

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

\mathbb{Q} -Korselt numbers

Nejib GHANMI*

Preparatory Institute of Engineering Studies, Tunis University, Tunis, Tunisia

Received: 03.11.2017 •	Accepted/Published Online: 21.08.2018	•	Final Version: 27.09.2018
------------------------	---------------------------------------	---	----------------------------------

Abstract: Let $\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q} \setminus \{0\}$; a positive integer N is said to be an α -Korselt number (K_{α} -number, for short) if $N \neq \alpha$ and $\alpha_2 p - \alpha_1$ divides $\alpha_2 N - \alpha_1$ for every prime divisor p of N. In this paper we prove that for each squarefree composite number N there exist finitely many rational numbers α such that N is a K_{α} -number and if $\alpha \leq 1$ then N has at least three prime factors. Moreover, we prove that for each $\alpha \in \mathbb{Q} \setminus \{0\}$ there exist only finitely many squarefree composite numbers N with two prime factors such that N is a K_{α} -number.

Key words: Prime number, Carmichael number, Korselt number, squarefree composite number, Korselt set, Korselt weight

1. Introduction

A Carmichael number is a composite number N that divides $a^N - a$ for all integers a [2, 4]. In 1899, Korselt gave a complete characterization of Carmichael numbers.

Theorem 1.1 (Korselt criterion [8]) A composite integer N > 1 is a Carmichael number if and only if p-1 divides N-1 for all prime factors p of N.

This criterion helped in the discovery of the existence of infinitely many Carmichael numbers in 1994 by Alford et al. (see [1] for details). In the proof of the infinitude of Carmichael numbers the authors asked if this proof can be generalized to produce other kinds of pseudoprimes by writing the following:

"One can modify our proof to show that for any fixed nonzero integer a, there are many squarefree, composite integers n such that p-a divides n-1 for all primes p dividing n. However, we have been unable to prove this for p-a dividing n-b, for b other than 0 or 1."

The query of Alford et al. inspired Bouallegue et al. to state in a recent paper a new kind of pseudoprimes called Korselt numbers (see [3] for details). For $\alpha \in \mathbb{Z} \setminus \{0\}$, a number N is called an α -Korselt number if $p - \alpha \mid N - \alpha$ for each prime divisor p of N. By this definition, Carmichael numbers are exactly the squarefree composite 1-Korselt numbers. In this paper, we extend the definition of α -Korselt numbers given in [3] by allowing α to be a rational number. We state the following definition.

Definition 1.2 Let $N \in \mathbb{N} \setminus \{0,1\}$ and $\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q} \setminus \{0\}$. N is said to be an α -Korselt number (K_{α} -number, for short) if $N \neq \alpha$ and $\alpha_2 p - \alpha_1$ divides $\alpha_2 N - \alpha_1$ for every prime divisor p of N.

^{*}Correspondence: neghanmi@yahoo.fr

²⁰¹⁰ AMS Mathematics Subject Classification: Primary 11Y16; Secondary 11Y11, 11A51

GHANMI/Turk J Math

The set of all K_{α} -numbers, where $\alpha \in \mathbb{Q}$, is called the set of \mathbb{Q} -Korselt numbers.

For a fixed $N \in \mathbb{N} \setminus \{0, 1\}$, we need to determine the set of all $\alpha \in \mathbb{Q} \setminus \{0\}$ such that N is a K_{α} -number. This leads to the following definition.

Definition 1.3 Let N be a positive integer and \mathbb{A} be a nonempty subset of \mathbb{Q} .

- 1. By the \mathbb{A} -Korselt set of N, we mean the set \mathbb{A} - $\mathcal{KS}(N)$ of all $\alpha \in \mathbb{A} \setminus \{0, N\}$ such that N is a K_{α} -number.
- 2. The cardinality of \mathbb{A} - $\mathcal{KS}(N)$ will be called the \mathbb{A} -Korselt weight of N; we denote it by \mathbb{A} - $\mathcal{KW}(N)$.

