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Abstract: In this paper, we prove the bilaterally almost uniformly convergence of bounded L1(M) -noncommutative
quasi-martingales. We also prove Gundy’s decomposition for noncommutative quasi-martingales. As an application, we
prove that every relatively weakly compact quasi-martingale difference sequence in L1(M, τ) whose sequence of norms
is bounded away from zero is 2-co-lacunary.

Key words: Convergence, Gundy’s decomposition, noncommutative quasi-martingales

1. Introduction
Inspired by quantum mechanics and probability, noncommutative probability has become an independent field
of mathematical research. The study of noncommutative martingales originated at the beginning of the 70s.
Today, the theory has achieved a satisfactory development and many classical martingale results have been
transferred to the noncommutative setting.

The noncommutative quasi-martingale is a generalization of noncommutative martingales and the non-
commutative analogue of classical quasi-martingales. In [4], we studied the duality theorems for some special
quasi-martingale spaces. In [5], we studied interpolation in the noncommutative quasi-martingale setting. In
the present paper, we continue to examine the noncommutative quasi-martingale. One of our main results is
Theorem 3.3, which is the convergence of noncommutative quasi-martingales. Our proof uses Cuculescu’s result
in [Proposition 6, 2] and Doob’s decomposition in [4]. The main novelty of our approach is Lemma 3.4, which
extends the classical Doob maximal weak type (1,1) inequality for martingales to the quasi-martingale setting.

The other main result of this paper is Theorem 4.1, which concerns Gundy’s decomposition of noncom-
mutative quasi-martingales. Such kind of result of noncommutative martingales was first obtained by Parcet
and Randrianantoanina [6]. Note that we can obtain our result by using Doob’s decomposition in [4] and the
result of Parcet and Randrianantoanina. However, this decomposition is not useful for our next proof. Hence
we will give a direct decomposition of quasi-martingales in Theorem 4.1.

The paper is organized as follows. In Section 2, we set some basic definitions concerning noncommutative
martingale and noncommutative quasi-martingale. In Section 3, we first prove Cuculescu’s inequality for
noncommutative quasi-martingales. Using the inequality, we prove the bilaterally almost uniformly convergence
of bounded L1(M) quasi-martingales. In Section 4, we present Gundy’s decomposition for noncommutative
quasi-martingales and its application.
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2. Preliminary

Let M be a finite von Neumann algebra with a normal faithful finite trace τ . For 1 ≤ p ≤ ∞ , we denote by
Lp(M) the noncommutative Lp -space associated with (M, τ) . Note that if p = ∞ , L∞(M) is just M with
the usual operator norm; also recall that for 1 ≤ p < ∞ the norm on Lp(M) is defined by

∥x∥p = τ(|x|p)
1
p , x ∈ Lp(M),

where |x| = (x∗x)
1
2 is the usual modulus of x .

Let us recall the general setup for noncommutative martingales. Let (Mn)n≥1 be an increasing filtration
of von Neumann subalgebras of M such that the union of Mn ’s is weak∗ -dense in M and En (with E0 = 0)
the conditional expectation with respect to Mn . A noncommutative martingale with respect to the filtration
(Mn)n≥1 is a sequence x = (xn)n≥1 in L1(M) such that

En(xn+1) = xn for all n ≥ 1.

If additionally, x = (xn)n≥1 ⊂ Lp(M) for some 1 ≤ p <∝ , we call x an Lp(M) -martingale. In this case, we
set ∥x∥p = supn ∥xn∥p . If ∥x∥p < ∞ , then x is called a bounded Lp(M) -martingale. Note that the space
of all bounded Lp -martingales, equipped with ∥ · ∥p , is isometric to Lp(M) for p > 1 . This permits us to
not distinguish a martingale and its final value x∞ (if the latter exists). For more details on noncommutative
martingales see [3].

Now we turn to the definition of noncommutative quasi-martingales, which is a generalization of non-
commutative martingales.

