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Abstract: Let α =
α1

α2
∈ Q \ {0} ; a positive integer N is said to be an α -Korselt number (Kα -number, for short) if

N ̸= α and α2p−α1 divides α2N −α1 for every prime divisor p of N . In this paper we prove that for each squarefree
composite number N there exist finitely many rational numbers α such that N is a Kα -number and if α ≤ 1 then N

has at least three prime factors. Moreover, we prove that for each α ∈ Q \ {0} there exist only finitely many squarefree
composite numbers N with two prime factors such that N is a Kα -number.

Key words: Prime number, Carmichael number, Korselt number, squarefree composite number, Korselt set, Korselt
weight

1. Introduction
A Carmichael number is a composite number N that divides aN − a for all integers a [2, 4]. In 1899 , Korselt
gave a complete characterization of Carmichael numbers.

Theorem 1.1 (Korselt criterion [8]) A composite integer N > 1 is a Carmichael number if and only if
p− 1 divides N − 1 for all prime factors p of N .

This criterion helped in the discovery of the existence of infinitely many Carmichael numbers in 1994 by
Alford et al. (see [1] for details). In the proof of the infinitude of Carmichael numbers the authors asked if this
proof can be generalized to produce other kinds of pseudoprimes by writing the following:

“One can modify our proof to show that for any fixed nonzero integer a , there are many squarefree,
composite integers n such that p− a divides n− 1 for all primes p dividing n . However, we have been unable
to prove this for p− a dividing n− b , for b other than 0 or 1 .”

The query of Alford et al. inspired Bouallegue et al. to state in a recent paper a new kind of pseudoprimes
called Korselt numbers (see [3] for details). For α ∈ Z \ {0} , a number N is called an α -Korselt number if
p−α | N −α for each prime divisor p of N . By this definition, Carmichael numbers are exactly the squarefree
composite 1 -Korselt numbers. In this paper, we extend the definition of α -Korselt numbers given in [3] by
allowing α to be a rational number. We state the following definition.

Definition 1.2 Let N ∈ N\{0, 1} and α =
α1

α2
∈ Q\{0} . N is said to be an α -Korselt number ( Kα -number,

for short) if N ̸= α and α2p− α1 divides α2N − α1 for every prime divisor p of N .
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The set of all Kα -numbers, where α ∈ Q , is called the set of Q -Korselt numbers.
For a fixed N ∈ N\{0, 1} , we need to determine the set of all α ∈ Q\{0} such that N is a Kα -number.

This leads to the following definition.

Definition 1.3 Let N be a positive integer and A be a nonempty subset of Q .

1. By the A -Korselt set of N , we mean the set A-KS(N) of all α ∈ A\{0, N} such that N is a Kα -number.

2. The cardinality of A-KS(N) will be called the A -Korselt weight of N ; we denote it by A-KW(N) .

By this definition, the notion of Q -Korselt numbers generalizes that given by Bouallegue et al. and thus
Carmichael numbers. Among the most recent works in this area are the papers [3, 5–7], where the notion of
Korselt numbers over Z was studied and several related results were obtained. In this paper, our aim is to
introduce the notion of Q -Korselt numbers and to discuss generalizations of properties holding when α ∈ Z .
Therefore, we proceed as follows:

- In Section 2 , after giving some general results about Q -Korselt numbers, we prove that for each
squarefree composite number N , there exist only finitely many rational numbers α such that N is a Kα -
number.

- In section 3 , we prove that for every rational number α ≤ 1 , if a squarefree composite number N is
a Kα -number then N must have at least three prime factors. Furthermore, we show that for each rational
number α > 1 , there exist only finitely many Kα -numbers with two prime factors.

Throughout this paper and for α =
α1

α2
∈ Q , we will suppose without loss of generality that α2 > 0 ,

α1 ∈ Z , and gcd(α1, α2) = 1 . Moreover, in this work we are concerned only with squarefree composite numbers
N .

