тӥвітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

\mathbb{Q}-Korselt numbers

Nejib GHANMI* ${ }^{\text {(}}$

Preparatory Institute of Engineering Studies, Tunis University, Tunis, Tunisia

| Received: 03.11.2017 \quad Accepted/Published Online: 21.08 .2018 | Final Version: 27.09 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract: Let $\alpha=\frac{\alpha_{1}}{\alpha_{2}} \in \mathbb{Q} \backslash\{0\}$; a positive integer N is said to be an α-Korselt number (K_{α}-number, for short) if $N \neq \alpha$ and $\alpha_{2} p-\alpha_{1}$ divides $\alpha_{2} N-\alpha_{1}$ for every prime divisor p of N. In this paper we prove that for each squarefree composite number N there exist finitely many rational numbers α such that N is a K_{α}-number and if $\alpha \leq 1$ then N has at least three prime factors. Moreover, we prove that for each $\alpha \in \mathbb{Q} \backslash\{0\}$ there exist only finitely many squarefree composite numbers N with two prime factors such that N is a K_{α}-number.

Key words: Prime number, Carmichael number, Korselt number, squarefree composite number, Korselt set, Korselt weight

1. Introduction

A Carmichael number is a composite number N that divides $a^{N}-a$ for all integers $a[2,4]$. In 1899, Korselt gave a complete characterization of Carmichael numbers.

Theorem 1.1 (Korselt criterion [8]) A composite integer $N>1$ is a Carmichael number if and only if $p-1$ divides $N-1$ for all prime factors p of N.

This criterion helped in the discovery of the existence of infinitely many Carmichael numbers in 1994 by Alford et al. (see [1] for details). In the proof of the infinitude of Carmichael numbers the authors asked if this proof can be generalized to produce other kinds of pseudoprimes by writing the following:
"One can modify our proof to show that for any fixed nonzero integer a, there are many squarefree, composite integers n such that $p-a$ divides $n-1$ for all primes p dividing n. However, we have been unable to prove this for $p-a$ dividing $n-b$, for b other than 0 or 1 ."

The query of Alford et al. inspired Bouallegue et al. to state in a recent paper a new kind of pseudoprimes called Korselt numbers (see [3] for details). For $\alpha \in \mathbb{Z} \backslash\{0\}$, a number N is called an α-Korselt number if $p-\alpha \mid N-\alpha$ for each prime divisor p of N. By this definition, Carmichael numbers are exactly the squarefree composite 1 -Korselt numbers. In this paper, we extend the definition of α-Korselt numbers given in [3] by allowing α to be a rational number. We state the following definition.

Definition 1.2 Let $N \in \mathbb{N} \backslash\{0,1\}$ and $\alpha=\frac{\alpha_{1}}{\alpha_{2}} \in \mathbb{Q} \backslash\{0\}$. N is said to be an α-Korselt number (K_{α}-number, for short) if $N \neq \alpha$ and $\alpha_{2} p-\alpha_{1}$ divides $\alpha_{2} N-\alpha_{1}$ for every prime divisor p of N.

[^0]The set of all K_{α}-numbers, where $\alpha \in \mathbb{Q}$, is called the set of \mathbb{Q}-Korselt numbers.
For a fixed $N \in \mathbb{N} \backslash\{0,1\}$, we need to determine the set of all $\alpha \in \mathbb{Q} \backslash\{0\}$ such that N is a K_{α}-number. This leads to the following definition.

Definition 1.3 Let N be a positive integer and \mathbb{A} be a nonempty subset of \mathbb{Q}.

1. By the \mathbb{A}-Korselt set of N, we mean the set $\mathbb{A}-\mathcal{K} \mathcal{S}(N)$ of all $\alpha \in \mathbb{A} \backslash\{0, N\}$ such that N is a K_{α}-number.
2. The cardinality of $\mathbb{A}-\mathcal{K} \mathcal{S}(N)$ will be called the \mathbb{A}-Korselt weight of N; we denote it by $\mathbb{A}-\mathcal{K} \mathcal{W}(N)$.

By this definition, the notion of \mathbb{Q}-Korselt numbers generalizes that given by Bouallegue et al. and thus Carmichael numbers. Among the most recent works in this area are the papers [3,5-7], where the notion of Korselt numbers over \mathbb{Z} was studied and several related results were obtained. In this paper, our aim is to introduce the notion of \mathbb{Q}-Korselt numbers and to discuss generalizations of properties holding when $\alpha \in \mathbb{Z}$. Therefore, we proceed as follows:

- In Section 2, after giving some general results about \mathbb{Q}-Korselt numbers, we prove that for each squarefree composite number N, there exist only finitely many rational numbers α such that N is a K_{α} number.
- In section 3 , we prove that for every rational number $\alpha \leq 1$, if a squarefree composite number N is a K_{α}-number then N must have at least three prime factors. Furthermore, we show that for each rational number $\alpha>1$, there exist only finitely many K_{α}-numbers with two prime factors.