Definition 2.1 (see [4]). Let 1 ≤ p ≤ ∞ . An adapted sequence x = (xn)n≥1 in L1(M) is called a
p-quasi-martingale with respect to (Mn)(or simply a quasi-martingale for p = 1) if

Vp(x) :=

∞∑
n=1

∥En−1(dxn)∥p < ∞.

If additionally, x = (xn)n≥1 ⊂ Lp(M) for some 1 ≤ p < ∞ , we call x an Lp(M)-quasi-martingale. In this
case, we set

∥x∥p := supn∥xn∥p + Vp(x).

If ∥x∥p < ∞ , then x is called a bounded Lp -quasi-martingale.

The following decomposition plays an important role in this paper.

Lemma 2.2 (Doob’s decomposition)(see [4]). Let 1 ≤ p ≤ ∞ . Each p-quasi-martingale x = (xn)n≥1

can be uniquely decomposed as a sum of two sequences y = (yn)n≥1 and z = (zn)n≥1 , where y = (yn)n≥1 is a
martingale and z = (zn)n≥1 is a predictable p-quasi-martingale with z1 = 0 . Moreover, when x = (xn)n≥1 is
Lp(M)-bounded, y = (yn)n≥1 and z = (zn)n≥1 are also Lp(M)-bounded.
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3. Convergence of noncommutative quasi-martingales

In this section, we focus on the convergence of noncommutative quasi-martingales. Of course, pointwise
convergence does not make sense in the noncommutative setting. Note that in the commutative case almost
every convergence and almost uniformly convergence are equivalent when the measure space is finite by Egoroff’s
theorem. The convergence bilaterally almost uniformly defined in the following is a replacement of almost every
convergence when M is finite.

Definition 3.1 (see [2]). Let (xn)n≥1 be a sequence in L0(M) and x ∈ L0(M) . We say that (xn)n≥1

converges bilaterally almost uniformly (b.a.u. in short) to x , if for every ε > 0 , there is a projection p ∈ M
such that τ(1− p) < ε and

lim
n→∞

∥p(xn − x)p∥ = 0.

As for the convergence of noncommutative martingales, we have the following results that we will need
later.

Lemma 3.2 (see [2]).

(i) Let x = (xn)n≥1 be a bounded Lp -martingale with 1 < p ≤ ∞. Then there exists x∞ ∈ Lp(M) such that
xn converges to x∞ in Lp(M) (in w∗ -topology for p = ∞).

(ii) Let x = (xn)n≥1 be a bounded L1 -martingale. Then there exists x∞ ∈ L1(M) such that xn → x∞ b.a.u.

We extend the results of Lemma 3.2 to the case of quasi-martingales.

Theorem 3.3 (i) Let x = (xn)n≥1 be a bounded Lp -quasi-martingale with 1 < p ≤ ∞. Then there exists
x∞ ∈ Lp(M) such that xn converges to x∞ in Lp(M) (in w∗ -topology for p = ∞).

(ii) Let x = (xn)n≥1 be a bounded L1 -quasi-martingale. Then there exists x∞ ∈ L1(M) such that xn → x∞

b.a.u.

The following lemma is the key ingredient of our proof.

Lemma 3.4 (Cuculescu’s inequality) Let x = (xn)n≥1 be a bounded positive L1 -quasi-martingale and
s > 0 . Then there exists a decreasing sequence (en)n≥0 of projections in M such that for every n ≥ 1

(i) en ∈ Mn ;

(ii) en commutes with en−1xnen−1 ;

(iii) enxnen ≤ sen ;

(iv) moreover, if e = ∧n≥1en , then

exne ≤ se for all n ≥ 1 and τ(e⊥) ≤ 2

s
∥x∥1.
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Proof We define the required sequence (en)n≥0 by induction. First let e0 = 1 . Then for every n ≥ 1 define

en = χ(0,s](en−1xnen−1).

It is clear that properties (i), (ii), and (iii) are satisfied. We also have exne ≤ se for all n ≥ 1 . Thus it remains
to show the trace estimate (iv). It is easy to see that

(ek−1 − ek)(ek−1xkek−1)(ek−1 − ek) ≥ s(ek−1 − ek).