2. Q-Korselt set properties

Proposition 2.1 Let α ∈ Q \ {0} and N = p1p2 . . . pm be a Kα -number such that p1 < p2 < . . . < pm and
m ≥ 2 . Then the following inequalities hold:

(m+ 2)p1 −N

m+ 1
≤ α ≤ N +mpm

m+ 1
.

Proof α ∈ Q -KS(N) implies that N − α = ki(pi − α) with ki ∈ Z for each i = 1 . . .m . We consider two
cases:

Case 1: Assume that α < 0 . First, let us show that km ≥ 3 .

Since N − α > pm − α > 0 , then km =
N − α

pm − α
> 1 .

Next, we show that km ̸= 2 . Suppose by contradiction that km = 2 .
Then α = 2pm −N ∈ Z , but as α ̸= pm and α ̸= 0 , we get N ̸= pm and N ̸= 2pm . Thus, there exists

an integer N1 ≥ 3 such that N = N1pm . Let ps be a prime factor of N1 . Then

ps − α = ps + (N1 − 2)pm | N − α = 2pm(N1 − 1).

However, as gcd(pm, ps − α) = 1 , it follows that

ps − α = ps + (N1 − 2)pm | 2(N1 − 1),
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and hence
ps + (N1 − 2)pm ≤ 2(N1 − 1).

Since 4 ≤ ps + 2 ≤ pm , we get

2 + 4(N1 − 2) ≤ ps + (N1 − 2)pm ≤ 2(N1 − 1).

Therefore, N1 ≤ 2 , which contradicts N1 ≥ 3 , so km ≥ 3 .

Now, as (pi − α)1≤i≤m is increasing and positive, then
(
ki =

N − α

pi − α

)
1≤i≤m

is decreasing. Hence, as

km ≥ 3 , N − α

p1 − α
= k1 ≥ m+ 2 . Thus,

(m+ 2)p1 −N

m+ 1
≤ α.

Case 2: Suppose that α > 0 . We claim that α < N . If not, then (as α ̸= N ) we get pm < N < α . This

implies that 0 < α−N < α− pm , and hence 0 <
α−N

α− pm
= km < 1 , contradicting the fact that km ∈ Z .

Now let us prove that α ≤ N +mpm
m+ 1

.

• If α ≤ pm , it is immediate.

• Now suppose that pm < α < N . Since (α−pi)1≤i≤m is decreasing and positive, then
(
| ki |=

N − α

α− pi

)
1≤i≤m

is increasing. Hence, | km |≥ m and consequently N − α =| km | (α− pm) ≥ m(α− pm) . Thus,

α ≤ N +mpm
m+ 1

.

Finally, combining the two cases, we get

(m+ 2)p1 −N

m+ 1
≤ α ≤ N +mpm

m+ 1
.

2

By the following result, we provide a characterization of the Q -Korselt set of a squarefree composite
number N .

Proposition 2.2 Let N be a squarefree composite number with prime divisors pi , 1 ≤ i ≤ m . If we let

Aij =

{
dpj − δpi
d− δ

; d ̸= δ, δ | (N − pi), d | (N − pj), and (pi − pj) | (d− δ)

}
,

for 1 ≤ i < j ≤ m , then

Q-KS(N) =
∩

1≤i<j≤m

Aij .
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Proof First note that for each 1 ≤ i ≤ m , N is a Kα -number if and only if α2pi − α1 | α2N − α1 or
equivalently α2pi − α1 | N − pi .

Now let α ∈ Q -KS(N) . Then for each (i, j) with 1 ≤ i < j ≤ m , we have

α2pi − α1 | N − pi
{
α2pj − α1 | N − pj .

This implies that there are two distinct divisors d and δ of N − pi and N − pj , respectively, such that

α2pi − α1 = d
{
α2pj − α1 = δ.

Solving the system we get

α1 =
dpj − δpi
pi − pj

, α2 =
d− δ

pi − pj
,

and so α =
dpj − δpi
d− δ

. Since α1 and α2 are integers we conclude that α ∈ Aij and hence

Q-KS(N) ⊆
∩

1≤i<j≤m

Aij .