By this definition, the notion of \mathbb{Q} -Korselt numbers generalizes that given by Bouallegue et al. and thus Carmichael numbers. Among the most recent works in this area are the papers [3, 5–7], where the notion of Korselt numbers over \mathbb{Z} was studied and several related results were obtained. In this paper, our aim is to introduce the notion of \mathbb{Q} -Korselt numbers and to discuss generalizations of properties holding when $\alpha \in \mathbb{Z}$. Therefore, we proceed as follows:

- In Section 2, after giving some general results about \mathbb{Q} -Korselt numbers, we prove that for each squarefree composite number N, there exist only finitely many rational numbers α such that N is a K_{α} -number.

- In section 3, we prove that for every rational number $\alpha \leq 1$, if a squarefree composite number N is a K_{α} -number then N must have at least three prime factors. Furthermore, we show that for each rational number $\alpha > 1$, there exist only finitely many K_{α} -numbers with two prime factors.

Throughout this paper and for $\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q}$, we will suppose without loss of generality that $\alpha_2 > 0$, $\alpha_1 \in \mathbb{Z}$, and $gcd(\alpha_1, \alpha_2) = 1$. Moreover, in this work we are concerned only with squarefree composite numbers N.

2. Q-Korselt set properties

Proposition 2.1 Let $\alpha \in \mathbb{Q} \setminus \{0\}$ and $N = p_1 p_2 \dots p_m$ be a K_α -number such that $p_1 < p_2 < \dots < p_m$ and $m \geq 2$. Then the following inequalities hold:

$$\frac{(m+2)p_1 - N}{m+1} \le \alpha \le \frac{N + mp_m}{m+1}.$$

Proof $\alpha \in \mathbb{Q}$ - $\mathcal{KS}(N)$ implies that $N - \alpha = k_i(p_i - \alpha)$ with $k_i \in \mathbb{Z}$ for each $i = 1 \dots m$. We consider two cases:

Case 1: Assume that $\alpha < 0$. First, let us show that $k_m \geq 3$.

Since
$$N - \alpha > p_m - \alpha > 0$$
, then $k_m = \frac{N - \alpha}{p_m - \alpha} > 1$.

Next, we show that $k_m \neq 2$. Suppose by contradiction that $k_m = 2$.

Then $\alpha = 2p_m - N \in \mathbb{Z}$, but as $\alpha \neq p_m$ and $\alpha \neq 0$, we get $N \neq p_m$ and $N \neq 2p_m$. Thus, there exists an integer $N_1 \geq 3$ such that $N = N_1 p_m$. Let p_s be a prime factor of N_1 . Then

$$p_s - \alpha = p_s + (N_1 - 2)p_m \mid N - \alpha = 2p_m(N_1 - 1).$$

However, as $gcd(p_m, p_s - \alpha) = 1$, it follows that

$$p_s - \alpha = p_s + (N_1 - 2)p_m \mid 2(N_1 - 1)$$

and hence

$$p_s + (N_1 - 2)p_m \le 2(N_1 - 1).$$

Since $4 \le p_s + 2 \le p_m$, we get

$$2 + 4(N_1 - 2) \le p_s + (N_1 - 2)p_m \le 2(N_1 - 1).$$

Therefore, $N_1 \leq 2$, which contradicts $N_1 \geq 3$, so $k_m \geq 3$.

Now, as $(p_i - \alpha)_{1 \le i \le m}$ is increasing and positive, then $\left(k_i = \frac{N - \alpha}{p_i - \alpha}\right)_{1 \le i \le m}$ is decreasing. Hence, as

 $k_m \ge 3, \ \frac{N-\alpha}{p_1-\alpha} = k_1 \ge m+2.$ Thus,

$$\frac{(m+2)p_1 - N}{m+1} \le \alpha.$$

Case 2: Suppose that $\alpha > 0$. We claim that $\alpha < N$. If not, then (as $\alpha \neq N$) we get $p_m < N < \alpha$. This implies that $0 < \alpha - N < \alpha - p_m$, and hence $0 < \frac{\alpha - N}{\alpha - p_m} = k_m < 1$, contradicting the fact that $k_m \in \mathbb{Z}$.

Now let us prove that $\alpha \leq \frac{N + mp_m}{m+1}$.