Let xn = yn + zn(n ≥ 1) be its Doob’s decomposition. Then we deduce that

sτ(1− en) = s

n∑
k=1

τ(ek−1 − ek)

≤
n∑

k=1

τ((ek−1 − ek)(ek−1xkek)(ek−1 − ek))

=

n∑
k=1

τ((ek−1 − ek)xk)

=

n∑
k=1

τ((ek−1 − ek)yk) +

n∑
k=1

τ((ek−1 − ek)zk)

= I + II.

Noting that y = (yn)n≥1 is a martingale, by the trace preserving of Ek we have

I =
n∑

k=1

τ(Ek((ek−1 − ek)yn)) =

n∑
k=1

τ((ek−1 − ek)yn) = τ((1− en)yn).

Also

II =

n∑
k=1

τ(ek−1zk)−
n∑

k=1

τ(ek−1zk−1)− τ(enzn)

=

n∑
k=1

τ(ek−1dzk)− τ(enzn)

≤
n∑

k=1

∥dzk∥1 − τ(enzn).
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Combining the preceding estimates, we obtain

sτ(1− en) ≤ τ((1− en)(xn − zn)) +

n∑
k=1

∥dzk∥1 − τ(enzn)

= τ((1− en)xn)− τ(zn) +

n∑
k=1

∥dzk∥1

≤ ∥xn∥1 + 2

n∑
k=1

∥dzk∥1

≤ 2(sup
n

∥xn∥1 + V1(x)).

Letting n → ∞ , we get τ(e⊥) ≤ 2
s (supn ∥xn∥1 + V1(x)) . Thus the theorem is proved. 2

Remark 3.5 A general bounded L1 -quasi-martingale x = (xn)n≥1 can be decomposed into a sum of four
bounded positive L1 -quasi-martingales. Indeed, let xn = yn+zn(n ≥ 1) be Doob’s decomposition. We decompose
(yn)n≥1 into a sum of four positive martingales: yn = y1n − y2n + i(y3n − y4n)(n ≥ 1) and (dzn)n≥1 into a sum
of four positive parts: dzn = dz1n − dz2n + i(dz3n − dz4n)(n ≥ 1) . Noting that (dzkn)n≥1 is predictable, we have

∞∑
n=1

∥En−1dz
k
n∥1 =

∞∑
n=1

∥dzkn∥1 ≤
∞∑

n=1

∥dzn∥1 < ∞.

Thus for each k, (zkn)n≥1 is a positive quasi-martingale with zkn =
n∑

j=1

dzkj . Let xk
n = ykn + zkn(n ≥ 1) . Then

(xk
n)n≥1 is a positive quasi-martingale for each k and xn = x1

n − x2
n + i(x3

n − x4
n)(n ≥ 1) . Thus Lemma 3.4 is

still valid for not necessarily positive quasi-martingales.

Proof of Theorem 3.3. Let x = (xn)n≥1 be a bounded Lp -martingale with 1 ≤ p ≤ ∞ and xn = yn+zn(n ≥
1) its Doob’s decomposition. Then y = (yn)n≥1 is a bounded Lp(M) -martingale. Suppose that m > n . Since

∥zm − zn∥p ≤
m∑

k=n+1

∥dzk∥p → 0 as m,n → ∞, (3.1)

(zn)n≥1 is a Cauchy sequence in Lp(M) for 1 ≤ p ≤ ∞ .

(i) Let 1 < p ≤ ∞ . Since there exists y∞ ∈ Lp(M) such that yn converges to y∞ in Lp(M)(in w∗ -topology
for p = ∞ )by Lemma 3.2, it suffices to prove that (zn)n≥1 has the same convergence. This is true since
(zn)n≥1 is a Cauchy sequence in Lp(M) .

