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Abstract: Let o = % € Q \ {0}; a positive integer N is said to be an «-Korselt number (Ko -number, for short) if
Q2

N # a and azp — oy divides aa N — o for every prime divisor p of N. In this paper we prove that for each squarefree
composite number N there exist finitely many rational numbers « such that N is a K,-number and if o <1 then N
has at least three prime factors. Moreover, we prove that for each o € Q\ {0} there exist only finitely many squarefree

composite numbers N with two prime factors such that N is a K,-number.
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1. Introduction

A Carmichael number is a composite number N that divides a’¥ — a for all integers a [2, 4]. In 1899, Korselt

gave a complete characterization of Carmichael numbers.

Theorem 1.1 (Korselt criterion [8]) A composite integer N > 1 is a Carmichael number if and only if

p—1 divides N — 1 for all prime factors p of N.

This criterion helped in the discovery of the existence of infinitely many Carmichael numbers in 1994 by
Alford et al. (see [1] for details). In the proof of the infinitude of Carmichael numbers the authors asked if this
proof can be generalized to produce other kinds of pseudoprimes by writing the following:

“One can modify our proof to show that for any fized nonzero integer a, there are many squarefree,
composite integers n such that p —a divides n— 1 for all primes p dividing n. However, we have been unable
to prove this for p — a dividing n — b, for b other than 0 or 1.”

The query of Alford et al. inspired Bouallegue et al. to state in a recent paper a new kind of pseudoprimes
called Korselt numbers (see [3] for details). For a € Z\ {0}, a number N is called an «-Korselt number if
p—a | N —« for each prime divisor p of N. By this definition, Carmichael numbers are exactly the squarefree
composite 1-Korselt numbers. In this paper, we extend the definition of «-Korselt numbers given in [3] by

allowing a to be a rational number. We state the following definition.
Definition 1.2 Let N € N\{0,1} and o = M e Q\{0}. N is said to be an a-Korselt number (K, -number,
as

for short) if N # « and asp — a1 divides aaN — ay for every prime divisor p of N.
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The set of all K,-numbers, where o € Q, is called the set of Q-Korselt numbers.

For a fixed N € N\ {0,1}, we need to determine the set of all &« € Q\ {0} such that N is a K, -number.
This leads to the following definition.

Definition 1.3 Let N be a positive integer and A be a nonempty subset of Q.
1. By the A-Korselt set of N, we mean the set A-KS(N) of all o € A\{0, N} such that N is a K, -number.
2. The cardinality of A-KS(N) will be called the A-Korselt weight of N ; we denote it by A-KW(N).

By this definition, the notion of Q-Korselt numbers generalizes that given by Bouallegue et al. and thus
Carmichael numbers. Among the most recent works in this area are the papers [3, 5-7], where the notion of
Korselt numbers over Z was studied and several related results were obtained. In this paper, our aim is to
introduce the notion of Q-Korselt numbers and to discuss generalizations of properties holding when o € Z.
Therefore, we proceed as follows:

- In Section 2, after giving some general results about Q-Korselt numbers, we prove that for each
squarefree composite number N, there exist only finitely many rational numbers « such that N is a K-
number.

- In section 3, we prove that for every rational number o < 1, if a squarefree composite number N is
a K,-number then N must have at least three prime factors. Furthermore, we show that for each rational

number « > 1, there exist only finitely many K,-numbers with two prime factors.

«@
Throughout this paper and for a = e Q, we will suppose without loss of generality that as > 0,

Q2
a1 € Z, and ged(ag, ) = 1. Moreover, in this work we are concerned only with squarefree composite numbers

N.

2. Q-Korselt set properties

Proposition 2.1 Let o € Q\ {0} and N = pipa...pm be a K, -number such that p1 < ps < ... < pm and
m > 2. Then the following inequalities hold:
(m+2)py — N N + mpm,

<a<
m—+1 == m+1

Proof o € Q-KS(N) implies that N —a = k;(p; — o) with k; € Z for each i = 1...m. We consider two
cases:
Case 1: Assume that o < 0. First, let us show that k,, > 3.