Throughout this paper and for $\alpha=\frac{\alpha_{1}}{\alpha_{2}} \in \mathbb{Q}$, we will suppose without loss of generality that $\alpha_{2}>0$, $\alpha_{1} \in \mathbb{Z}$, and $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}\right)=1$. Moreover, in this work we are concerned only with squarefree composite numbers N.

2. \mathbb{Q}-Korselt set properties

Proposition 2.1 Let $\alpha \in \mathbb{Q} \backslash\{0\}$ and $N=p_{1} p_{2} \ldots p_{m}$ be a K_{α}-number such that $p_{1}<p_{2}<\ldots<p_{m}$ and $m \geq 2$. Then the following inequalities hold:

$$
\frac{(m+2) p_{1}-N}{m+1} \leq \alpha \leq \frac{N+m p_{m}}{m+1}
$$

Proof $\quad \alpha \in \mathbb{Q}-\mathcal{K} \mathcal{S}(N)$ implies that $N-\alpha=k_{i}\left(p_{i}-\alpha\right)$ with $k_{i} \in \mathbb{Z}$ for each $i=1 \ldots m$. We consider two cases:

Case 1: Assume that $\alpha<0$. First, let us show that $k_{m} \geq 3$.
Since $N-\alpha>p_{m}-\alpha>0$, then $k_{m}=\frac{N-\alpha}{p_{m}-\alpha}>1$.
Next, we show that $k_{m} \neq 2$. Suppose by contradiction that $k_{m}=2$.
Then $\alpha=2 p_{m}-N \in \mathbb{Z}$, but as $\alpha \neq p_{m}$ and $\alpha \neq 0$, we get $N \neq p_{m}$ and $N \neq 2 p_{m}$. Thus, there exists an integer $N_{1} \geq 3$ such that $N=N_{1} p_{m}$. Let p_{s} be a prime factor of N_{1}. Then

$$
p_{s}-\alpha=p_{s}+\left(N_{1}-2\right) p_{m} \mid N-\alpha=2 p_{m}\left(N_{1}-1\right)
$$

However, as $\operatorname{gcd}\left(p_{m}, p_{s}-\alpha\right)=1$, it follows that

$$
p_{s}-\alpha=p_{s}+\left(N_{1}-2\right) p_{m} \mid 2\left(N_{1}-1\right)
$$

and hence

$$
p_{s}+\left(N_{1}-2\right) p_{m} \leq 2\left(N_{1}-1\right)
$$

Since $4 \leq p_{s}+2 \leq p_{m}$, we get

$$
2+4\left(N_{1}-2\right) \leq p_{s}+\left(N_{1}-2\right) p_{m} \leq 2\left(N_{1}-1\right)
$$

Therefore, $N_{1} \leq 2$, which contradicts $N_{1} \geq 3$, so $k_{m} \geq 3$.
Now, as $\left(p_{i}-\alpha\right)_{1 \leq i \leq m}$ is increasing and positive, then $\left(k_{i}=\frac{N-\alpha}{p_{i}-\alpha}\right)_{1 \leq i \leq m}$ is decreasing. Hence, as $k_{m} \geq 3, \frac{N-\alpha}{p_{1}-\alpha}=k_{1} \geq m+2$. Thus,

$$
\frac{(m+2) p_{1}-N}{m+1} \leq \alpha
$$

Case 2: Suppose that $\alpha>0$. We claim that $\alpha<N$. If not, then (as $\alpha \neq N$) we get $p_{m}<N<\alpha$. This implies that $0<\alpha-N<\alpha-p_{m}$, and hence $0<\frac{\alpha-N}{\alpha-p_{m}}=k_{m}<1$, contradicting the fact that $k_{m} \in \mathbb{Z}$.

Now let us prove that $\alpha \leq \frac{N+m p_{m}}{m+1}$.

- If $\alpha \leq p_{m}$, it is immediate.
- Now suppose that $p_{m}<\alpha<N$. Since $\left(\alpha-p_{i}\right)_{1 \leq i \leq m}$ is decreasing and positive, then $\left(\left|k_{i}\right|=\frac{N-\alpha}{\alpha-p_{i}}\right)_{1 \leq i \leq m}$ is increasing. Hence, $\left|k_{m}\right| \geq m$ and consequently $N-\alpha=\left|k_{m}\right|\left(\alpha-p_{m}\right) \geq m\left(\alpha-p_{m}\right)$. Thus,

$$
\alpha \leq \frac{N+m p_{m}}{m+1}
$$

Finally, combining the two cases, we get

$$
\frac{(m+2) p_{1}-N}{m+1} \leq \alpha \leq \frac{N+m p_{m}}{m+1}
$$

By the following result, we provide a characterization of the \mathbb{Q}-Korselt set of a squarefree composite number N.