(ii) It is a little more complicated for the case of p = 1 . Since there exists y∞ ∈ L1(M) such that yn → y∞

b.a.u. by Lemma 3.2, it suffices to prove the b.a.u. convergence of (zn)n≥1 . For any ε > 0 , there exists
an increasing sequence (nk) of nonnegative integers such that∑

n≥nk

∥dzn∥1 < 4−kε. (3.2)
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For any nonnegative integer k , define

uk
n =

{
0, n ≤ nk

zn − znk
, n > nk

and let uk = (uk
n)n≥1. For any fixed k , it follows from (3.2) that

∞∑
n=1

∥En−1du
k
n∥1 =

∑
n≥nk

∥dzn∥1 < 4−kε (3.3)

and
sup
n

∥uk
n∥1 = sup

n>nk

∥zn − znk
∥1 ≤

∑
n≥nk

∥dzn∥1 < 4−kε. (3.4)

Thus uk is a bounded L1 -quasi-martingale. Then by Remark 3.5, for each k , there exists a projection
ek ∈ M such that sup

n
∥ekuk

ne
k∥ ≤ 2 · 2−k and

τ(1− ek) ≤ c

2−k
∥uk∥1 = c2k(sup

n
∥uk

n∥1 +
∞∑

n=1

∥En−1du
k
n∥1) < 2c · 2−kε

by using (3.3) and (3.4). Letting e = ∧k≥1ek , we have that τ(1− e) ≤
∞∑
k=1

τ(1− ek) < 2cε and

∥e(zn − znk
)e∥ = ∥euk

ne∥ ≤ ∥ekuk
ne

k∥ ≤ 1

2k−1
for any n ≥ nk.

Thus (ezne)n≥1 is a Cauchy sequence in M and hence there exists v ∈ M such that

∥ezne− v∥ → 0 as n → ∞.

On the other hand, it follows that from (3.1) there exists z∞ ∈ L1(M) such that

∥zn − z∞∥1 → 0

and hence
∥ezne− ez∞e∥1 → 0 as n → ∞.

Therefore, v = ez∞e and
∥ezne− ez∞e∥ → 0 as n → ∞.

Thus zn b.a.u. converges to z∞. The proof is completed.

2

4. Gundy’s decomposition and its application
In this section, we first prove Gundy’s decomposition for bounded L1 -quasi-martingales. We should point out
that this result can be simply obtained by using Doob’s decomposition in [4] and Theorem 3.6 in [6]. However,
we will give a direct proof of Theorem 4.1 since by this way we can get Equation (4.1) which is useful for the
proof of Theorem 4.2 (that is the application of Theorem 4.1).
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Theorem 4.1 Let x = (xn)n≥1 be a bounded positive L1 -quasi-martingale and s > 0 . Then there exist a
bounded L1 -martingale y = (yn)n≥1 and three bounded L1 -quasi-martingales z = (zn)n≥1 , v = (vn)n≥1 and
w = (wn)n≥1 satisfying the following properties:

(i) xn = yn + zn + vn + wn for every n ≥ 1 ;

(ii) y = (yn)n≥1 is a bounded L2 -martingale such that

∥y∥1 ≤ 15∥x∥1 and ∥y∥22 ≤ 8s∥x∥1;

(iii)
∞∑

n=1
∥dzn∥1 ≤ 12∥x∥1 ;

(iv) max(τ(∨nr(dvn)), τ(∨nl(dwn))) ≤ 2
s∥x∥1 .

Proof

(i) Let s > 0 and (en)n≥0 be the sequence of projections associated with x as in the proof of Lemma 3.4.
We define the four required sequences as follows (with E0 = 0):

dyn = endxnen − En−1(endxnen), (4.1)

dzn = en−1dxnen−1 − dyn,

dvn = en−1dxne
⊥
n−1, dwn = e⊥n−1dxn

for every n ≥ 1. It is easy to see that (i) holds and y = (yn)n≥1 is a martingale.

(ii) Using the orthogonality of (dyk)k≥1 in L2(M) and the contractivity of Ek−1 , we get for every n ≥ 1

∥yn∥22 =

n∑
k=1

∥dyk∥22 ≤ 2

n∑
k=1

∥ekdxkek∥22.