N -«

m

Since N —a > py, —a > 0, then k,, = > 1.

Next, we show that k,, # 2. Suppose by contradiction that k,, = 2.

Then o = 2p,, — N € Z, but as « # p,, and a # 0, we get N # p,, and N # 2p,,. Thus, there exists
an integer N7 > 3 such that N = Nyp,,. Let ps be a prime factor of Ny. Then

ps*a:ps+(N1 *2)pm | N*O&:me(]\fl *1)'
However, as ged(pm,ps — ) = 1, it follows that

psfa:ps‘i’(Nl*Q)pm | 2(N1 71)7
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and hence
ps + (N1 = 2)pm < 2(Ny —1).
Since 4 < ps + 2 < p,,, we get

2 +4(Ny —2) <ps + (N1 — 2)py, < 2(Ng — 1).

Therefore, N1 < 2, which contradicts N7 > 3, so k,, > 3.

N —«
Now, as (p; — &)1<i<m Is increasing and positive, then (kl = ) is decreasing. Hence, as

Pi = Q) 1<i<m

N —«

km > 3, =k1 > m+ 2. Thus,
P —«
(m+2)p1 — N <
m+1 -

Case 2: Suppose that « > 0. We claim that a < N. If not, then (as o # N) we get p,, < N < «. This

- N
implies that 0 < a — N < a — py,, and hence 0 < s » =k, <1, contradicting the fact that k,, € Z.
- Pm
N
Now let us prove that a < w
m+1

o If a <p,,, it is immediate.

N -«
o Now suppose that p,, < a < N. Since (a—p;)i<i<m is decreasing and positive, then (| ki |= )
Q= Pi/)1<i<m

is increasing. Hence, | k,, |> m and consequently N — a =| ky,, | (@ — pp,) > m(a — py,). Thus,

< N + mpm.
- m+1
Finally, combining the two cases, we get
(m+2)p1 - N <a< N+mpm
m+1 - T m+1

O
By the following result, we provide a characterization of the Q-Korselt set of a squarefree composite

number N .

Proposition 2.2 Let N be a squarefree composite number with prime divisors p;, 1 <i <m. If we let

dp; — 6p;
Aij{w;d#5,5(Npi)7dl(ij)y and (pipj)l(dc?)},

for 1<i<j<m, then

Q-LS(N) =[] Ay

1<i<j<m
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Proof First note that for each 1 < i < m, N is a K,-number if and only if asp; — a1 | aaN — a3 or
equivalently asp; —ag | N — p;.
Now let o € Q-KS(N). Then for each (7,7) with 1 <14 < j <m, we have

{Oézpi—oq | N —p;
Qopj — Q1 | N—Pj~

This implies that there are two distinct divisors d and ¢ of N —p; and N — p;, respectively, such that

{0621%‘ —ap =d
Qap; — Qi = 0.

Solving the system we get

7dpjf5p¢ - d—9
ay = —, 02 =

Pi — D) pi —p;’

dp;j — op

and so a = - ‘. Since aq and g are integers we conclude that o € A;; and hence

QKS(IN) S [] Ay
1<i<j<m

Next let o € (N Ai;. Then a € A;;, for each pair (4,j) such that 1 < i < j < m. This implies
1<i<j<m

dp; — op;
that a = %, for some divisors d and 6 of N —p, and N — p;, respectively, with (p; —p;) | (d —6).
dp; — op; d—
Setting o = Wi~ %i ond Qg = , then a1,y € Z and
Pi —Dpj Pi —Ppj
QP — O :d|N—pi for 1=1...m.
aq
Therefore, o = ~ € Q-KS(N). O
2

By the previous proposition, we immediately get the following result.

Theorem 2.3 For any given squarefree composite number N , there are only finitely many rational numbers o
for which N is a K, -number.