Proposition 2.2 Let N be a squarefree composite number with prime divisors $p_{i}, 1 \leq i \leq m$. If we let

$$
A_{i j}=\left\{\frac{d p_{j}-\delta p_{i}}{d-\delta} ; d \neq \delta, \delta\left|\left(N-p_{i}\right), d\right|\left(N-p_{j}\right), \quad \text { and }\left(p_{i}-p_{j}\right) \mid(d-\delta)\right\}
$$

for $1 \leq i<j \leq m$, then

$$
\mathbb{Q}-\mathcal{K} \mathcal{S}(N)=\bigcap_{1 \leq i<j \leq m} A_{i j} .
$$

Proof First note that for each $1 \leq i \leq m, \quad N$ is a K_{α}-number if and only if $\alpha_{2} p_{i}-\alpha_{1} \mid \alpha_{2} N-\alpha_{1}$ or equivalently $\alpha_{2} p_{i}-\alpha_{1} \mid N-p_{i}$.

Now let $\alpha \in \mathbb{Q}-\mathcal{K} \mathcal{S}(N)$. Then for each (i, j) with $1 \leq i<j \leq m$, we have

$$
\left\{\begin{array}{l}
\alpha_{2} p_{i}-\alpha_{1} \mid N-p_{i} \\
\alpha_{2} p_{j}-\alpha_{1} \mid N-p_{j}
\end{array}\right.
$$

This implies that there are two distinct divisors d and δ of $N-p_{i}$ and $N-p_{j}$, respectively, such that

$$
\left\{\begin{array}{l}
\alpha_{2} p_{i}-\alpha_{1}=d \\
\alpha_{2} p_{j}-\alpha_{1}=\delta
\end{array}\right.
$$

Solving the system we get

$$
\alpha_{1}=\frac{d p_{j}-\delta p_{i}}{p_{i}-p_{j}}, \alpha_{2}=\frac{d-\delta}{p_{i}-p_{j}}
$$

and so $\alpha=\frac{d p_{j}-\delta p_{i}}{d-\delta}$. Since α_{1} and α_{2} are integers we conclude that $\alpha \in A_{i j}$ and hence

$$
\mathbb{Q}-\mathcal{K} \mathcal{S}(N) \subseteq \bigcap_{1 \leq i<j \leq m} A_{i j} .
$$

Next let $\alpha \in \bigcap_{1 \leq i<j \leq m} A_{i j}$. Then $\alpha \in A_{i j}$, for each pair (i, j) such that $1 \leq i<j \leq m$. This implies that $\alpha=\frac{d p_{j}-\delta p_{i}}{d-\delta}$, for some divisors d and δ of $N-p_{i}$ and $N-p_{j}$, respectively, with $\left(p_{i}-p_{j}\right) \mid(d-\delta)$.

Setting $\alpha_{1}=\frac{d p_{j}-\delta p_{i}}{p_{i}-p_{j}}$ and $\alpha_{2}=\frac{d-\delta}{p_{i}-p_{j}}$, then $\alpha_{1}, \alpha_{2} \in \mathbb{Z}$ and

$$
\alpha_{2} p_{i}-\alpha_{1}=d \mid N-p_{i} \text { for } \quad i=1 \ldots m
$$

Therefore, $\alpha=\frac{\alpha_{1}}{\alpha_{2}} \in \mathbb{Q}-\mathcal{K} \mathcal{S}(N)$.
By the previous proposition, we immediately get the following result.

Theorem 2.3 For any given squarefree composite number N, there are only finitely many rational numbers α for which N is a K_{α}-number.

By the characterization of the \mathbb{Q}-Korselt set of a squarefree composite number N, given in Proposition 2.2, and with a simple Maple program, we provide in Table 1 and Table 2 data representing some squarefree composite numbers and their \mathbb{Q}-Korselt sets as follows:

- Table 1 gives for each integer $2 \leq d \leq 8$ the \mathbb{Q}-Korselt set of the smallest \mathbb{Q}-Korselt number N_{d} with d prime factors.
- Table 2 gives for each integer $0 \leq k \leq 10$ the smallest squarefree composite number N_{k} such that $\mathbb{Q}-\mathcal{K} \mathcal{W}\left(N_{k}\right)=k$.