- If $\alpha \leq p_m$, it is immediate.
- Now suppose that $p_m < \alpha < N$. Since $(\alpha p_i)_{1 \le i \le m}$ is decreasing and positive, then $\left(\mid k_i \mid = \frac{N \alpha}{\alpha p_i} \right)_{1 \le i \le m}$ is increasing. Hence, $\mid k_m \mid \ge m$ and consequently $N \alpha = \mid k_m \mid (\alpha p_m) \ge m(\alpha p_m)$. Thus,

$$\alpha \le \frac{N + mp_m}{m+1}.$$

Finally, combining the two cases, we get

$$\frac{(m+2)p_1 - N}{m+1} \le \alpha \le \frac{N + mp_m}{m+1}.$$

By the following result, we provide a characterization of the \mathbb{Q} -Korselt set of a squarefree composite number N.

Proposition 2.2 Let N be a squarefree composite number with prime divisors p_i , $1 \le i \le m$. If we let

$$A_{ij} = \left\{ \frac{dp_j - \delta p_i}{d - \delta}; \ d \neq \delta, \ \delta \mid (N - p_i), \ d \mid (N - p_j), \ and \ (p_i - p_j) \mid (d - \delta) \right\},$$

for $1 \leq i < j \leq m$, then

$$\mathbb{Q}\text{-}\mathcal{KS}(N) = \bigcap_{1 \le i < j \le m} A_{ij}.$$

Proof First note that for each $1 \le i \le m$, N is a K_{α} -number if and only if $\alpha_2 p_i - \alpha_1 \mid \alpha_2 N - \alpha_1$ or equivalently $\alpha_2 p_i - \alpha_1 \mid N - p_i$.

Now let $\alpha \in \mathbb{Q}$ - $\mathcal{KS}(N)$. Then for each (i, j) with $1 \leq i < j \leq m$, we have

$$\begin{cases} \alpha_2 p_i - \alpha_1 \mid N - p_i \\ \alpha_2 p_j - \alpha_1 \mid N - p_j \end{cases}$$

This implies that there are two distinct divisors d and δ of $N - p_i$ and $N - p_j$, respectively, such that

$$\begin{cases} \alpha_2 p_i - \alpha_1 = d \\ \alpha_2 p_j - \alpha_1 = \delta. \end{cases}$$

Solving the system we get

$$\alpha_1 = \frac{dp_j - \delta p_i}{p_i - p_j}, \ \alpha_2 = \frac{d - \delta}{p_i - p_j},$$

and so $\alpha = \frac{dp_j - \delta p_i}{d - \delta}$. Since α_1 and α_2 are integers we conclude that $\alpha \in A_{ij}$ and hence

$$\mathbb{Q}\text{-}\mathcal{KS}(N) \subseteq \bigcap_{1 \le i < j \le m} A_{ij}.$$

Next let $\alpha \in \bigcap_{1 \le i < j \le m} A_{ij}$. Then $\alpha \in A_{ij}$, for each pair (i,j) such that $1 \le i < j \le m$. This implies

that $\alpha = \frac{dp_j - \delta p_i}{d - \delta}$, for some divisors d and δ of $N - p_i$ and $N - p_j$, respectively, with $(p_i - p_j) \mid (d - \delta)$.

Setting $\alpha_1 = \frac{dp_j - \delta p_i}{p_i - p_j}$ and $\alpha_2 = \frac{d - \delta}{p_i - p_j}$, then $\alpha_1, \alpha_2 \in \mathbb{Z}$ and

 $\alpha_2 p_i - \alpha_1 = d \mid N - p_i \text{ for } i = 1 \dots m.$

Therefore,
$$\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q}$$
- $\mathcal{KS}(N)$.

By the previous proposition, we immediately get the following result.

Theorem 2.3 For any given squarefree composite number N, there are only finitely many rational numbers α for which N is a K_{α} -number.

By the characterization of the \mathbb{Q} -Korselt set of a squarefree composite number N, given in Proposition 2.2, and with a simple Maple program, we provide in Table 1 and Table 2 data representing some squarefree composite numbers and their \mathbb{Q} -Korselt sets as follows:

- Table 1 gives for each integer $2 \le d \le 8$ the Q-Korselt set of the smallest Q-Korselt number N_d with d prime factors.
- Table 2 gives for each integer $0 \le k \le 10$ the smallest squarefree composite number N_k such that \mathbb{Q} - $\mathcal{KW}(N_k) = k$.