By the characterization of the Q-Korselt set of a squarefree composite number N, given in Propo-

sition 2.2, and with a simple Maple program, we provide in Table 1 and Table 2 data representing some
squarefree composite numbers and their Q-Korselt sets as follows:

- Table 1 gives for each integer 2 < d < 8 the QQ-Korselt set of the smallest Q-Korselt number Ny with d
prime factors.

- Table 2 gives for each integer 0 < k < 10 the smallest squarefree composite number Nj such that

Q-KW(Ny,) = k.
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d | Ng Q-KS(Na)
3 10 14 8 5 18 12 9
2)0=23 {4’2’3’5’372’77574
15 40 5 10 15 24
=92. 4.6, - — 2 - 2 ==
3130 55 {’6’8’13’2’3’4’5}
21
41210=2-3-5-7 {6,4}
1
51(12730=2-3-5-7-13 {25}
255255 =3-5-7-11-13-17 {15}
8580495 =3-5-7-11-17-19-23 {15}
294076965 =3-5-7-13-17-19-23-29 | {21}

Table 2.

The smallest squarefree composite number Nj such that Q-KW(Ni) = k.
k | Ng Q-KS(Ng)

0 138=2-3-23 |

1 22=2-11 {12}

2 |1102=2-3-17

3 14=2.7

4 142=2-3-7

5 [10=2-5

6 | 273=3-7-13

—9.5.
7 |70 5.7 5 T 1T

4’7

15 40 5
6. — — 2

-~

871372’

0 15 2
374’5

4§EE§518 129
'2737573'277°54

10 | 110=2-5-11

44 55 88 22 31 13 35 46

8,20, —, — — 22 oo 02 2 }

13714717757 272747 5

— "

;
o
\.©

=

=

=

v |

3. Q-Korselt numbers with two prime factors

In this section, we shall discus the case where N is a squarefree composite number with two prime factors.

«
p and ¢ be two prime numbers such that p < ¢ , N =pq and o = =L be a rational number.

Q2

Proposition 3.1 If N is a K, -number such that gcd(ay, N) =1, then

qg—p+1l1<a<qg+p-—1.

Let
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Proof Since N is a K,-number, then

(S) {azp—oq | p(g—1)

azq— a1 | q(p—1).

As, in addition, ged(aq,p) = ged(ar,q) =1, it follows that

(55) {agp—al lg—1 (3.1)

asq—ag | p—1.
Hence, by (3.2), we get
—pF+l<og—ag<p—-1

Knowing that as > 1, we deduce that

-1 o -1
q—p+1§q—p <a= §q+L§q+p—1-
Q2 a2 Q2

‘ =

O
In order to establish the set of a = 2L € Q with ged(aq, N) # 1 and for which N is a K,-number, we

Qs
need the next two results.
Proposition 3.2 Let N be a K, -number such that a < q—p+ 1. Then the following assertions hold:
1) q divides aq .
2) If p divides oy (i.e. N divides oy and so ged(ay, N) = N), then a3 =N and ag =2p—1.
Proof
1) Since a = Z—; <qg—p+1, wehave as(p—1) < anqg— 3.
If ged(q, 1) =1, then by (3.2) it follows that
as(p—1) < aqg—a; <p-1.
Hence, o < 1, which contradicts ap € N\ {0}. Thus, ¢q | g .
2) Let a; = o) pq with o) € N\ {0}. Then (S;) gives

{Ozz—a/{qlq—l (3.3)

S 1"
(53) ag —aqp|p—1. (3.4)

Let us show that oy = N and ay =2p — 1.

As a:ﬂ<q—p—|—1 , then
Qs

as(p—1) < azqg — a1 = (2 — a1 p)q.
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It follows by (3.4), that

as(p—1) < glaz —a1p) < glp—1).
Hence, as < ¢. Furthermore, since by (3.3), o/l/q —ap < g—1, it follows that o/l,q <ast+qg—1<2g—1,
and this forces o/ll = 1. Therefore, a; = pg= N.

