 − 1)3 > (am)3.

Therefore, z ≥ 4 . Considering (8) modulo m4 implies that

(c+ 1)m2 + 1 + cm2y − 1 ≡ 0 (mod m4),

so c+ 1 + cy ≡ 0 (mod m2) . Hereby we get our argument. 2
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We next desire to get an upper bound for the exponent y .

Lemma 3.6 In (8), y < 2521 logW .

Proof (8) implies that we are interested in the linear form in two logarithms as follows:

Γ = z logW − y logV (> 0).

As log(1 + l) < l for l > 0 , we get

0 < Γ = log
(
W z

V y

)
= log

(
1 +

U

V y

)
<

U

V y
. (9)

Hence,
logΓ < logU − y logV. (10)

Otherwise, we find a lower bound for Γ with Proposition 2.1. We first obtain

logΓ ≥ −25.2(max{log d′ + 0.38, 10})2(logV )(logW ) (11)

with d′ = y/ logW + z/ logV .
Note that V y+1 > W z . In fact,

V y+1 −W z = V (W z − U)−W z = (V − 1)W z − UV

≥ (cm2 − 2)(2c+ 1)m2 − ((c+ 1)m2)(cm2 − 1) > 0.

Therefore, d′ < (2y + 1)/ logW .
Set R = y/ logW . Using (10) and (11) leads to

y logV < logU + 25.2(max{log(2R+ 1/ logW ) + 0.38, 10})2(logV )(logW ).

Hence, since logW = log(am) ≥ log 33 > 3 and U < V , then we obtain

R < 1 + 25.2(max{log(2R+ 1/3) + 0.38, 10})2,

which implies that R < 2521. The proof is completed. 2

Now we can prove Theorem 1.1. By Lemmas 3.5 and 3.6 we obtain

2

(
m2 − 1

a2 − 1

)
− 1 < 2521 log(am).

If m > a2 then we get
2m+ 1 < 2521 log(am).

It follows that m < 18586 . Hence, we obtain a ≤ 136 .
By (9), we get the inequality ∣∣∣∣ logV

logW − z

y

∣∣∣∣ < U

yV y logW ,
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and hence
∣∣∣∣ logV
logW − z

y

∣∣∣∣ < 1

2y2
, since y ≥ 3 . Thus, z

y is one of the convergents in the simple continued fraction

expansion of log V
log W .

Otherwise, if dr

er
is the r th such convergent, then

∣∣∣∣ logV
logW − dr

er

∣∣∣∣ > 1

(ur+1 + 2)e2r

where the (r + 1)st partial quotient of log V
log W is ur+1 (see Khinchin [7]). Put z

y = dr

er
. Note that er ≤ y . It

follows that

ur+1 >
V y logW

Uy
− 2 ≥ V er logW

Uer
− 2. (12)

Finally, using the PARI/GP program, we see that for each a ≤ 136 with a ≡ 11, 13 (mod 24) and for each r

with er < 2521 log(am) for 3 ≤ m ≤ 18585 , (12) is not satisfied. Thus, the proof of Theorem 1.1 is completed.
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