GHANMI/Turk J Math

d	N_d	\mathbb{Q} - $\mathcal{KS}(N_d)$
2	$6 = 2 \cdot 3$	$\left\{4, \frac{3}{2}, \frac{10}{3}, \frac{14}{5}, \frac{8}{3}, \frac{5}{2}, \frac{18}{7}, \frac{12}{5}, \frac{9}{4}\right\}$
3	$30 = 2 \cdot 3 \cdot 5$	$\left\{4, 6, \frac{15}{8}, \frac{40}{13}, \frac{5}{2}, \frac{10}{3}, \frac{15}{4}, \frac{24}{5}\right\}$
4	$210 = 2 \cdot 3 \cdot 5 \cdot 7$	$\left\{6,\frac{21}{4}\right\}$
5	$2730 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$	$\left\{\frac{15}{2}\right\}$
6	$255255 = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$	{15}
7	$8580495 = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 23$	{15}
8	$294076965 = 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$	{21}

Table 1. \mathbb{Q} - $\mathcal{KS}(N_d)$ where N_d is the smallest \mathbb{Q} -Korselt number with d prime factors.

Table 2. The smallest squarefree composite number N_k such that \mathbb{Q} - $\mathcal{KW}(N_k) = k$.

k	N_k	\mathbb{Q} - $\mathcal{KS}(N_k)$
0	$138 = 2 \cdot 3 \cdot 23$	Ø
1	$22 = 2 \cdot 11$	{12}
2	$102 = 2 \cdot 3 \cdot 17$	$\left\{12,\frac{17}{5}\right\}$
3	$14 = 2 \cdot 7$	$\left\{8,6,\frac{7}{2}\right\}$
4	$42 = 2 \cdot 3 \cdot 7$	$\left\{6, \frac{21}{8}, \frac{28}{9}, \frac{9}{2}\right\}$
5	$10 = 2 \cdot 5$	$\left\{4, 6, \frac{10}{3}, \frac{5}{2}, \frac{14}{3}\right\}$
6	$273 = 3 \cdot 7 \cdot 13$	$\left\{-7, 8, 9, \frac{78}{11}, \frac{19}{31}, \frac{21}{2}\right\}$
7	$70 = 2 \cdot 5 \cdot 7$	$\left\{4, 6, \frac{5}{2}, \frac{7}{4}, \frac{56}{11}, \frac{25}{4}, \frac{48}{7}\right\}$
8	$30 = 2 \cdot 3 \cdot 5$	$\left\{4, 6, \frac{15}{8}, \frac{40}{13}, \frac{5}{2}, \frac{10}{3}, \frac{15}{4}, \frac{24}{5}\right\}$
9	$6 = 2 \cdot 3$	$\left\{4, \frac{3}{2}, \frac{10}{3}, \frac{14}{5}, \frac{8}{3}, \frac{5}{2}, \frac{18}{7}, \frac{12}{5}, \frac{9}{4}\right\}$
10	$110 = 2 \cdot 5 \cdot 11$	$\left\{8, 20, \frac{44}{13}, \frac{55}{14}, \frac{88}{17}, \frac{22}{5}, \frac{31}{2}, \frac{13}{2}, \frac{35}{4}, \frac{46}{5}\right\}$

3. \mathbb{Q} -Korselt numbers with two prime factors

In this section, we shall discus the case where N is a squarefree composite number with two prime factors. Let p and q be two prime numbers such that p < q, N = pq and $\alpha = \frac{\alpha_1}{\alpha_2}$ be a rational number.

