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Abstract: In this paper, we investigate the phenomena of concentration and cavitation and the formation of delta-shocks
and vacuum states in solutions of the pressureless type system with flux approximation. First, the Riemann problem
of the pressureless type system with a flux perturbation is considered. A parameterized delta-shock and generalized
constant density solution are obtained. Then we rigorously prove that, as the flux perturbation vanishes, they converge
to the delta-shock and vacuum state of the pressureless type system, respectively. Secondly, by adding an artificial
pressure term in the pressureless type system, we solve the Riemann problem of the system with a double parameter flux
approximation including pressure. It is shown that, as the flux perturbations vanish, any two-shock Riemann solution
tends to a delta-shock solution to the pressureless type system; any two-rarefaction-wave Riemann solution tends to
a two-contact-discontinuity solution to the pressureless type system and the intermediate nonvacuum state in between
tends to a vacuum state.
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1. Introduction
The pressureless type system reads as {

ρt + (ρf(u))x = 0,
(ρu)t + (ρuf(u))x = 0,

(1.1)

where ρ and u represent the density and velocity, and f(u) is given to be a smooth and strictly monotone
function. The Riemann solutions of (1.1) were obtained in [12], which comprise two kinds: delta-shock and
vacuum. Under the generalized δ -Rankine–Hugoniot relation and entropy condition, all of the existence,
uniqueness, and stability of Riemann solutions of (1.1) to viscous perturbations were also proved in [12]. The
Riemann problem of (1.1) with initial data containing Dirac delta functions was discussed in [15]. Huang [6]
studied the Cauchy problem of (1.1). Moreover, when f(u) = u , the system (1.1) coincides with the Euler
equations for pressureless fluids: {

ρt + (ρu)x = 0,
(ρu)t + (ρu2)x = 0,

(1.2)
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which has been analyzed extensively; see [1, 2, 5, 7, 10, 12], etc. It has also been shown that δ -shocks and
vacuum states do occur in the Riemann solutions. Since the two eigenvalues of (1.2) coincide, the occurrence of
δ -shocks and vacuum states can be regarded as a result of resonance between the two characteristic fields. Such
phenomena can also be regarded as the phenomena of concentration and cavitation in solutions to the Euler
equations for compressible fluids as the pressure vanishes; for instance, see [3] for isentropic Euler equations,
[8] for isothermal Euler equations, [4] for nonisentropic fluids, etc. Recently, motivated partly by [3, 4, 8],
Yang and Liu [13, 14] introduced a two-parameter flux approximation including pressure in the isentropic Euler
equations and adiabatic Euler equations to study the phenomena of concentration and cavitation as the flux
approximation vanishes.

In this paper, we continue the topic of formation of delta-shocks and vacuum states in solutions and
study the two-parameter flux perturbation problem in a pressureless type system. For this purpose, we add an
artificial pressure term in the pressureless type system and consider the flux approximation system{

ρt + (ρf(u)− 2ϵ1u)x = 0,
(ρu)t + (ρuf(u)− ϵ1u2 + ϵ2p(ρ))x = 0,

(1.3)

which is strictly hyperbolic and genuinely nonlinear, where ϵ1, ϵ2 > 0 are small parameters, ρ and u are in the
physical region {(ρ, u) : ρ ≥ 2ϵ1

f ′(u) > 0, |u| ≤ V0} for some V0 , the pressure function p(ρ) is taken to be the
polytropic gas

p(ρ) = Aργ , γ > 1, (1.4)

and A > 0 is a constant. For convenience, the constant A is chosen as A = 1
γ in the present paper. In addition,

we assume f ′′(u) ≥ 0 for the sake of convenience and the rest of the case can be discussed in a similar way.
We first investigate a pure flux approximation{

ρt + (ρf(u)− 2ϵ1u)x = 0,
(ρu)t + (ρuf(u)− ϵ1u2)x = 0,

(1.5)

which is the special case ϵ2 = 0 in (1.3). Taking initial data as

(u, ρ)(t = 0, x) =

{
(u−, ρ−), x < 0,

(u+, ρ+), x > 0,
(1.6)

where (u±, ρ±) are constants, we solve the Riemann problem of (1.5). The Riemann solutions contain a
parameterized delta-shock when u− > u+ and a generalized constant density solution (ρ = 2ϵ1

f ′(u) ) when

u− < u+ . As ϵ1 → 0 , we show that any parameterized delta-shock of (1.5) converges to the delta-shock of the
system (1.1). By contrast, any generalized constant density solution tends to the vacuum of the system (1.1).

Then we solve the Riemann problem (1.3) and (1.6) and analyze the limits of solutions as ϵ1, ϵ2 → 0 . It
is shown that when u− > u+ , any two-shock Riemann solution of (1.3) converges to the delta-shock solution
of the system (1.1) as ϵ1, ϵ2 → 0 . It is also shown that when u− < u+ , any two-rarefaction-wave Riemann
solution of (1.3) tends to a two-contact-discontinuity solution of (1.1), and the nonvacuum intermediate state
in between tends to a vacuum state as ϵ1, ϵ2 → 0 . Besides, when ϵ1 = 0 and ϵ2 → 0 in (1.3), the limits of
solutions were considered in [9]. Compared with [13], one can find that the results from [13] are recovered.
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The organization of this paper is as follows. Section 2 reviews the solutions of (1.1) and (1.6). In Section
3, we solve the Riemann problem (1.5) and (1.6) and study the limits of solutions as ϵ1 → 0 . Section 4 solves
the Riemann problem for the system (1.3) and investigates the limits of solutions as ϵ1, ϵ2 → 0 .

2. Riemann solutions of the pressureless type system

In this section, we briefly recall the Riemann solutions to the system (1.1). We refer to [12] for more details.
The Riemann problem (1.1) and (1.6) can be solved by the following two cases under the assumption f ′(u) > 0 .

When u− < u+ , the solution includes a vacuum state, two contact discontinuities, and constant states
(u±, ρ±) . It can be expressed as

(u, ρ)(ξ) =


(u−, ρ−), −∞ < ξ < f(u−),

(f−1(ξ), 0, ), f(u−) ≤ ξ ≤ f(u+),
(u+, ρ+), f(u+) < ξ < +∞.