Table 1. $\mathbb{Q}-\mathcal{K} \mathcal{S}\left(N_{d}\right)$ where N_{d} is the smallest \mathbb{Q}-Korselt number with d prime factors.

d	N_{d}	$\mathbb{Q}-\mathcal{K} \mathcal{S}\left(N_{d}\right)$
2	$6=2 \cdot 3$	$\left\{4, \frac{3}{2}, \frac{10}{3}, \frac{14}{5}, \frac{8}{3}, \frac{5}{2}, \frac{18}{7}, \frac{12}{5}, \frac{9}{4}\right\}$
3	$30=2 \cdot 3 \cdot 5$	$\left\{4,6, \frac{15}{8}, \frac{40}{13}, \frac{5}{2}, \frac{10}{3}, \frac{15}{4}, \frac{24}{5}\right\}$
4	$210=2 \cdot 3 \cdot 5 \cdot 7$	$\left\{6, \frac{21}{4}\right\}$
5	$2730=2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$	$\left\{\frac{15}{2}\right\}$
6	$255255=3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$	$\{15\}$
7	$8580495=3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 23$	$\{15\}$
8	$294076965=3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$	$\{21\}$

Table 2. The smallest squarefree composite number N_{k} such that $\mathbb{Q}-\mathcal{K} \mathcal{W}\left(N_{k}\right)=k$.

k	N_{k}	$\mathbb{Q}-\mathcal{K} \mathcal{S}\left(N_{k}\right)$
0	$138=2 \cdot 3 \cdot 23$	\emptyset
1	$22=2 \cdot 11$	$\{12\}$
2	$102=2 \cdot 3 \cdot 17$	$\left\{12, \frac{17}{5}\right\}$
3	$14=2 \cdot 7$	$\left\{8,6, \frac{7}{2}\right\}$
4	$42=2 \cdot 3 \cdot 7$	$\left\{6, \frac{21}{8}, \frac{28}{9}, \frac{9}{2}\right\}$
5	$10=2 \cdot 5$	$\left\{4,6, \frac{10}{3}, \frac{5}{2}, \frac{14}{3}\right\}$
6	$273=3 \cdot 7 \cdot 13$	$\left\{-7,8,9, \frac{78}{11}, \frac{19}{31}, \frac{21}{2}\right\}$
7	$70=2 \cdot 5 \cdot 7$	$\left\{4,6, \frac{5}{2}, \frac{7}{4}, \frac{56}{11}, \frac{25}{4}, \frac{48}{7}\right\}$
8	$30=2 \cdot 3 \cdot 5$	$\left\{4,6, \frac{15}{8}, \frac{40}{13}, \frac{5}{2}, \frac{10}{3}, \frac{15}{4}, \frac{24}{5}\right\}$
9	$6=2 \cdot 3$	$\left\{4, \frac{3}{2}, \frac{10}{3}, \frac{14}{5}, \frac{8}{3}, \frac{5}{2}, \frac{18}{7}, \frac{12}{5}, \frac{9}{4}\right\}$
10	$110=2 \cdot 5 \cdot 11$	$\left\{8,20, \frac{44}{13}, \frac{55}{14}, \frac{88}{17}, \frac{22}{5}, \frac{31}{2}, \frac{13}{2}, \frac{35}{4}, \frac{46}{5}\right\}$

3. \mathbb{Q}-Korselt numbers with two prime factors

In this section, we shall discus the case where N is a squarefree composite number with two prime factors. Let p and q be two prime numbers such that $p<q, N=p q$ and $\alpha=\frac{\alpha_{1}}{\alpha_{2}}$ be a rational number.

Proposition 3.1 If N is a K_{α}-number such that $\operatorname{gcd}\left(\alpha_{1}, N\right)=1$, then

$$
q-p+1 \leq \alpha \leq q+p-1
$$

Proof Since N is a K_{α}-number, then

$$
\left\{\begin{array}{l}
\alpha_{2} p-\alpha_{1} \mid p(q-1) \tag{1}\\
\alpha_{2} q-\alpha_{1} \mid q(p-1)
\end{array}\right.
$$

As, in addition, $\operatorname{gcd}\left(\alpha_{1}, p\right)=\operatorname{gcd}\left(\alpha_{1}, q\right)=1$, it follows that

$$
\left(S_{2}\right) \quad\left\{\begin{array}{l}
\alpha_{2} p-\alpha_{1} \mid q-1 \tag{3.1}\\
\alpha_{2} q-\alpha_{1} \mid p-1
\end{array}\right.
$$

Hence, by (3.2), we get

$$
-p+1 \leq \alpha_{1}-\alpha_{2} q \leq p-1
$$

Knowing that $\alpha_{2} \geq 1$, we deduce that

$$
q-p+1 \leq q-\frac{p-1}{\alpha_{2}} \leq \alpha=\frac{\alpha_{1}}{\alpha_{2}} \leq q+\frac{p-1}{\alpha_{2}} \leq q+p-1
$$

In order to establish the set of $\alpha=\frac{\alpha_{1}}{\alpha_{2}} \in \mathbb{Q}$ with $\operatorname{gcd}\left(\alpha_{1}, N\right) \neq 1$ and for which N is a K_{α}-number, we need the next two results.