Since
ekdxkek = ek(ekxkek − ek−1xk−1ek−1)ek,

we have
∥ekdxkek∥22 ≤ ∥ekxkek − ek−1xk−1ek−1∥22 := ∥ak − ak−1∥22.

Now using the identity

(ak − ak−1)
2 = a2k − a2k−1 + ak−1(ak−1 − ak) + (ak−1 − ak)ak−1

and the tracial property of τ , we get that for any k ≥ 2

∥ak − ak−1∥22 = τ(a2k)− τ(a2k−1) + 2τ [ak−1(ak−1 − ak)]

= τ(a2k)− τ(a2k−1) + 2τ [ak−1(ak−1 − Ek−1(ak))].
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By the commutation of ek and ek−1xkek−1 , we have for any k ≥ 2

Ek−1(ak) = Ek−1(ekek−1xkek−1ek)

≤ Ek−1(ek−1xkek−1)

= ek−1Ek−1(xk−1 + dxk)ek−1

= ak−1 + ek−1Ek−1(dxk)ek−1.

Set a′k = ak−1−Ek−1(ak)+ek−1Ek−1(dxk)ek−1(k ≥ 2) . It follows that a′k ≥ 0 for any k ≥ 2 . Consequently,
by ak−1 ≤ s , we get for any k ≥ 2

τ [ak−1(ak−1 − Ek−1(ak))] = τ(ak−1a
′
k)− τ(ak−1ek−1Ek−1(dxk)ek−1)

≤ τ((a′k)
1
2 ak−1(a

′
k)

1
2 ) + s∥Ek−1(dxk)∥1

≤ sτ(a′k) + s∥Ek−1(dxk)∥1
≤ sτ(ak−1 − ak) + 2s∥Ek−1(dxk)∥1.

Combining all preceding inequalities, we deduce that

∥yn∥22 ≤ 2

n∑
k=1

[τ(a2k)− τ(a2k−1)] + 4s

n∑
k=2

[τ(ak−1 − ak) + 2∥Ek−1(dxk)∥1]

≤ 2τ(a2n) + 4sτ(a1)− 4sτ(an) + 8s

∞∑
k=1

∥Ek−1(dxk)∥1

≤ 8s∥x∥1.

Therefore, ∥y∥22 ≤ 8s∥x∥1. This is the second inequality of (ii). The first inequality is postponed after the
proof of (iii).

(iii) Set

an = en−1xnen−1 − enxnen and bn = en−1xn−1en−1 − enxn−1en

for any n ≥ 1 . Then dzn = an − bn − En−1(an − bn) + En−1(en−1dxnen−1)(n ≥ 1) . It follows that

∞∑
n=1

∥dzn∥1 ≤ 2

∞∑
n=1

(∥dan∥1 + ∥dbn∥1) +
∞∑

n=1

∥En−1(dxn)∥1.

Using the commutation of en and en−1xnen−1 , we have that

an = (en−1 − en)en−1xnen−1 = (en−1 − en)
1
2 en−1xnen−1(en−1 − en)

1
2 ≥ 0.
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Thus ∥an∥1 = τ(an) for any n ≥ 1 . Therefore,

N∑
n=1

∥an∥1 = τ(

N∑
n=1

an) = τ [

N∑
n=1

(en−1xnen−1)−
N∑

n=2

(en−1xn−1en−1)]− τ(eNxNeN )

=

N∑
n=2

τ(en−1En−1(dxn)en−1) + τ(e0x1e0)− τ(eNxNeN )

≤
N∑

n=2

∥En−1dxn∥1 + ∥x1∥1 + ∥xN∥1,

whence
∞∑

n=1
∥an∥1 ≤ 2∥x∥1. Pass to the sum on bn . Writing bn as

bn = en−1xn−1en−1(en−1 − en) + (en−1 − en)en−1xn−1en(n ≥ 1)

and using that en−1xn−1en−1 ≤ s, we get, for any n ≥ 1 , ∥bn∥1 ≤ 2sτ(en−1 − en) . Thus by Lemma 3.4,

∞∑
n=1

∥bn∥1 ≤ 2sτ(e⊥) ≤ 4∥x∥1.