- 1
Now let us prove that as = 2p — 1. First, as P < qg—p+1, then p < ag(%)
Q2

< 2.

" - 1
Consequently, as @; =1 and ay —p > 0, it follows by (3.4) that as — p = pT with k£ € N\ {0}. We

claim that £ = 1. Indeed, suppose by contradiction that k # 1; then as —p < b and hence

3p—1
as < p2 . (3.5)

Furthermore, since by hypothesis P _ < qg—p+1, it follows by (3.5) that pg < as(¢ —p+1) <
Q2

3p—1
2

(g—p+1). This is equivalent to ¢ —3p+ 1 < p(¢ — 3p+ 1) and hence

3p—1<yq. (3.6)

1" - 1
However, as in addition o # N, i.e. ag # 1 and a3 =1, we get by (3.3) ¢ — as < qT This yields by

(3.5) ¢ <2a2 —1<3p—2, a contradiction with (3.6). Thus, k=1 and so as =2p — 1.

O
Lemma 3.3 If N is a K, -number such that ged(a1, N) #1 and ¢g+p—1< «, then oy =pg= N.
Proof Asg+p—-1<a= %, then we have
a2
0<ag—1) <a;—ap (3.7)
and
0<as(p—1) <y —angq. (3.8)

First we claim that ged(p, ) # 1. Indeed, if not, then by combining (3.1) and (3.7), we get
O<as(g—1)<a; —agp<qg-—1

This implies that as < 1, which contradicts ap € N\ {0}. Thus, p| 1.
Similarly, by (3.2) and (3.8) we get ¢ | a;. Hence, oy = o) pq with o] € N. Let us show that a; = 1.
By (3.3) and (3.4), we get respectively
ajg—ay<q—1 (3.9

and
aip—ay <p-—1. (3.10)
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Multiplying (3.9) by p and combining it with (3.7), we obtain

as(qg—1) < ay — asp = p(a) g — az) < plg—1),

and hence
a < p. (3.11)

Now, combining (3.10) and (3.11), we get

"

(g —1)p<oz’1'pfoz2 <p-1.

This implies that oz/l/ =1,s0 a1 =pg=N. 5

Proposition 3.4 Suppose that N is a K, -number with gcd(aq, N) # 1. Then the following assertions hold:

1) Ifa€Z (ie. aa=1l;a=0ay), then ¢fa, pla and

cc{g i

2) If a € Q\ Z, then ggagq—&—p—l.
p

Proof

1) See [7, Corollary 3.6].

2) Let a € Q\ Z be such that ged(ay, N) # 1. Let us show that o <g+p—1.

-1
Assume that ¢ + p — 1 < a. Then, by Lemma 3.3, (S7), and (3.11), we have 0 < ¢ — ay = CJT

-1
with k£ € N. Since a« # N (i.e. as # 1) and hence k > 2, it follows that ¢ — ay < qT; therefore,

2
Pa _ 2pq
(&%)

=2p<p+q—1, which
contradicts the assumption o« > g+p—1.

It remains to prove that 4 < «. First, since 4 < q—p+1, we may suppose that a« < ¢—p—+1.
p p

By Proposition 3.2, a3 = allq with 0/1 € Z. Let us prove that o/l > 0. The result is immediate by
Proposition 3.2 when p | o7 . Now, if ged(p,aq) =1 and by (3.1) we have

agp —ajq=asp—oa; <q—1,

this implies that p < agp + 1 < ¢(1 + ), which forces o > 0.
On the other hand, we have by (S7)

(a2 — ay)g = asg —ay < g(p — 1).
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Hence, as §o/1+p71, SO

o = a1 9 > a1q _
o) Qi o;+p—1
(0% ’
Since, in addition, ————— is minimum when a; =1, it follows that a > g,
oa;+p—1 D

By Propositions 3.4 and 3.1, the next two results follow immediately.

Corollary 3.5 Let a € Q\ {0}.