Proposition 3.1 If N is a K_{α} -number such that $gcd(\alpha_1, N) = 1$, then

$$q - p + 1 \le \alpha \le q + p - 1.$$

Proof Since N is a K_{α} -number, then

$$(S_1) \qquad \begin{cases} \alpha_2 p - \alpha_1 \mid p(q-1) \\ \alpha_2 q - \alpha_1 \mid q(p-1). \end{cases}$$

As, in addition, $gcd(\alpha_1, p) = gcd(\alpha_1, q) = 1$, it follows that

$$(S_2) \qquad \begin{cases} \alpha_2 p - \alpha_1 \mid q - 1 \\ \alpha_2 q - \alpha_1 \mid p - 1. \end{cases}$$
(3.1)
(3.2)

Hence, by (3.2), we get

 $-p+1 \le \alpha_1 - \alpha_2 q \le p-1.$

Knowing that $\alpha_2 \geq 1$, we deduce that

$$q-p+1 \leq q-\frac{p-1}{\alpha_2} \leq \alpha = \frac{\alpha_1}{\alpha_2} \leq q+\frac{p-1}{\alpha_2} \leq q+p-1.$$

In order to establish the set of $\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q}$ with $gcd(\alpha_1, N) \neq 1$ and for which N is a K_{α} -number, we need the next two results.

Proposition 3.2 Let N be a K_{α} -number such that $\alpha < q - p + 1$. Then the following assertions hold:

1) q divides α_1 .

2) If p divides α_1 (i.e. N divides α_1 and so $gcd(\alpha_1, N) = N$), then $\alpha_1 = N$ and $\alpha_2 = 2p - 1$.

Proof

1) Since $\alpha = \frac{\alpha_1}{\alpha_2} < q - p + 1$, we have $\alpha_2(p-1) < \alpha_2 q - \alpha_1$.

If $gcd(q, \alpha_1) = 1$, then by (3.2) it follows that

$$\alpha_2(p-1) < \alpha_2 q - \alpha_1 \le p - 1.$$

Hence, $\alpha_2 < 1$, which contradicts $\alpha_2 \in \mathbb{N} \setminus \{0\}$. Thus, $q \mid \alpha_1$.

2) Let $\alpha_1 = \alpha_1'' pq$ with $\alpha_1'' \in \mathbb{N} \setminus \{0\}$. Then (S_1) gives

(S₃)
$$\begin{cases} \alpha_2 - \alpha_1'' q \mid q - 1 \\ \alpha_2 - \alpha_1'' p \mid p - 1. \end{cases}$$
 (3.3)
(3.4)

Let us show that $\alpha_1 = N$ and $\alpha_2 = 2p - 1$.

As
$$\alpha = \frac{\alpha_1}{\alpha_2} < q - p + 1$$
, then

$$\alpha_2(p-1) < \alpha_2 q - \alpha_1 = (\alpha_2 - \alpha_1'' p)q$$

It follows by (3.4), that

$$\alpha_2(p-1) < q(\alpha_2 - \alpha_1''p) \le q(p-1).$$

Hence, $\alpha_2 < q$. Furthermore, since by (3.3), $\alpha_1^{''}q - \alpha_2 < q - 1$, it follows that $\alpha_1^{''}q < \alpha_2 + q - 1 < 2q - 1$, and this forces $\alpha_1^{''} = 1$. Therefore, $\alpha_1 = pq = N$.

Now let us prove that $\alpha_2 = 2p - 1$. First, as $\frac{pq}{\alpha_2} = \alpha < q - p + 1$, then $p < \alpha_2(\frac{q - p + 1}{q}) < \alpha_2$. Consequently, as $\alpha_1'' = 1$ and $\alpha_2 - p > 0$, it follows by (3.4) that $\alpha_2 - p = \frac{p - 1}{k}$ with $k \in \mathbb{N} \setminus \{0\}$. We claim that k = 1. Indeed, suppose by contradiction that $k \neq 1$; then $\alpha_2 - p \leq \frac{p - 1}{2}$ and hence

$$\alpha_2 \le \frac{3p-1}{2}.\tag{3.5}$$

Furthermore, since by hypothesis $\frac{pq}{\alpha_2} = \alpha < q - p + 1$, it follows by (3.5) that $pq < \alpha_2(q - p + 1) \leq \frac{3p - 1}{2}(q - p + 1)$. This is equivalent to q - 3p + 1 < p(q - 3p + 1) and hence

$$3p - 1 < q.$$
 (3.6)

However, as in addition $\alpha \neq N$, i.e. $\alpha_2 \neq 1$ and $\alpha_1'' = 1$, we get by (3.3) $q - \alpha_2 \leq \frac{q-1}{2}$. This yields by (3.5) $q \leq 2\alpha_2 - 1 \leq 3p - 2$, a contradiction with (3.6). Thus, k = 1 and so $\alpha_2 = 2p - 1$.