(2.1)

When u− > u+ , the solution contains a δ -shock. A two-dimensional weighted δ -function w(s) δS

supported on a smooth curve S parameterized as t = t(s) , x = x(s)(c ≤ s ≤ d) can be defined by

⟨w(t(s))δS , φ(t(s), x(s))⟩ =
∫ d

c

w(t(s))φ(t(s), x(s))
√
t′(s)2 + x′(s)2ds (2.2)

for all test functions φ(t, x) ∈ C∞
0 (R+ × R) , R+ = (0,+∞) and R = (−∞,+∞) .

With this definition, we can introduce a δ -shock solution of (1.1) as follows:

ρ(t, x) = ρ0(t, x) + w(t)δS , u(t, x) = u0(t, x), (2.3)

where S = {(t, σt) : 0 ≤ t <∞} ,

ρ0(t, x) = ρ− + [ρ]χ(x− σt), u0(t, x) = u− + [u]χ(x− σt), w(t) = (σ[ρ]− [ρf(u)])t√
1 + σ2

, (2.4)

in which [h] = h+−h− denotes the jump of function h across the discontinuity, σ is the velocity of the δ -shock,
and χ(x) the characteristic function that is 0 when x < 0 and 1 when x > 0 .

For any φ(t, x) ∈ C∞
0 (R+ × R) , as shown in [12], the δ -shock solution constructed above satisfies ⟨ρ, φt⟩+ ⟨ρf(u), φx⟩ = 0,

⟨ρu, φt⟩+ ⟨ρuf(u), φx⟩ = 0,
(2.5)

where

⟨ρ, φ⟩ =
∫ +∞

0

∫ +∞

−∞
ρ0φdxdt+ ⟨wδS , φ⟩,

⟨ρu, φ⟩ =
∫ +∞

0

∫ +∞

−∞
ρu0φdxdt+ ⟨uδwδS , φ⟩,

(2.6)

and u|S = uδ , f(u)|S = σ .
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Then we can deduce the generalized Rankine-Hugoniot relation

dx

dt
= σ,

d(w
√
1 + σ2)

dt
= σ[ρ]− [ρf(u)],

d(wuδ
√
1 + σ2)

dt
= σ[ρu]− [ρuf(u)], (2.7)

and

σ = f(uδ). (2.8)

In addition, the entropy condition is supplemented as

f(u+) < σ = f(uδ) < f(u−), (2.9)

which is equivalent to

u+ < uδ < u− (2.10)

under the condition f ′(u) > 0 .

3. Riemann solutions and limit analysis of (1.5) as ϵ1 → 0

In this section, we solve the Riemann problem (1.5) and (1.6), then analyze the limit of Riemann solutions as
ϵ1 → 0 .

3.1. Riemann solutions of (1.5)

The system (1.5) provides two eigenvalues λi = f(u) with the associated eigenvectors ri = (1, 0)⊤ satisfying
∇λi · ri = 0 , where i = 1, 2 , which means that it is full linear degenerate. Therefore, the elementary waves of
(1.5) only involve contact discontinuities.

Performing the self-similar transformation ξ = x/t , we can find that the system (1.5) has the singular
solution 

ρ =
2ϵ1
f ′(u)

,

ξ = f(u),

(3.1)

which is called generalized constant density. The elementary wave is contact discontinuity

J : ω = ξ = f(u−) = f(u+). (3.2)

In the (u, ρ) -plane, two states (u−, ρ−) and (u+, ρ+) can be connected by the contact discontinuity if and only
if they are located on the line u = u− = u+ .

Now we can construct the Riemann solutions by the following two cases.
For the case u− < u+ , the solutions of Riemann problem (1.5) and (1.6) can be solved by a generalized

constant density and two contact discontinuities besides two constant states (see Figure 1), and can be given as

(u, ρ)(ξ) =


(u−, ρ−), −∞ < ξ < f(u−),
(f−1(ξ), 2ϵ1

f ′(u) ), f(u−) ≤ ξ ≤ f(u+),
(u+, ρ+), f(u+) < ξ < +∞.

(3.3)
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Figure 1. Generalized constant density.
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Figure 2. Delta-shock.

For the case u− > u+ , as shown in Figure 2, the singularity of solutions must develop in the region Γ due
to the overlap of the characteristic lines. Therefore, we use a delta-shock to construct the Riemann solution.
We seek a delta-shock solution of (1.5) with discontinuity x = x(t) in the form

(u, ρ)(t, x) =


(u−, ρ−)(t, x), x < x(t),(
uϵ1δ , w

ϵ1(t)δ(x− x(t))
)
, x = x(t),

(u+, ρ+)(t, x), x > x(t),

(3.4)

where δ(·) is the Dirac measure and x(t) ∈ C1 . Then we can get that (3.4) satisfies the generalized Rankine–
Hugoniot relation 

dx

dt
= σϵ1 ,

d(wϵ1
√
1 + (σϵ1)2)

dt
= σϵ1 [ρ]− [ρf(u)− 2ϵ1u],

d(wϵ1uϵ1δ
√
1 + (σϵ1)2)

dt
= σϵ1 [ρu]− [ρuf(u)− ϵ1u2],

(3.5)

and
σϵ1 = f(uϵ1δ ). (3.6)

The generalized Rankine–Hugoniot relation describes the relationship among the location, propagation speed,
weight, and assignment of u on the discontinuity. In addition, the discontinuity should satisfy the entropy
condition

u+ < uϵ1δ < u−. (3.7)
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Thus, this Riemann problem is reduced to solving (3.5) and (3.6) with the initial conditions

t = 0 : x(0) = 0, wϵ1(0) = 0. (3.8)

According to the knowledge about delta-shocks in [12], we find that wϵ1(t) is a linear function of t , σϵ1 and
uϵ1δ are constants. Therefore, a delta-shock of (1.5) and (1.6) can be assumed to take the form