If N is a K,-number, then — < a<g+p—1.

hSAES

Theorem 3.6 Let a € Q\ {0}. If a <1, then each K, -number has at least three prime factors.

The next result shows that an « > 1 can belong to only finitely many Q-XS(pq).
Theorem 3.7 Let a € Q\{0} with o > 1, and suppose that N is a K, -number. Then the following assertions
hold:

(a) If a € Z, then p < g < 4o — 3.
(b) Ifa:EGQ\Z, then p<qg<aj.
o

Proof
(a) See [3, Theorem 1.10].

(b) First, if ¢ divides a7, then the result is immediate.

Now assume that ged(q,1) = 1. As N = pq is a K,-number, it follows by (S3) that asq — a; divides

051—1<
aq .
1 1

p — 1. This implies that asg —a; < p—1<qg—1. Thus, ¢ <
Qo —

Remark 3.8 In case (b) of Theorem 3.7, the upper bound can be reached when ¢ =3,p =2, and «a = g

We obtain immediately from Theorem 3.7 the following result.

Theorem 3.9 Let a« € Q\{0}. Then there are only finitely many K, -numbers with exactly two prime factors.

Now we ask: do there exist (and how many) rationals 1 < o < C', where C' is a fixed rational number,
for which there are no K,-numbers with two prime factors? Computationally, this problem can be solved by
running a computer program with exhaustive research (see [3, Example 1.11]). However, for the case o € Q\ Z,
it seems to be more difficult computationally and theoretically to find such a solution. This does not prevent
us from providing, by the next proposition, all rationals 1 < o < 2 for which there are no K,-numbers with

two prime factors.
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Proposition 3.10 Let a € Q be such that 1 < a« < 2. N = pq is a K, -number if and only if a = % with
(p,a) €{(2,3),(3,5)}.

Proof Suppose that « € Q-KS(N). Since o < 2 < g—p+1, then by Proposition 3.2, ¢ divides «; . Hence,
o = allq with all e N.

First we claim that ged(p,a1) = 1. Suppose by contradiction that p divides all (i.e. N | ). Then, by
2ppz 1 but, as by hypothesis 2ppz
and p=2,and so a; = pg =6 and as = 2p — 1 = 3, which contradicts the fact that ged(ay,as) =1.

Proposition 3.2, a =

;=< 2, we obtain p(¢ —4) < —2. Hence, ¢ = 3

Now, as ged(p, 1) = 1, then (S7) gives

asp—ayg|q—1 (3.12)
(S4) :

as—a; |p—1. (3.13)

Since a = 2 < 2, i.e. ng_a o, we get by (3.12)

a9 2 2
O[ll ’ ’ ’ p - o o
5 P — g < agp—ayq9 < g—1. Hence, alq(§ —1)<g,sop=2or (a; =1 and p=3).
e If p =2, then by (3.13), we get %—a; < 062—0(,1 <p—1=1. Hence, a/l(q—Q) < 2, and consequently

/ 3
a;=1,¢g=3,and a=§.

e Now assume that p =3 and 0/1 =1. As a; =q and ag > %, then by (3.13), we get g— 1< —0/1 =
as —1 < p—1=2. Therefore, ¢ < 6. However, as in addition ¢ > p = 3, necessarily ¢ = 5, and so

as =3 and a =

g .
Conversely, we verify easily that 2+3 =6 is a K% -number and 3 %5 =15 is a K% -number.
O
ce . 3 5 .
By Proposition 3.10, we may say that for each 1 < a < 2 with « # 3 and o # 3 there is no squarefree

composite number N with two prime factors such that N is a K,-number. The question about the infinitude
of the K,-numbers for a given a € Q remains posed. This can not be easily solved with an idea inspired by
the proof of the case o = 1 given by Alford et al. in [1]. However, following the heuristic ideas of Erdos, we

believe the following:

Conjecture 3.11 For any given « € Q\ {0} there exist infinitely many K, -numbers.

Acknowledgment I thank the referee for his/her report improving both the presentation and the mathematical

content of the paper.
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