Lemma 3.3 If N is a K_{α} -number such that $gcd(\alpha_1, N) \neq 1$ and $q + p - 1 < \alpha$, then $\alpha_1 = pq = N$.

Proof As $q + p - 1 < \alpha = \frac{\alpha_1}{\alpha_2}$, then we have

$$0 < \alpha_2(q-1) < \alpha_1 - \alpha_2 p \tag{3.7}$$

and

$$0 < \alpha_2(p-1) < \alpha_1 - \alpha_2 q. \tag{3.8}$$

First we claim that $gcd(p, \alpha_1) \neq 1$. Indeed, if not, then by combining (3.1) and (3.7), we get

$$0 < \alpha_2(q-1) < \alpha_1 - \alpha_2 p \le q-1$$

This implies that $\alpha_2 < 1$, which contradicts $\alpha_2 \in \mathbb{N} \setminus \{0\}$. Thus, $p \mid \alpha_1$.

Similarly, by (3.2) and (3.8) we get $q \mid \alpha_1$. Hence, $\alpha_1 = \alpha_1'' pq$ with $\alpha_1'' \in \mathbb{N}$. Let us show that $\alpha_1'' = 1$. By (3.3) and (3.4), we get respectively

$$\alpha_1''q - \alpha_2 \le q - 1 \tag{3.9}$$

and

$$\alpha_1'' p - \alpha_2 \le p - 1. \tag{3.10}$$

Multiplying (3.9) by p and combining it with (3.7), we obtain

$$\alpha_2(q-1) < \alpha_1 - \alpha_2 p = p(\alpha_1''q - \alpha_2) \le p(q-1),$$

and hence

$$\alpha_2 < p. \tag{3.11}$$

Now, combining (3.10) and (3.11), we get

$$(\alpha_1'' - 1)p < \alpha_1''p - \alpha_2 \le p - 1.$$

This implies that $\alpha_1'' = 1$, so $\alpha_1 = pq = N$.

Proposition 3.4 Suppose that N is a K_{α} -number with $gcd(\alpha_1, N) \neq 1$. Then the following assertions hold:

1) If $\alpha \in \mathbb{Z}$ (*i.e.* $\alpha_2 = 1; \alpha = \alpha_1$), then $q \nmid \alpha, p \mid \alpha$ and

$$\alpha \in \left\{ \left\lfloor \frac{q}{p} \right\rfloor p, \left\lceil \frac{q}{p} \right\rceil p \right\}.$$

2) If
$$\alpha \in \mathbb{Q} \setminus \mathbb{Z}$$
, then $\frac{q}{p} \leq \alpha \leq q + p - 1$.

Proof

- 1) See [7, Corollary 3.6].
- 2) Let $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$ be such that $gcd(\alpha_1, N) \neq 1$. Let us show that $\alpha \leq q + p 1$.

Assume that $q + p - 1 < \alpha$. Then, by Lemma 3.3, (S_1) , and (3.11), we have $0 < q - \alpha_2 = \frac{q-1}{k}$ with $k \in \mathbb{N}$. Since $\alpha \neq N$ (i.e. $\alpha_2 \neq 1$) and hence $k \geq 2$, it follows that $q - \alpha_2 \leq \frac{q-1}{2}$; therefore, $\alpha_2 \geq \frac{q+1}{2} > \frac{q}{2}$. As by Lemma 3.3, $\alpha_1 = pq = N$, it yields that $\alpha = \frac{pq}{\alpha_2} < \frac{2pq}{q} = 2p < p+q-1$, which contradicts the assumption $\alpha > q + p - 1$.

It remains to prove that $\frac{q}{p} \leq \alpha$. First, since $\frac{q}{p} < q - p + 1$, we may suppose that $\alpha < q - p + 1$.

By Proposition 3.2, $\alpha_1 = \alpha'_1 q$ with $\alpha'_1 \in \mathbb{Z}$. Let us prove that $\alpha'_1 > 0$. The result is immediate by Proposition 3.2 when $p \mid \alpha_1$. Now, if $gcd(p, \alpha_1) = 1$ and by (3.1) we have

$$\alpha_2 p - \alpha_1' q = \alpha_2 p - \alpha_1 \le q - 1,$$

this implies that $p < \alpha_2 p + 1 \le q(1 + \alpha_1')$, which forces $\alpha_1' > 0$.