δ : x(t) = σϵ1t, wϵ1(t) = wϵ1
0 t, uϵ1δ (t) = uϵ1δ , (3.9)

where σϵ1 , wϵ1
0 , and uϵ1δ are to be determined constants. Substituting (3.9) into (3.5) and (3.6) yields

wϵ1
0

√
1 + (σϵ1)2 = [ρ]σϵ1 − [ρf(u)− 2ϵ1u],

wϵ1
0 u

ϵ1
δ

√
1 + (σϵ1)2 = [ρu]σϵ1 − [ρuf(u)− ϵ1u2],

σϵ1 = f(uϵ1δ ),

(3.10)

which gives
([ρ]uϵ1δ − [ρu])f(uϵ1δ )− [ρf(u)− 2ϵ1u]u

ϵ1
δ + [ρuf(u)− ϵ1u2] = 0. (3.11)

Taking the entropy condition (3.7) into account, we analyze the solutions of function equation (3.11). Set

F (uϵ1δ ) = ([ρ]uϵ1δ − [ρu])f(uϵ1δ )− [ρf(u)− 2ϵ1u]u
ϵ1
δ + [ρuf(u)− ϵ1u2]. (3.12)

One can calculate that

F (u+) = ([ρ]u+ − [ρu])f(u+)− [ρf(u)− 2ϵ1u]u+ + [ρuf(u)− ϵ1u2]

= ρ−(u− − u+)(f(u+)− f(u−)) + ϵ1(u+ − u−)2 (3.13)

= −ρ−[u][f(u)] + ϵ1[u]
2,

which yields F (u+) < 0 for ϵ1 <
ρ−[f(u)]

[u]
.

Similarly,

F (u−) = ρ+[u][f(u)]− ϵ1[u]2, (3.14)

and F (u−) > 0 for ϵ1 <
ρ+[f(u)]

[u]
.

Thus, we have

F (u+)F (u−) < 0 for ϵ1 < min
(ρ−[f(u)]

[u]
,
ρ+[f(u)]

[u]

)
:= a. (3.15)

Furthermore, differentiating F (uϵ1δ ) in (3.12) with respect to uϵ1δ leads to

F ′(uϵ1δ ) =([ρ]uϵ1δ − [ρu])f ′(uϵ1δ ) + [ρ]f(uϵ1δ )− [ρf(u)− 2ϵ1u]

=ρ−(f(u−)− f(uϵ1δ )) + ρ+(f(u
ϵ1
δ )− f(u+)) (3.16)

+ (ρ−(u− − uϵ1δ ) + ρ+(u
ϵ1
δ − u+))f

′(uϵ1δ ) + 2ϵ1(u+ − u−) > 0,
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for

ϵ1 <
ρ−(f(u−)− f(uϵ1δ )) + ρ+(f(u

ϵ1
δ )− f(u+)) + (ρ−(u− − uϵ1δ ) + ρ+(u

ϵ1
δ − u+))f ′(u

ϵ1
δ )

2(u− − u+)
:= b.

Therefore, taking ϵ1 = min(a, b) , one can get that when 0 < ϵ1 < ϵ1 , there exists one and only one zero
point of function F (uϵ1δ ) in (u+, u−) according to the zero point theorem. This means that when 0 < ϵ1 < ϵ1 ,
Eq. (3.11) has a unique solution denoted by uϵ1δ under the entropy condition (3.7). Then we can return to
(3.10) to solve the σϵ1 and wϵ1

0 uniquely. Thus, we have the following theorem.

Theorem 3.1 Let u− > u+ . For 0 < ϵ1 < ϵ1 , the Riemann problem (1.5) and (1.6) admits a unique entropy
measure solution of the form

(u, ρ)(t, x) =


(u−, ρ−)(t, x), x < σϵ1t,(
uϵ1δ , w

ϵ1(t)δ(x− σϵ1t)
)
, x = σϵ1t,

(u+, ρ+)(t, x), x > σϵ1t,

where wϵ1(t) = wϵ1
0 t and all of the three constants σϵ1 , wϵ1

0 , and uϵ1δ are determined uniquely by (3.10) under
the entropy condition (3.7) .

3.2. Limit analysis of Riemann solutions of (1.5) as ϵ1 → 0

Now the limit of Riemann solutions of the system (1.5) as ϵ1 → 0 for ρ− ̸= ρ+ can be discussed. We need to
investigate two cases: u− > u+ and u− < u+ .

In the case u− > u+ , we can check that uϵ1δ → uδ when ϵ1 → 0 from (3.11). Returning to (3.10), we
immediately get that wϵ1

0 → w0 and σϵ1 → σ as ϵ1 → 0 . Thus, the following theorem holds.

Theorem 3.2 Let u− > u+ . For 0 < ϵ1 < ϵ1 , assume (uϵ1 , ρϵ1) is the delta-shock solution of (1.5) and (1.6).
Then, as ϵ1 → 0 , the limit functions of ρϵ1 and ρϵ1uϵ1 are the sums of a step function and a δ -function with the

weights t√
1 + σ2

(σ[ρ]− [ρf(u)]) and t√
1 + σ2

(σ[ρu]− [ρuf(u)]) , respectively, which is the delta-shock solution

of (1.1) and (1.6).

Then we consider the case u− < u+ . In this case, the limit of solution of (1.5) is obvious. We can directly
get from (3.3) that, as ϵ1 → 0 , the limit of solution is just the vacuum solution (2.1) of the system (1.1).

4. Riemann solutions and limit analysis of (1.3) as ϵ1, ϵ2 → 0

In this section, we solve the Riemann problem (1.3) and (1.6), then discuss the limit of Riemann solutions as
ϵ1, ϵ2 → 0 .

4.1. Riemann solutions of (1.3)

For small ϵ1, ϵ2 > 0 , the two eigenvalues of the system (1.3) are

λ1 = f(u)−
√
ϵ2ργ−2(ρf ′(u)− 2ϵ1) , λ2 = f(u) +

√
ϵ2ργ−2(ρf ′(u)− 2ϵ1), (4.1)
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and the corresponding right eigenvectors are

r1 =

(
1,−

√
ϵ2ργ−2

ρf ′(u)− 2ϵ1

)⊤

, r2 =

(
1,

√
ϵ2ργ−2

ρf ′(u)− 2ϵ1

)⊤

.