Proposition 3.2 Let N be a K_{α}-number such that $\alpha<q-p+1$. Then the following assertions hold:

1) q divides α_{1}.
2) If p divides α_{1} (i.e. N divides α_{1} and so $\operatorname{gcd}\left(\alpha_{1}, N\right)=N$), then $\alpha_{1}=N$ and $\alpha_{2}=2 p-1$.

Proof

1) Since $\alpha=\frac{\alpha_{1}}{\alpha_{2}}<q-p+1$, we have $\alpha_{2}(p-1)<\alpha_{2} q-\alpha_{1}$.

If $\operatorname{gcd}\left(q, \alpha_{1}\right)=1$, then by (3.2) it follows that

$$
\alpha_{2}(p-1)<\alpha_{2} q-\alpha_{1} \leq p-1
$$

Hence, $\alpha_{2}<1$, which contradicts $\alpha_{2} \in \mathbb{N} \backslash\{0\}$. Thus, $q \mid \alpha_{1}$.
2) Let $\alpha_{1}=\alpha_{1}^{\prime \prime} p q$ with $\alpha_{1}^{\prime \prime} \in \mathbb{N} \backslash\{0\}$. Then $\left(S_{1}\right)$ gives

$$
\left(S_{3}\right) \quad\left\{\begin{array}{l}
\alpha_{2}-\alpha_{1}^{\prime \prime} q \mid q-1 \tag{3.3}\\
\alpha_{2}-\alpha_{1}^{\prime \prime} p \mid p-1
\end{array}\right.
$$

Let us show that $\alpha_{1}=N$ and $\alpha_{2}=2 p-1$.
As $\alpha=\frac{\alpha_{1}}{\alpha_{2}}<q-p+1$, then

$$
\alpha_{2}(p-1)<\alpha_{2} q-\alpha_{1}=\left(\alpha_{2}-\alpha_{1}^{\prime \prime} p\right) q
$$

It follows by (3.4), that

$$
\alpha_{2}(p-1)<q\left(\alpha_{2}-\alpha_{1}^{\prime \prime} p\right) \leq q(p-1)
$$

Hence, $\alpha_{2}<q$. Furthermore, since by (3.3), $\alpha_{1}^{\prime \prime} q-\alpha_{2}<q-1$, it follows that $\alpha_{1}^{\prime \prime} q<\alpha_{2}+q-1<2 q-1$, and this forces $\alpha_{1}^{\prime \prime}=1$. Therefore, $\alpha_{1}=p q=N$.
Now let us prove that $\alpha_{2}=2 p-1$. First, as $\frac{p q}{\alpha_{2}}=\alpha<q-p+1$, then $p<\alpha_{2}\left(\frac{q-p+1}{q}\right)<\alpha_{2}$. Consequently, as $\alpha_{1}^{\prime \prime}=1$ and $\alpha_{2}-p>0$, it follows by (3.4) that $\alpha_{2}-p=\frac{p-1}{k}$ with $k \in \mathbb{N} \backslash\{0\}$. We claim that $k=1$. Indeed, suppose by contradiction that $k \neq 1$; then $\alpha_{2}-p \leq \frac{p-1}{2}$ and hence

$$
\begin{equation*}
\alpha_{2} \leq \frac{3 p-1}{2} \tag{3.5}
\end{equation*}
$$

Furthermore, since by hypothesis $\frac{p q}{\alpha_{2}}=\alpha<q-p+1$, it follows by (3.5) that $p q<\alpha_{2}(q-p+1) \leq$ $\frac{3 p-1}{2}(q-p+1)$. This is equivalent to $q-3 p+1<p(q-3 p+1)$ and hence

$$
\begin{equation*}
3 p-1<q \tag{3.6}
\end{equation*}
$$

However, as in addition $\alpha \neq N$, i.e. $\alpha_{2} \neq 1$ and $\alpha_{1}^{\prime \prime}=1$, we get by (3.3) $q-\alpha_{2} \leq \frac{q-1}{2}$. This yields by (3.5) $q \leq 2 \alpha_{2}-1 \leq 3 p-2$, a contradiction with (3.6). Thus, $k=1$ and so $\alpha_{2}=2 p-1$.