On the other hand, we have by (S_1)

$$(\alpha_2 - \alpha_1')q = \alpha_2 q - \alpha_1 \le q(p-1).$$

Hence, $\alpha_{2} \leq \alpha_{1}^{'} + p - 1$, so

$$\alpha = \frac{\alpha_1}{\alpha_2} = \frac{\alpha_1 q}{\alpha_2} \ge \frac{\alpha_1 q}{\alpha_1' + p - 1}$$

Since, in addition, $\frac{\alpha_1^{'}}{\alpha_1^{'}+p-1}$ is minimum when $\alpha_1^{'}=1$, it follows that $\alpha \geq \frac{q}{p}$.

By Propositions 3.4 and 3.1, the next two results follow immediately.

Corollary 3.5 Let $\alpha \in \mathbb{Q} \setminus \{0\}$.

If N is a K_{α} -number, then $\frac{q}{p} \leq \alpha \leq q+p-1$.

Theorem 3.6 Let $\alpha \in \mathbb{Q} \setminus \{0\}$. If $\alpha \leq 1$, then each K_{α} -number has at least three prime factors.

The next result shows that an $\alpha > 1$ can belong to only finitely many \mathbb{Q} - $\mathcal{KS}(pq)$.

Theorem 3.7 Let $\alpha \in \mathbb{Q} \setminus \{0\}$ with $\alpha > 1$, and suppose that N is a K_{α} -number. Then the following assertions hold:

- (a) If $\alpha \in \mathbb{Z}$, then $p < q \leq 4\alpha 3$.
- (b) If $\alpha = \frac{\alpha_1}{\alpha_2} \in \mathbb{Q} \setminus \mathbb{Z}$, then $p < q \le \alpha_1$.

Proof

(a) See [3, Theorem 1.10].

(b) First, if q divides α_1 , then the result is immediate. Now assume that $gcd(q, \alpha_1) = 1$. As N = pq is a K_{α} -number, it follows by (S_2) that $\alpha_2q - \alpha_1$ divides p-1. This implies that $\alpha_2q - \alpha_1 \leq p-1 < q-1$. Thus, $q < \frac{\alpha_1 - 1}{\alpha_2 - 1} < \alpha_1$.

Remark 3.8 In case (b) of Theorem 3.7, the upper bound can be reached when q = 3, p = 2, and $\alpha = \frac{3}{2}$.

We obtain immediately from Theorem 3.7 the following result.

Theorem 3.9 Let $\alpha \in \mathbb{Q} \setminus \{0\}$. Then there are only finitely many K_{α} -numbers with exactly two prime factors.

Now we ask: do there exist (and how many) rationals $1 < \alpha < C$, where C is a fixed rational number, for which there are no K_{α} -numbers with two prime factors? Computationally, this problem can be solved by running a computer program with exhaustive research (see [3, Example 1.11]). However, for the case $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$, it seems to be more difficult computationally and theoretically to find such a solution. This does not prevent us from providing, by the next proposition, all rationals $1 < \alpha < 2$ for which there are no K_{α} -numbers with two prime factors. **Proposition 3.10** Let $\alpha \in \mathbb{Q}$ be such that $1 < \alpha < 2$. N = pq is a K_{α} -number if and only if $\alpha = \frac{q}{p}$ with $(p,q) \in \{(2,3), (3,5)\}$.

Proof Suppose that $\alpha \in \mathbb{Q}$ - $\mathcal{KS}(N)$. Since $\alpha < 2 \leq q - p + 1$, then by Proposition 3.2, q divides α_1 . Hence, $\alpha_1 = \alpha'_1 q$ with $\alpha'_1 \in \mathbb{N}$.

First we claim that $gcd(p, \alpha_1) = 1$. Suppose by contradiction that p divides α'_1 (i.e. $N \mid \alpha_1$). Then, by Proposition 3.2, $\alpha = \frac{pq}{2p-1}$, but, as by hypothesis $\frac{pq}{2p-1} = \alpha < 2$, we obtain p(q-4) < -2. Hence, q = 3 and p = 2, and so $\alpha_1 = pq = 6$ and $\alpha_2 = 2p - 1 = 3$, which contradicts the fact that $gcd(\alpha_1, \alpha_2) = 1$.