Putting the preceding inequalities together, we obtain
∞∑

n=1
∥dzn∥1 ≤ 12∥x∥1.

Now return to the first inequality of (ii). Note that
N∑

n=1

en−1dxnen−1 =

N∑
n=1

(en−1xnen−1 − en−1xn−1en−1)

=

N−1∑
n=1

(en−1xnen−1 − enxnen) + eN−1xNeN−1

=

N−1∑
n=1

an + eN−1xNeN−1.

Thus ∥
N∑

n=1
en−1dxnen−1∥1 ≤ 3∥x∥1. Therefore,

∥yN∥1 ≤ ∥
N∑

n=1

en−1dxnen−1∥1 + ∥zN∥1 ≤ 15∥x∥1,

whence the first inequality of (ii) holds.
(iv) By the definition of dvn , for any n ≥ 1 , r(dvn) ≤ e⊥n−1 ≤ e⊥. Therefore ∨nr(dvn) ≤ e⊥. Thus, by Lemma

3.4,

τ(∨nr(dvn)) ≤
2

s
∥x∥1.

The second estimate on dwn is proved in the same way. Thus the proof of Theorem 4.1 is complete. 2

Theorem 4.1 is still valid for not necessarily positive quasi-martingales by Remark 3.6.
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Now we give an application of Theorem 4.1 that concerns 2-co-lacunary sequences in noncommutative
quasi-martingale spaces. We need the sequence of 2-co-lacunary, which we recall briefly below. We refer to
[1] for more details. Let X be a Banach space. A sequence (xn)n≥1 ⊂ X is called 2-co-lacunary if there is a
constant δ > 0 such that for any finite sequence (an)n≥1 of scalars,

δ(
∑
n≥1

|an|2)
1
2 ≤ ∥

∑
n≥1

anxn∥X .

The following is the application of Theorem 4.1.

Theorem 4.2 Let (dk)k≥1 be a relatively weakly compact quasi-martingale difference sequence in L1(M, τ)

whose sequence of norms is bounded away from zero. Then (dn)n≥1 is a 2-co-lacunary sequence in L1(M, τ) .
Note that our proof mostly follows the proof of Theorem 3.6 in [6]. Our main novelty are Lemma 3.4 and

Theorem 4.1, which extend Cuculescu’s inequality and Gundy’s decomposition for noncommutative martingales
to the quasi-martingale setting.

Proof of Theorem 4.2 Set

yn =

n∑
k=1

akdk(n ≥ 1),

then y = (yn)n≥1 is a quasi-martingale. By assumption that the series
∑

k akdk is convergent in L1(M, τ) ,
thus y = (yn)n≥1 is L1 -bounded. Let (ek) be the sequence of Cuculescu’s projections associated with y as in
the proof of Lemma 3.4. Imitating the proof of Theorem 3.6 in [6], we can obtain that

inf{∥ekdkek − Ek−1(ekdkek)∥2 : k ≥ 1} ≥ 1

5
σ, (4.2)

where
σ := inf{∥dk∥L1(M,τ)+M : k ≥ 1} > 0.

Let yn = bn + cn + vn + wn(n ≥ 1) be Gundy’s decomposition of y = (yn)n≥1 as in Theorem 4.1. Then we
have ∥b∥22 ≤ cλ∥y∥1 and

dbk = ekdykek − Ek−1(ekdykek).

Thus
dbk = ekdykek − Ek−1(ekdykek) = ak(ekdkek − Ek−1(ekdkek)).

This gives
∞∑
k=1

|ak|2∥ekdkek − Ek−1(ekdkek)∥22 ≤ cλ∥y∥1,

and therefore by (4.2) we conclude that

σ2
∞∑
k=1

|ak|2 ≤ 25cλ∥y∥1 < ∞.

The proof is complete. 2
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