Then we have ∇λi · ri ̸= 0 (i = 1, 2) for √ϵ2f ′′(u)ργ −
√
ργ−2(ρf ′(u)− 2ϵ1)

(
(γ + 1)(ρf ′(u)− 2ϵ1) + 6ϵ1

)
̸= 0 ,

and the system (1.3) is thus strictly hyperbolic and genuinely nonlinear.
By seeking the self-similar solution, we can get

−ξρξ + (ρf(u)− 2ϵ1u)ξ = 0,

−ξ(ρu)ξ + (ρuf(u)− ϵ1u2 +
ϵ2ρ

γ

γ
)ξ = 0,

(4.2)

and

(u, ρ)(±∞) = (u±, ρ±), (4.3)

which, for smooth solutions, provides either the backward rarefaction wave

←−
R (u−, ρ−) :


ξ = λ1 = f(u)−

√
ϵ2ργ−2(ρf ′(u)− 2ϵ1),

u− u− = −
∫ ρ

ρ−

√
ϵ2sγ−2

sf ′(u)− 2ϵ1
ds,

(4.4)

or the forward rarefaction wave

−→
R (u−, ρ−) :


ξ = λ2 = f(u) +

√
ϵ2ργ−2(ρf ′(u)− 2ϵ1),

u− u− =

∫ ρ

ρ−

√
ϵ2sγ−2

sf ′(u)− 2ϵ1
ds.

(4.5)

Through differentiating ξ with respect to ρ and u in the first equation of (4.4) and noticing uρ =
uξ

ρξ
,

we have

1 =

(
γ + 1

2
f ′(u)−

√
ϵ2ρ

γ−1f ′′(u)

2
√
ργ−2(ρf ′(u)− 2ϵ1)

− ϵ1(γ − 2)

ρ

)
uξ. (4.6)

Thus, we can get uξ > 0 from (4.6) for ϵ1, ϵ2 sufficiently small, which means that the set (u, ρ) joining to

(u−, ρ−) by the backward rarefaction wave is made up of the half-branch of ←−R (u−, ρ−) with u ≥ u− . In the
same way, for the forward rarefaction wave, we have uξ > 0 for ϵ1, ϵ2 sufficiently small, which implies that the

set (u, ρ) joining to (u−, ρ−) by the forward rarefaction wave is made up of the half-branch of −→R (u−, ρ−) with
u ≥ u− .

On the backward rarefaction wave curve, taking ρ = 2ϵ1
f ′(u) in the second equation of (4.4) leads to

u = u− +

∫ ρ−

2ϵ1
f′(u)

√
ϵ2sγ−2

sf ′(u)− 2ϵ1
ds. (4.7)
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Set

G(u) = u− u− −
∫ ρ−

2ϵ1
f′(u)

√
ϵ2sγ−2

sf ′(u)− 2ϵ1
ds. (4.8)

For every fixed û > u− , since the integral
∫ ρ−

2ϵ1
f′(û)

√
sγ−2

sf ′(û)− 2ϵ1
ds is convergent according to the Cauchy

criterion, we have G(û) > 0 for ϵ1, ϵ2 sufficiently small. Thus, G(u−)G(û) < 0 . In addition, the function G(u)

is continuous with respect to u ∈ [u−, û] . Therefore, there exists u1 ∈ [u−, û] such that G(u1) = 0 , which
means that the backward rarefaction wave curve intersects with the curve ρ = 2ϵ1

f ′(u) at a point denoted by

(u1, ρ1) .
For the forward rarefaction wave, passing to the limit ρ→ +∞ in the second equation of (4.5) yields

lim
ρ→+∞

u = u− +

∫ +∞

ρ−

√
ϵ2sγ−2

sf ′(u)− 2ϵ1
ds, (4.9)

which gives lim
ρ→+∞

u = +∞ . In fact, if lim
ρ→+∞

u = c ∈ (u−,+∞) , then there exists N > 0 , and when ρ > N ,

one can get that
| u− c |< 1,

which means that u is bounded, so f ′(u) is bounded. Set | f ′(u) |≤M for some M > 0 . Since

√
ϵ2sγ−2

sf ′(u)− 2ϵ1
>

√
ϵ2sγ−2

sM
,

we have ∫ +∞

ρ−

√
ϵ2sγ−2

sf ′(u)− 2ϵ1
ds >

√
ϵ2
M

∫ +∞

ρ−

s
γ−3
2 ds = +∞, (4.10)

which indicates a contradiction. Then we get lim
ρ→+∞

u = +∞ from (4.9).

For a bounded discontinuity at ξ = σϵ1ϵ2 , the Rankine–Hugoniot relation is
−σϵ1ϵ2 [ρ] + [ρf(u)− 2ϵ1u] = 0,

−σϵ1ϵ2 [ρu] + [ρuf(u)− ϵ1u2 +
ϵ2ρ

γ

γ
] = 0,

(4.11)

where [h] = hr − hl with hl = h(t, x(t) − 0) and hr = h(t, x(t) + 0) . Eliminating σϵ1ϵ2 from (4.11), together
with the Lax entropy inequalities, we obtain the backward shock wave curve

←−
S (u−, ρ−) : u− u− = −

√√√√ρ−ρ(u− u−)
(
f(u)− f(u−)

)
− ϵ2
γ
(ρ− ρ−)(ργ − ργ−)

ϵ1(ρ− + ρ)
, ρ > ρ−, (4.12)
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and the forward shock wave curve

−→
S (u−, ρ−) : u− u− = −

√√√√ρ−ρ(u− u−)
(
f(u)− f(u−)

)
− ϵ2
γ
(ρ− ρ−)(ργ − ργ−)

ϵ1(ρ− + ρ)
, ρ < ρ−. (4.13)

Furthermore, it is easy to check that du/dρ < 0 for the backward shock wave curve and du/dρ > 0 for
the forward shock wave. When ρ → +∞ in (4.12), we find lim

ρ→+∞
u = −∞ . When ρ → 0 in (4.13), we get

lim
ρ→0

u = −∞ , which indicates that the forward shock wave curve intersects with the curve ρ = 2ϵ1
f ′(u) at a point

denoted by (u2, ρ2) .
Through the analysis above, for small ϵ1, ϵ2 , given a left state (u−, ρ−) , the phase plane can be divided

into five regions by the wave curves (see Figure 3):

À (u+, ρ+) ∈ I(u−, ρ−) :
←−
R +

−→
R ; Á (u+, ρ+) ∈ II(u−, ρ−) :

←−
R +

−→
S ;

Â (u+, ρ+) ∈ III(u−, ρ−) :
←−
S +

−→
R ; Ã (u+, ρ+) ∈ IV (u−, ρ−) :

←−
S +

−→
S ;

Ä (u+, ρ+) ∈ V (u−, ρ−) :
←−
R + generalized constant density state (ρ = 2ϵ1

f ′(u) ) +
−→
R.