Next let α ∈
∩

1≤i<j≤m

Aij . Then α ∈ Aij , for each pair (i, j) such that 1 ≤ i < j ≤ m . This implies

that α =
dpj − δpi
d− δ

, for some divisors d and δ of N − pi and N − pj , respectively, with (pi − pj) | (d− δ) .

Setting α1 =
dpj − δpi
pi − pj

and α2 =
d− δ

pi − pj
, then α1, α2 ∈ Z and

α2pi − α1 = d | N − pi for i = 1 . . .m.

Therefore, α =
α1

α2
∈ Q -KS(N) . 2

By the previous proposition, we immediately get the following result.

Theorem 2.3 For any given squarefree composite number N , there are only finitely many rational numbers α

for which N is a Kα -number.

By the characterization of the Q -Korselt set of a squarefree composite number N , given in Propo-
sition 2.2, and with a simple Maple program, we provide in Table 1 and Table 2 data representing some
squarefree composite numbers and their Q -Korselt sets as follows:

- Table 1 gives for each integer 2 ≤ d ≤ 8 the Q -Korselt set of the smallest Q -Korselt number Nd with d

prime factors.

- Table 2 gives for each integer 0 ≤ k ≤ 10 the smallest squarefree composite number Nk such that
Q -KW(Nk) = k .
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Table 1. Q -KS(Nd) where Nd is the smallest Q -Korselt number with d prime factors.

d Nd Q-KS(Nd)

2 6 = 2 · 3
{
4,

3

2
,
10

3
,
14

5
,
8

3
,
5

2
,
18

7
,
12

5
,
9

4

}
3 30 = 2 · 3 · 5

{
4, 6,

15

8
,
40

13
,
5

2
,
10

3
,
15

4
,
24

5

}
4 210 = 2 · 3 · 5 · 7

{
6,

21

4

}
5 2730 = 2 · 3 · 5 · 7 · 13

{
15

2

}
6 255255 = 3 · 5 · 7 · 11 · 13 · 17 {15}
7 8580495 = 3 · 5 · 7 · 11 · 17 · 19 · 23 {15}
8 294076965 = 3 · 5 · 7 · 13 · 17 · 19 · 23 · 29 {21}

Table 2. The smallest squarefree composite number Nk such that Q -KW(Nk) = k .

k Nk Q-KS(Nk)

0 138 = 2 · 3 · 23 ∅
1 22 = 2 · 11 {12}

2 102 = 2 · 3 · 17
{
12,

17

5

}
3 14 = 2 · 7

{
8, 6,

7

2

}
4 42 = 2 · 3 · 7

{
6,

21

8
,
28

9
,
9

2

}
5 10 = 2 · 5

{
4, 6,

10

3
,
5

2
,
14

3

}
6 273 = 3 · 7 · 13

{
−7, 8, 9,

78

11
,
19

31
,
21

2

}
7 70 = 2 · 5 · 7

{
4, 6,

5

2
,
7

4
,
56

11
,
25

4
,
48

7

}
8 30 = 2 · 3 · 5

{
4, 6,

15

8
,
40

13
,
5

2
,
10

3
,
15

4
,
24

5

}
9 6 = 2 · 3

{
4,

3

2
,
10

3
,
14

5
,
8

3
,
5

2
,
18

7
,
12

5
,
9

4

}
10 110 = 2 · 5 · 11

{
8, 20,

44

13
,
55

14
,
88

17
,
22

5
,
31

2
,
13

2
,
35

4
,
46

5

}

3. Q-Korselt numbers with two prime factors

In this section, we shall discus the case where N is a squarefree composite number with two prime factors. Let

p and q be two prime numbers such that p < q , N = pq and α =
α1

α2
be a rational number.

Proposition 3.1 If N is a Kα -number such that gcd(α1, N) = 1 , then

q − p+ 1 ≤ α ≤ q + p− 1.

2756



GHANMI/Turk J Math

Proof Since N is a Kα -number, then

α2p− α1 | p(q − 1)
(S1)

{
α2q − α1 | q(p− 1).