Now, as $gcd(p, \alpha_1) = 1$, then (S_1) gives

$$(S_4) \qquad \begin{cases} \alpha_2 p - \alpha'_1 q \mid q - 1 \\ (3.12) \end{cases} \tag{3.12}$$

$$(\alpha_2 - \alpha_1 | p - 1.$$

$$(3.13)$$

Since
$$\alpha = \frac{\alpha_1}{\alpha_2} < 2$$
, i.e. $\frac{\alpha_1 q}{2} = \frac{\alpha_1}{2} < \alpha_2$, we get by (3.12)
 $\frac{\alpha_1^{'}}{2}qp - \alpha_1^{'}q \le \alpha_2 p - \alpha_1^{'}q \le q - 1$. Hence, $\alpha_1^{'}q(\frac{p}{2} - 1) < q$, so $p = 2$ or $(\alpha_1^{'} = 1 \text{ and } p = 3)$.

- If p = 2, then by (3.13), we get $\frac{\alpha'_1 q}{2} \alpha'_1 < \alpha_2 \alpha'_1 \le p 1 = 1$. Hence, $\alpha'_1 (q 2) < 2$, and consequently $\alpha'_1 = 1, q = 3$, and $\alpha = \frac{3}{2}$.
- Now assume that p = 3 and $\alpha'_1 = 1$. As $\alpha_1 = q$ and $\alpha_2 > \frac{q}{2}$, then by (3.13), we get $\frac{q}{2} 1 < \alpha_2 \alpha'_1 = \alpha_2 1 \le p 1 = 2$. Therefore, q < 6. However, as in addition q > p = 3, necessarily q = 5, and so $\alpha_2 = 3$ and $\alpha = \frac{5}{3}$.

Conversely, we verify easily that 2 * 3 = 6 is a $K_{\frac{3}{2}}$ -number and 3 * 5 = 15 is a $K_{\frac{5}{2}}$ -number.

By Proposition 3.10, we may say that for each $1 < \alpha < 2$ with $\alpha \neq \frac{3}{2}$ and $\alpha \neq \frac{5}{3}$, there is no squarefree composite number N with two prime factors such that N is a K_{α} -number. The question about the infinitude of the K_{α} -numbers for a given $\alpha \in \mathbb{Q}$ remains posed. This can not be easily solved with an idea inspired by the proof of the case $\alpha = 1$ given by Alford et al. in [1]. However, following the heuristic ideas of Erdos, we believe the following:

Conjecture 3.11 For any given $\alpha \in \mathbb{Q} \setminus \{0\}$ there exist infinitely many K_{α} -numbers.

Acknowledgment I thank the referee for his/her report improving both the presentation and the mathematical content of the paper.

GHANMI/Turk J Math

References

- Alford WR, Granville A, Pomerance C. There are infinitely many Carmichael numbers. Ann Math 1994; 139: 703-722.
- [2] Beeger NGWH. On composite numbers n for which $a^{n-1} \equiv 1 \pmod{n}$ for every a prime to n. Scripta Math 1950; 16: 133-135.
- [3] Bouallegue K, Echi O, Pinch R. Korselt numbers and sets. Int J Number Theory 2010; 6: 257-269.
- [4] Carmichael RD. On composite numbers P which satisfy the Fermat congruence $a^{P-1} \equiv 1 \pmod{P}$. Am Math Mon 1912; 19: 22-27.
- [5] Echi O, Ghanmi N. The Korselt Set of pq. Int J Num Th 2012; 8: 299-309.
- [6] Ghanmi N, Al-Rassasi I. On Williams numbers with three prime factors. Missouri Journal of Mathematical Sciences 2013; 25: 134-152.
- [7] Ghanmi N, Echi O, Al-Rassasi I. The Korselt set of a squarefree composite number. C R Math Rep Acad Sci Canada 2013; 35: 1-15.
- [8] Korselt A. Problème chinois. L'intermediaire des Mathématiciens 1899; 6: 142-143 (in French).