-

6
ρ

u

ρ = 2ǫ1
f ′(u)

−→

R
−→

R
←−

S

←−

R

−→

S

(u
−

, ρ
−
)

III I

IV

II

V

(u2, ρ2)

(u1, ρ1)

Figure 3. Curves of elementary waves.

4.2. Limit analysis of Riemann solutions of (1.3) as ϵ1, ϵ2 → 0

As ϵ1, ϵ2 → 0 , the two regions II(u−, ρ−) and III(u−, ρ−) have empty interiors. Thus, we only need to
consider the limit process for the two cases (u+, ρ+) ∈ IV (u−, ρ−) and (u+, ρ+) ∈ I(u−, ρ−) ∪ V (u−, ρ−) .

4.2.1. Formation of delta-shocks

In the case (u+, ρ+) ∈ IV (u−, ρ−) with u− > u+ , the Riemann solution contains a two-shock wave and a
nonvacuum intermediate constant state. Let (uϵ1ϵ2∗ , ρϵ1ϵ2∗ ) be the intermediate state. We suppose that (u−, ρ−)

and (uϵ1ϵ2∗ , ρϵ1ϵ2∗ ) are connected by backward shock wave ←−S with speed σϵ1ϵ2
1 , and that (uϵ1ϵ2∗ , ρϵ1ϵ2∗ ) and

(u+, ρ+) are connected by forward shock wave −→S with speed σϵ1ϵ2
2 . We thus obtain
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uϵ1ϵ2∗ − u− = −

√√√√ρ−ρ
ϵ1ϵ2
∗ (uϵ1ϵ2∗ − u−)

(
f(uϵ1ϵ2∗ )− f(u−)

)
− ϵ2
γ
(ρϵ1ϵ2∗ − ρ−)((ρϵ1ϵ2∗ )γ − ργ−)

ϵ1(ρ− + ρϵ1ϵ2∗ )
,

ρϵ1ϵ2∗ > ρ−,

(4.14)

on ←−S , and

u+ − uϵ1ϵ2∗ = −

√√√√ρϵ1ϵ2∗ ρ+(u+ − uϵ1ϵ2∗ )
(
f(u+)− f(uϵ1ϵ2∗ )

)
− ϵ2
γ
(ρ+ − ρϵ1ϵ2∗ )(ργ+ − (ρϵ1ϵ2∗ )γ)

ϵ1(ρ
ϵ1ϵ2
∗ + ρ+)

,

ρϵ1ϵ2∗ > ρ+,

(4.15)

on −→S .
Then we can give three lemmas as follows.

Lemma 4.1 lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ = +∞ .

Proof If lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ = d ∈ (max(ρ−, ρ+),+∞) , and noting u+ < uϵ1ϵ2∗ < u− , we can deduce from (4.14) and

(4.15) that u+ − u− = −∞ as ϵ1, ϵ2 → 0 . Therefore, we must have lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ = +∞ . 2

Lemma 4.2 Set lim
ϵ1,ϵ2→0

uϵ1ϵ2∗ = uδ ∈ (u+, u−) and σ = f(uδ) . Then

lim
ϵ1,ϵ2→0

ϵ2(ρ
ϵ1ϵ2
∗ )γ = γρ−(uδ − u−)(f(uδ)− f(u−)) = γρ+(u+ − uδ)(f(u+)− f(uδ)), (4.16)

lim
ϵ1,ϵ2→0

σϵ1ϵ2
1 = lim

ϵ1,ϵ2→0
σϵ1ϵ2
2 = σ, (4.17)

lim
ϵ1,ϵ2→0

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

ρϵ1ϵ2∗ dξ = σ[ρ]− [ρf(u)], (4.18)

lim
ϵ1,ϵ2→0

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

ρϵ1ϵ2∗ uϵ1ϵ2∗ dξ = σ[ρu]− [ρuf(u)]. (4.19)

Proof Letting ϵ1, ϵ2 → 0 in (4.14) and (4.15), respectively, and noting Lemma 4.1, we can obtain (4.16).
From the first equation of (4.11), it follows that

σϵ1ϵ2
1 =

ρϵ1ϵ2∗ f(uϵ1ϵ2∗ )− ρ−f(u−) + 2ϵ1(u− − uϵ1ϵ2∗ )

ρϵ1ϵ2∗ − ρ−
, (4.20)

σϵ1ϵ2
2 =

ρ+f(u+)− ρϵ1ϵ2∗ f(uϵ1ϵ2∗ ) + 2ϵ1(u
ϵ1ϵ2
∗ − u+)

ρ+ − ρϵ1ϵ2∗
. (4.21)
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Then the result of (4.17) is easily reached, and we have

lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ (σϵ1ϵ2
2 − σϵ1ϵ2

1 ) = σ[ρ]− [ρf(u)]. (4.22)

Similarly, using the second equation of (4.11), one can deduce that

lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ uϵ1ϵ2∗ (σϵ1ϵ2
2 − σϵ1ϵ2

1 ) = σ[ρu]− [ρuf(u)]. (4.23)

Thus, (4.18) and (4.19) hold. 2

It is shown from Lemma 4.1 and Lemma 4.2 that the density between ←−S and −→S becomes singular when
ϵ1, ϵ2 → 0 .

Lemma 4.3 The quantity uδ , i.e. the limit of uϵ1ϵ2∗ in Lemma 4.2, is just the propagation speed of the
delta-shock of (1.1) and (1.6).