Lemma 3.3 If N is a K_{α}-number such that $\operatorname{gcd}\left(\alpha_{1}, N\right) \neq 1$ and $q+p-1<\alpha$, then $\alpha_{1}=p q=N$.
Proof As $q+p-1<\alpha=\frac{\alpha_{1}}{\alpha_{2}}$, then we have

$$
\begin{equation*}
0<\alpha_{2}(q-1)<\alpha_{1}-\alpha_{2} p \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\alpha_{2}(p-1)<\alpha_{1}-\alpha_{2} q \tag{3.8}
\end{equation*}
$$

First we claim that $\operatorname{gcd}\left(p, \alpha_{1}\right) \neq 1$. Indeed, if not, then by combining (3.1) and (3.7), we get

$$
0<\alpha_{2}(q-1)<\alpha_{1}-\alpha_{2} p \leq q-1
$$

This implies that $\alpha_{2}<1$, which contradicts $\alpha_{2} \in \mathbb{N} \backslash\{0\}$. Thus, $p \mid \alpha_{1}$.
Similarly, by (3.2) and (3.8) we get $q \mid \alpha_{1}$. Hence, $\alpha_{1}=\alpha_{1}^{\prime \prime} p q$ with $\alpha_{1}^{\prime \prime} \in \mathbb{N}$. Let us show that $\alpha_{1}^{\prime \prime}=1$. By (3.3) and (3.4), we get respectively

$$
\begin{equation*}
\alpha_{1}^{\prime \prime} q-\alpha_{2} \leq q-1 \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{1}^{\prime \prime} p-\alpha_{2} \leq p-1 \tag{3.10}
\end{equation*}
$$

Multiplying (3.9) by p and combining it with (3.7), we obtain

$$
\alpha_{2}(q-1)<\alpha_{1}-\alpha_{2} p=p\left(\alpha_{1}^{\prime \prime} q-\alpha_{2}\right) \leq p(q-1)
$$

and hence

$$
\begin{equation*}
\alpha_{2}<p \tag{3.11}
\end{equation*}
$$

Now, combining (3.10) and (3.11), we get

$$
\left(\alpha_{1}^{\prime \prime}-1\right) p<\alpha_{1}^{\prime \prime} p-\alpha_{2} \leq p-1
$$

This implies that $\alpha_{1}^{\prime \prime}=1$, so $\alpha_{1}=p q=N$.

Proposition 3.4 Suppose that N is a K_{α}-number with $\operatorname{gcd}\left(\alpha_{1}, N\right) \neq 1$. Then the following assertions hold:

1) If $\alpha \in \mathbb{Z}$ (i.e. $\left.\alpha_{2}=1 ; \alpha=\alpha_{1}\right)$, then $q \nmid \alpha, \quad p \mid \alpha$ and

$$
\alpha \in\left\{\left\lfloor\frac{q}{p}\right\rfloor p,\left\lceil\frac{q}{p}\right\rceil p\right\}
$$

2) If $\alpha \in \mathbb{Q} \backslash \mathbb{Z}$, then $\frac{q}{p} \leq \alpha \leq q+p-1$.

Proof

1) See [7, Corollary 3.6].
2) Let $\alpha \in \mathbb{Q} \backslash \mathbb{Z}$ be such that $\operatorname{gcd}\left(\alpha_{1}, N\right) \neq 1$. Let us show that $\alpha \leq q+p-1$.

Assume that $q+p-1<\alpha$. Then, by Lemma 3.3, $\left(S_{1}\right)$, and (3.11), we have $0<q-\alpha_{2}=\frac{q-1}{k}$ with $k \in \mathbb{N}$. Since $\alpha \neq N$ (i.e. $\alpha_{2} \neq 1$) and hence $k \geq 2$, it follows that $q-\alpha_{2} \leq \frac{q-1}{2}$; therefore, $\alpha_{2} \geq \frac{q+1}{2}>\frac{q}{2}$. As by Lemma 3.3, $\alpha_{1}=p q=N$, it yields that $\alpha=\frac{p q}{\alpha_{2}}<\frac{2 p q}{q}=2 p<p+q-1$, which contradicts the assumption $\alpha>q+p-1$.