Proof Noticing

lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ uϵ1ϵ2∗ (σϵ1ϵ2
2 − σϵ1ϵ2

1 ) = lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ (σϵ1ϵ2
2 − σϵ1ϵ2

1 ) · lim
ϵ1,ϵ2→0

uϵ1ϵ2∗ (4.24)

and (4.22) and (4.23), we get that uδ is uniquely determined by

f(uδ)[ρu]− [ρuf(u)] = (f(uδ)[ρ]− [ρf(u)])uδ (4.25)

under the entropy condition (2.10). Thus, the lemma is true. 2

Now a theorem that can characterize the limit of solutions of (1.3) and (1.6) as ϵ1, ϵ2 → 0 can be given
as follows.

Theorem 4.4 Let u− > u+ . Assume (uϵ1ϵ2 , ρϵ1ϵ2) to be the Riemann solutions containing two shock waves of
(1.3) and (1.6) constructed in Subsection 4.1. Then, as ϵ1, ϵ2 → 0 , ρϵ1ϵ2 and ρϵ1ϵ2uϵ1ϵ2 converge in the sense
of distributions, and their limit functions are the sum of a step function and a δ -function with the weights

t√
1 + σ2

(σ[ρ]− [ρf(u)]) and
t√

1 + σ2
(σ[ρu]− [ρuf(u)]),

respectively, which is just the delta-shock solution of (1.1) with the same Riemann data (1.6) .

Proof (i). The two-shock wave solution of (1.3) can be given as

(uϵ1ϵ2 , ρϵ1ϵ2)(ξ) =


(u−, ρ−), ξ < σϵ1ϵ2

1 ,

(uϵ1ϵ2∗ , ρϵ1ϵ2∗ ), σϵ1ϵ2
1 < ξ < σϵ1ϵ2

2 ,

(u+, ρ+), ξ > σϵ1ϵ2
2 .

(4.26)

For any ϕ ∈ C1
0 (−∞,+∞) , (4.26) satisfies weak formulations∫ +∞

−∞
(−ρϵ1ϵ2ξ + ρϵ1ϵ2f(uϵ1ϵ2)− 2ϵ1u

ϵ1ϵ2)ϕ′dξ −
∫ +∞

−∞
ρϵ1ϵ2ϕdξ = 0, (4.27)
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and ∫ +∞

−∞

(
− ρϵ1ϵ2uϵ1ϵ2ξ + ρϵ1ϵ2uϵ1ϵ2f(uϵ1ϵ2)− ϵ1(uϵ1ϵ2)2 +

ϵ2
γ
(ρϵ1ϵ2)γ

)
ϕ′dξ

−
∫ +∞

−∞
ρϵ1ϵ2uϵ1ϵ2ϕdξ = 0.

(4.28)

(ii). Decomposing the first integral in (4.27) into(∫ σ
ϵ1ϵ2
1

−∞
+

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

+

∫ +∞

σ
ϵ1ϵ2
2

)
(−ρϵ1ϵ2ξ + ρϵ1ϵ2f(uϵ1ϵ2)− 2ϵ1u

ϵ1ϵ2)ϕ′dξ, (4.29)

and computing the limit of the sum of the first and last term of (4.29), we have

lim
ϵ1,ϵ2→0

(∫ σ
ϵ1ϵ2
1

−∞
+

∫ +∞

σ
ϵ1ϵ2
2

)
(−ρϵ1ϵ2ξ + ρϵ1ϵ2f(uϵ1ϵ2)− 2ϵ1u

ϵ1ϵ2)ϕ′dξ

= lim
ϵ1,ϵ2→0

∫ σ
ϵ1ϵ2
1

−∞
(−ρ−ξ + ρ−f(u−)− 2ϵ1u−)ϕ

′dξ

+ lim
ϵ1,ϵ2→0

∫ +∞

σ
ϵ1ϵ2
2

(−ρ+ξ + ρ+f(u+)− 2ϵ1u+)ϕ
′dξ

= (σ[ρ]− [ρf(u)])ϕ(σ) +

∫ +∞

−∞
Q(ξ − σ)ϕdξ

(4.30)

with

Q(ξ − σ) =

{
ρ−, ξ < σ,

ρ+, ξ > σ.

For the limit of the second term of (4.29), one can get

lim
ϵ1,ϵ2→0

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

(−ρϵ1ϵ2ξ + ρϵ1ϵ2f(uϵ1ϵ2)− 2ϵ1u
ϵ1ϵ2)ϕ′dξ

= lim
ϵ1,ϵ2→0

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

(−ρϵ1ϵ2∗ ξ + ρϵ1ϵ2∗ f(uϵ1ϵ2∗ )− 2ϵ1u
ϵ1ϵ2
∗ )ϕ′dξ

= lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ (σϵ1ϵ2
2 − σϵ1ϵ2

1 )

(
ϕ(σ

ϵ1ϵ2
2 )−ϕ(σ

ϵ1ϵ2
1 )

σ
ϵ1ϵ2
2 −σ

ϵ1ϵ2
1

f(uϵ1ϵ2∗ )− σ
ϵ1ϵ2
2 ϕ(σ

ϵ1ϵ2
2 )−σ

ϵ1ϵ2
1 ϕ(σ

ϵ1ϵ2
1 )

σ
ϵ1ϵ2
2 −σ

ϵ1ϵ2
1

+ 1
σ
ϵ1ϵ2
2 −σ

ϵ1ϵ2
1

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

ϕdξ

)
− lim

ϵ1,ϵ2→0
2ϵ1u

ϵ1ϵ2
∗

(
ϕ(σϵ1ϵ2

2 )− ϕ(σϵ1ϵ2
1 )

)
= (σ[ρ]− [ρf(u)])

(
σϕ′(σ)− σϕ′(σ)− ϕ(σ) + ϕ(σ)

)
= 0.