It remains to prove that $\frac{q}{p} \leq \alpha$. First, since $\frac{q}{p}<q-p+1$, we may suppose that $\alpha<q-p+1$.
By Proposition 3.2, $\alpha_{1}=\alpha_{1}^{\prime} q$ with $\alpha_{1}^{\prime} \in \mathbb{Z}$. Let us prove that $\alpha_{1}^{\prime}>0$. The result is immediate by Proposition 3.2 when $p \mid \alpha_{1}$. Now, if $\operatorname{gcd}\left(p, \alpha_{1}\right)=1$ and by (3.1) we have

$$
\alpha_{2} p-\alpha_{1}^{\prime} q=\alpha_{2} p-\alpha_{1} \leq q-1
$$

this implies that $p<\alpha_{2} p+1 \leq q\left(1+\alpha_{1}^{\prime}\right)$, which forces $\alpha_{1}^{\prime}>0$.
On the other hand, we have by $\left(S_{1}\right)$

$$
\left(\alpha_{2}-\alpha_{1}^{\prime}\right) q=\alpha_{2} q-\alpha_{1} \leq q(p-1)
$$

Hence, $\alpha_{2} \leq \alpha_{1}^{\prime}+p-1$, so

$$
\alpha=\frac{\alpha_{1}}{\alpha_{2}}=\frac{\alpha_{1}^{\prime} q}{\alpha_{2}} \geq \frac{\alpha_{1}^{\prime} q}{\alpha_{1}^{\prime}+p-1}
$$

Since, in addition, $\frac{\alpha_{1}^{\prime}}{\alpha_{1}^{\prime}+p-1}$ is minimum when $\alpha_{1}^{\prime}=1$, it follows that $\alpha \geq \frac{q}{p}$.

By Propositions 3.4 and 3.1, the next two results follow immediately.
Corollary 3.5 Let $\alpha \in \mathbb{Q} \backslash\{0\}$.
If N is a K_{α}-number, then $\frac{q}{p} \leq \alpha \leq q+p-1$.
Theorem 3.6 Let $\alpha \in \mathbb{Q} \backslash\{0\}$. If $\alpha \leq 1$, then each K_{α}-number has at least three prime factors.
The next result shows that an $\alpha>1$ can belong to only finitely many \mathbb{Q} - $\mathcal{K} \mathcal{S}(p q)$.

Theorem 3.7 Let $\alpha \in \mathbb{Q} \backslash\{0\}$ with $\alpha>1$, and suppose that N is a K_{α}-number. Then the following assertions hold:
(a) If $\alpha \in \mathbb{Z}$, then $p<q \leq 4 \alpha-3$.
(b) If $\alpha=\frac{\alpha_{1}}{\alpha_{2}} \in \mathbb{Q} \backslash \mathbb{Z}$, then $p<q \leq \alpha_{1}$.

Proof

(a) See $[3$, Theorem 1.10].
(b) First, if q divides α_{1}, then the result is immediate.

Now assume that $\operatorname{gcd}\left(q, \alpha_{1}\right)=1$. As $N=p q$ is a K_{α}-number, it follows by $\left(S_{2}\right)$ that $\alpha_{2} q-\alpha_{1}$ divides $p-1$. This implies that $\alpha_{2} q-\alpha_{1} \leq p-1<q-1$. Thus, $q<\frac{\alpha_{1}-1}{\alpha_{2}-1}<\alpha_{1}$.

Remark 3.8 In case (b) of Theorem 3.7, the upper bound can be reached when $q=3, p=2$, and $\alpha=\frac{3}{2}$.
We obtain immediately from Theorem 3.7 the following result.

Theorem 3.9 Let $\alpha \in \mathbb{Q} \backslash\{0\}$. Then there are only finitely many K_{α}-numbers with exactly two prime factors.
Now we ask: do there exist (and how many) rationals $1<\alpha<C$, where C is a fixed rational number, for which there are no K_{α}-numbers with two prime factors? Computationally, this problem can be solved by running a computer program with exhaustive research (see [3, Example 1.11]). However, for the case $\alpha \in \mathbb{Q} \backslash \mathbb{Z}$, it seems to be more difficult computationally and theoretically to find such a solution. This does not prevent us from providing, by the next proposition, all rationals $1<\alpha<2$ for which there are no K_{α}-numbers with two prime factors.

Proposition 3.10 Let $\alpha \in \mathbb{Q}$ be such that $1<\alpha<2 . N=p q$ is a $K_{\alpha}-n u m b e r$ if and only if $\alpha=\frac{q}{p}$ with $(p, q) \in\{(2,3),(3,5)\}$.

Proof Suppose that $\alpha \in \mathbb{Q}-\mathcal{K} \mathcal{S}(N)$. Since $\alpha<2 \leq q-p+1$, then by Proposition 3.2, q divides α_{1}. Hence, $\alpha_{1}=\alpha_{1}^{\prime} q$ with $\alpha_{1}^{\prime} \in \mathbb{N}$.