(4.31)

Then combining (4.30) with (4.31) yields

lim
ϵ1,ϵ2→0

∫ +∞

−∞
ρϵ1ϵ2ϕdξ = (σ[ρ]− [ρf(u)])ϕ(σ) +

∫ +∞

−∞
Q(ξ − σ)ϕdξ. (4.32)
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(iii) We employ the weak formulation (4.28) to consider the limit of ρϵ1ϵ2uϵ1ϵ2 . Similarly, from the first
integral of (4.28), we have

(∫ σ
ϵ1ϵ2
1

−∞
+

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

+

∫ +∞

σ
ϵ1ϵ2
2

)(
− ρϵ1ϵ2uϵ1ϵ2ξ + ρϵ1ϵ2uϵ1ϵ2f(uϵ1ϵ2)− ϵ1(uϵ1ϵ2)2 +

ϵ2
γ
(ρϵ1ϵ2)γ

)
ϕ′dξ. (4.33)

Taking the limit ϵ1, ϵ2 → 0 in the sum of the first and last term of (4.33) leads to

lim
ϵ1,ϵ2→0

(∫ σ
ϵ1ϵ2
1

−∞
+

∫ +∞

σ
ϵ1ϵ2
2

)(
− ρϵ1ϵ2uϵ1ϵ2ξ + ρϵ1ϵ2uϵ1ϵ2f(uϵ1ϵ2)− ϵ1(uϵ1ϵ2)2 +

ϵ2
γ
(ρϵ1ϵ2)γ

)
ϕ′dξ

= (σ[ρu]− [ρuf(u)])ϕ(σ) +

∫ +∞

−∞
Q̃(ξ − σ)ϕdξ

(4.34)

with

Q̃(ξ − σ) =

{
ρ−u−, ξ < σ,

ρ+u+, ξ > σ.

For the limit of the second term of (4.33), using Lemmas 4.1–4.2, we can obtain

lim
ϵ1,ϵ2→0

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

(
− ρϵ1ϵ2uϵ1ϵ2ξ + ρϵ1ϵ2uϵ1ϵ2f(uϵ1ϵ2)− ϵ1(uϵ1ϵ2)2 +

ϵ2
γ
(ρϵ1ϵ2)γ

)
ϕ′dξ

= lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ (σϵ1ϵ2
2 − σϵ1ϵ2

1 )

(
ϕ(σ

ϵ1ϵ2
2 )−ϕ(σ

ϵ1ϵ2
1 )

σ
ϵ1ϵ2
2 −σ

ϵ1ϵ2
1

uϵ1ϵ2∗ f(uϵ1ϵ2∗ ) + ϵ2(ρ
ϵ1ϵ2
∗ )γ−1

γ
ϕ(σ

ϵ1ϵ2
2 )−ϕ(σ

ϵ1ϵ2
1 )

σ
ϵ1ϵ2
2 −σ

ϵ1ϵ2
1

−σ
ϵ1ϵ2
2 ϕ(σ

ϵ1ϵ2
2 )−σ

ϵ1ϵ2
1 ϕ(σ

ϵ1ϵ2
1 )

σ
ϵ1ϵ2
2 −σ

ϵ1ϵ2
1

uϵ1ϵ2∗ + u
ϵ1ϵ2
∗

σ
ϵ1ϵ2
2 −σ

ϵ1ϵ2
1

∫ σ
ϵ1ϵ2
2

σ
ϵ1ϵ2
1

ϕdξ

)
− lim

ϵ1,ϵ2→0
ϵ1(u

ϵ1ϵ2
∗ )2

(
ϕ(σϵ1ϵ2

2 )− ϕ(σϵ1ϵ2
1 )

)
= 0.

(4.35)

Returning to (4.28), we get

lim
ϵ1,ϵ2→0

∫ +∞

−∞
ρϵ1ϵ2uϵ1ϵ2ϕdξ = (σ[ρu]− [ρuf(u)])ϕ(σ) +

∫ +∞

−∞
Q̃(ξ − σ)ϕdξ. (4.36)

(iiii). Finally, as ϵ1, ϵ2 → 0 , we investigate the limit of ρϵ1ϵ2 and ρϵ1ϵ2uϵ1ϵ2 depending on t . For any test
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function ψ(x, t) ∈ C∞
0 (R× R+) , we have

lim
ϵ1,ϵ2→0

∫ +∞

0

∫ +∞

−∞
ρϵ1ϵ2(x/t)ψ(x, t)dxdt

= lim
ϵ1,ϵ2→0

∫ +∞

0

∫ +∞

−∞
ρϵ1ϵ2(ξ)ψ(ξt, t)d(ξt)dt

= lim
ϵ1,ϵ2→0

∫ +∞

0

t

(∫ +∞

−∞
ρϵ1ϵ2(ξ)ψ(ξt, t)dξ

)
dt

=

∫ +∞

0

t

(
(σ[ρ]− [ρf(u)])ψ(σt, t) +

∫ +∞

−∞
Q(ξ − σ)ψ(ξt, t)dξ

)
dt

=

∫ +∞

0

(σ[ρ]− [ρf(u)])tψ(σt, t)dt+

∫ +∞

0

t

(∫ +∞

−∞
Q(ξ − σ)ψ(ξt, t)dξ

)
dt

=

∫ +∞

0

(σ[ρ]− [ρf(u)])tψ(σt, t)dt+

∫ +∞

0

∫ +∞

−∞
Q(x− σt)ψ(x, t)dxdt.

(4.37)

Thus, by the definition (2.2), we get∫ +∞

0

(σ[ρ]− [ρf(u)])tψ(σt, t)dt =
⟨
w1(·)δS , ψ(·, ·)

⟩
with w1(t) =

t√
1 + σ2

(σ[ρ]− [ρf(u)]).

Similarly, it can be shown that

lim
ϵ1,ϵ2→0

∫ +∞

0

∫ +∞

−∞
ρϵ1ϵ2uϵ1ϵ2(x/t)ψ(x, t)dxdt

=
⟨
w2(·)δS , ψ(·, ·)

⟩
+

∫ +∞

0

∫ +∞

−∞
Q̃(x− σt)ψ(x, t)dxdt,

(4.38)

with w2(t) =
t√

1 + σ2
(σ[ρu]− [ρuf(u)]).