First we claim that $\operatorname{gcd}\left(p, \alpha_{1}\right)=1$. Suppose by contradiction that p divides α_{1}^{\prime} (i.e. $N \mid \alpha_{1}$). Then, by Proposition 3.2, $\alpha=\frac{p q}{2 p-1}$, but, as by hypothesis $\frac{p q}{2 p-1}=\alpha<2$, we obtain $p(q-4)<-2$. Hence, $q=3$ and $p=2$, and so $\alpha_{1}=p q=6$ and $\alpha_{2}=2 p-1=3$, which contradicts the fact that $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}\right)=1$.

Now, as $\operatorname{gcd}\left(p, \alpha_{1}\right)=1$, then $\left(S_{1}\right)$ gives

$$
\left(S_{4}\right) \quad \begin{cases}\alpha_{2} p-\alpha_{1}^{\prime} q \mid q-1 \tag{3.12}\\ \alpha_{2}-\alpha_{1}^{\prime} & \mid p-1\end{cases}
$$

Since $\alpha=\frac{\alpha_{1}}{\alpha_{2}}<2$, i.e. $\frac{\alpha_{1}^{\prime} q}{2}=\frac{\alpha_{1}}{2}<\alpha_{2}$, we get by (3.12)
$\frac{\alpha_{1}^{\prime}}{2} q p-\alpha_{1}^{\prime} q \leq \alpha_{2} p-\alpha_{1}^{\prime} q \leq q-1$. Hence, $\alpha_{1}^{\prime} q\left(\frac{p}{2}-1\right)<q$, so $p=2$ or $\left(\alpha_{1}^{\prime}=1\right.$ and $\left.p=3\right)$.

- If $p=2$, then by (3.13), we get $\frac{\alpha_{1}^{\prime} q}{2}-\alpha_{1}^{\prime}<\alpha_{2}-\alpha_{1}^{\prime} \leq p-1=1$. Hence, $\alpha_{1}^{\prime}(q-2)<2$, and consequently $\alpha_{1}^{\prime}=1, q=3$, and $\alpha=\frac{3}{2}$.
- Now assume that $p=3$ and $\alpha_{1}^{\prime}=1$. As $\alpha_{1}=q$ and $\alpha_{2}>\frac{q}{2}$, then by (3.13), we get $\frac{q}{2}-1<\alpha_{2}-\alpha_{1}^{\prime}=$ $\alpha_{2}-1 \leq p-1=2$. Therefore, $q<6$. However, as in addition $q>p=3$, necessarily $q=5$, and so $\alpha_{2}=3$ and $\alpha=\frac{5}{3}$.

Conversely, we verify easily that $2 * 3=6$ is a $K_{\frac{3}{2}}$-number and $3 * 5=15$ is a $K_{\frac{5}{3}}$-number.

By Proposition 3.10, we may say that for each $1<\alpha<2$ with $\alpha \neq \frac{3}{2}$ and $\alpha \neq \frac{5}{3}$, there is no squarefree composite number N with two prime factors such that N is a K_{α}-number. The question about the infinitude of the K_{α}-numbers for a given $\alpha \in \mathbb{Q}$ remains posed. This can not be easily solved with an idea inspired by the proof of the case $\alpha=1$ given by Alford et al. in [1]. However, following the heuristic ideas of Erdos, we believe the following:

Conjecture 3.11 For any given $\alpha \in \mathbb{Q} \backslash\{0\}$ there exist infinitely many K_{α}-numbers.
Acknowledgment I thank the referee for his/her report improving both the presentation and the mathematical content of the paper.

GHANMI/Turk J Math

References

[1] Alford WR, Granville A, Pomerance C. There are infinitely many Carmichael numbers. Ann Math 1994; 139: 703-722.
[2] Beeger NGWH. On composite numbers n for which $a^{n-1} \equiv 1(\bmod n)$ for every a prime to n. Scripta Math 1950; 16: 133-135.
[3] Bouallegue K, Echi O, Pinch R. Korselt numbers and sets. Int J Number Theory 2010; 6: 257-269.
[4] Carmichael RD. On composite numbers P which satisfy the Fermat congruence $a^{P-1} \equiv 1(\bmod P)$. Am Math Mon 1912; 19: 22-27.
[5] Echi O, Ghanmi N. The Korselt Set of pq. Int J Num Th 2012; 8: 299-309.
[6] Ghanmi N, Al-Rassasi I. On Williams numbers with three prime factors. Missouri Journal of Mathematical Sciences 2013; 25: 134-152.
[7] Ghanmi N, Echi O, Al-Rassasi I. The Korselt set of a squarefree composite number. C R Math Rep Acad Sci Canada 2013; 35: 1-15.
[8] Korselt A. Problème chinois. L'intermediaire des Mathématiciens 1899; 6: 142-143 (in French).

[^0]: *Correspondence: neghanmi@yahoo.fr
 2010 AMS Mathematics Subject Classification: Primary 11Y16; Secondary 11Y11, 11A51