This completes the proof of Theorem 4.1. 2

4.2.2. Formation of vacuum states
In the case (u+, ρ+) ∈ I(u−, ρ−) ∪ V (u−, ρ−) with u− < u+ , we get that, on the backward rarefaction wave,
the solution (uϵ1ϵ2 , ρϵ1ϵ2) satisfies ξ = f(uϵ1ϵ2)−

√
ϵ2(ρϵ1ϵ2)γ−2(ρϵ1ϵ2f ′(uϵ1ϵ2)− 2ϵ1), ρϵ1ϵ2∗ < ρ−,

f(u−)−
√
ϵ2ρ

γ−2
− (ρ−f ′(u−)− 2ϵ1) < ξ < f(uϵ1ϵ2∗ )−

√
ϵ2(ρ

ϵ1ϵ2
∗ )γ−2(ρϵ1ϵ2∗ f ′(uϵ1ϵ2∗ )− 2ϵ1),

(4.39)

and on the forward rarefaction wave{
ξ = f(uϵ1ϵ2) +

√
ϵ2(ρϵ1ϵ2)γ−2(ρϵ1ϵ2f ′(uϵ1ϵ2)− 2ϵ1), ρϵ1ϵ2∗ < ρ+,

f(uϵ1ϵ2∗ ) +
√
ϵ2(ρ

ϵ1ϵ2
∗ )γ−2(ρϵ1ϵ2∗ f ′(uϵ1ϵ2∗ )− 2ϵ1) < ξ < f(u+) +

√
ϵ2(ρ+)γ−2(ρ+f ′(u+)− 2ϵ1).

(4.40)

Now we analyze the formation of the vacuum state in the limit of solutions of (1.3) and (1.6).
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Note that (uϵ1ϵ2∗ , ρϵ1ϵ2∗ ) is on the curve of the backward rarefaction wave ←−R (u−, ρ−) . Thus,

uϵ1ϵ2∗ = u− −
∫ ρ

ϵ1ϵ2
∗

ρ−

√
ϵ2sγ−2

sf ′(uϵ1ϵ2∗ )− 2ϵ1
ds ≤ u− +

∫ ρ−

2ϵ1
f′(u1)

√
ϵ2sγ−2

sf ′(u1)− 2ϵ1
ds := Bϵ1ϵ2 . (4.41)

If u− < u+ < Bϵ1ϵ2 , the solution does not contain a generalized constant density. However, if Bϵ1ϵ2 < u+ , the
intermediate state becomes a generalized constant density.

We claim that there exists a ϵ0 > 0 such that when 0 < ϵ1 < ϵ0 and 0 < ϵ2 < ϵ0 , the intermediate state
is a generalized constant density. In fact, for any ϵ1, ϵ2 , setting ϵ1 = ϵ2 = ϵ , we obtain from (4.41) that

uϵ1ϵ2∗ = u− −
∫ ρ

ϵ1ϵ2
∗

ρ−

√
ϵsγ−2

sf ′(uϵ1ϵ2∗ )− 2ϵ
ds ≤ u− +

∫ ρ−

2ϵ
f′(u1)

√
ϵsγ−2

sf ′(u1)− 2ϵ
ds := Bϵ. (4.42)

Thus, if u− < u+ < Bϵ , there exists ϵ∗ such that (u+, ρ+) ∈ I(u−, ρ−) when u− < u+ < Bϵ∗ . However, if
Bϵ < u+ , there exists ϵ∗∗ such that (u+, ρ+) ∈ V (u−, ρ−) when Bϵ∗∗ < u+ .

Let E(ϵ) =

∫ ρ−

2ϵ
f′(u1)

√
ϵsγ−2

sf ′(u1)− 2ϵ
ds − u+ + u− . Since the integral

∫ f ′(u1)ρ−

0

√
(s+ 2ϵ∗)γ−2

s
ds is

convergent, we can deduce that the integral
∫ ρ−

2ϵ
f′(u1)

√
ϵsγ−2

sf ′(u1)− 2ϵ
ds is uniformly convergent in ϵ ≤ ϵ∗ by

using the M-criterion, and then E(ϵ) is continuous with respect to ϵ and E(ϵ∗)E(ϵ∗∗) < 0 . Thus, there exists
ϵ0 ∈ [ϵ∗∗, ϵ∗] such that E(ϵ0) = 0 .

Therefore, if 0 < ϵ1 < ϵ0 and 0 < ϵ2 < ϵ0 , the intermediate state is the generalized constant density

(uϵ1ϵ2∗ , ρϵ1ϵ2∗ )(ξ) =

(
uϵ1ϵ2 ,

2ϵ1
f ′(uϵ1ϵ2)

)
, uϵ1ϵ201 ≤ uϵ1ϵ2(ξ) ≤ uϵ1ϵ202 , (4.43)

where

uϵ1ϵ201 = u− +

∫ ρ−

2ϵ1

f′(uϵ1ϵ2
01 )

√
ϵ2sγ−2

sf ′(uϵ1ϵ201 )− 2ϵ1
ds, uϵ1ϵ202 = u+ −

∫ ρ+

2ϵ1

f′(uϵ1ϵ2
02 )

√
ϵ2sγ−2

sf ′(uϵ1ϵ202 )− 2ϵ1
ds.

Then, when 0 < ϵ1 < ϵ0 and 0 < ϵ2 < ϵ0 , taking ϵ1, ϵ2 → 0 , we have

lim
ϵ1,ϵ2→0

ρϵ1ϵ2∗ = 0,

which means that the vacuum occurs. Moreover, noting that ρϵ1ϵ2 and f ′(uϵ1ϵ2) are uniform boundedness with
respect to ϵ1, ϵ2 , we find

lim
ϵ1,ϵ2→0

uϵ1ϵ201 = u−, lim
ϵ1,ϵ2→0

uϵ1ϵ202 = u+,

and
lim

ϵ1,ϵ2→0
f(uϵ1ϵ2) = ξ for ξ ∈ (f(u−), f(u+)).

In conclusion, from the analysis above, it is clear that the limit of the solution is the solution of the
system (1.1), which contains two contact discontinuities ξ = x/t = f(u±) and a vacuum state in between.
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