As, in addition, gcd(α1, p) = gcd(α1, q) = 1 , it follows that

α2p− α1 | q − 1 (3.1)
(S2)

{
α2q − α1 | p− 1. (3.2)

Hence, by (3.2), we get
−p+ 1 ≤ α1 − α2q ≤ p− 1.

Knowing that α2 ≥ 1 , we deduce that

q − p+ 1 ≤ q − p− 1

α2
≤ α =

α1

α2
≤ q +

p− 1

α2
≤ q + p− 1.

2

In order to establish the set of α =
α1

α2
∈ Q with gcd(α1, N) ̸= 1 and for which N is a Kα -number, we

need the next two results.

Proposition 3.2 Let N be a Kα -number such that α < q − p+ 1 . Then the following assertions hold:

1) q divides α1 .

2) If p divides α1 ( i.e. N divides α1 and so gcd(α1, N) = N) , then α1 = N and α2 = 2p− 1 .

Proof

1) Since α =
α1

α2
< q − p+ 1 , we have α2(p− 1) < α2q − α1 .

If gcd(q, α1) = 1 , then by (3.2) it follows that

α2(p− 1) < α2q − α1 ≤ p− 1.

Hence, α2 < 1 , which contradicts α2 ∈ N \ {0} . Thus, q | α1 .

2) Let α1 = α
′′

1pq with α
′′

1 ∈ N \ {0} . Then (S1) gives

α2 − α
′′

1 q | q − 1 (3.3)
(S3)

{
α2 − α

′′

1p | p− 1. (3.4)

Let us show that α1 = N and α2 = 2p− 1 .

As α =
α1

α2
< q − p+ 1 , then

α2(p− 1) < α2q − α1 = (α2 − α
′′

1p)q.
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It follows by (3.4), that

α2(p− 1) < q(α2 − α
′′

1p) ≤ q(p− 1).

Hence, α2 < q . Furthermore, since by (3.3), α′′

1 q−α2 < q− 1 , it follows that α
′′

1 q < α2 + q− 1 < 2q− 1 ,
and this forces α

′′

1 = 1 . Therefore, α1 = pq = N .

Now let us prove that α2 = 2p − 1 . First, as pq

α2
= α < q − p + 1 , then p < α2(

q − p+ 1

q
) < α2 .

Consequently, as α
′′

1 = 1 and α2 − p > 0 , it follows by (3.4) that α2 − p =
p− 1

k
with k ∈ N \ {0} . We

claim that k = 1 . Indeed, suppose by contradiction that k ̸= 1 ; then α2 − p ≤ p− 1

2
and hence

α2 ≤ 3p− 1

2
. (3.5)

Furthermore, since by hypothesis pq

α2
= α < q − p + 1 , it follows by (3.5) that pq < α2(q − p + 1) ≤

3p− 1

2
(q − p+ 1) . This is equivalent to q − 3p+ 1 < p(q − 3p+ 1) and hence

3p− 1 < q. (3.6)

However, as in addition α ̸= N , i.e. α2 ̸= 1 and α
′′

1 = 1 , we get by (3.3) q − α2 ≤ q − 1

2
. This yields by

(3.5) q ≤ 2α2 − 1 ≤ 3p− 2 , a contradiction with (3.6). Thus, k = 1 and so α2 = 2p− 1 .

2

Lemma 3.3 If N is a Kα -number such that gcd(α1, N) ̸= 1 and q + p− 1 < α , then α1 = pq = N .

Proof As q + p− 1 < α =
α1

α2
, then we have

0 < α2(q − 1) < α1 − α2p (3.7)

and
0 < α2(p− 1) < α1 − α2q. (3.8)

First we claim that gcd(p, α1) ̸= 1 . Indeed, if not, then by combining (3.1) and (3.7), we get

0 < α2(q − 1) < α1 − α2p ≤ q − 1.

This implies that α2 < 1 , which contradicts α2 ∈ N \ {0} . Thus, p | α1 .

Similarly, by (3.2) and (3.8) we get q | α1 . Hence, α1 = α
′′

1pq with α
′′

1 ∈ N . Let us show that α
′′

1 = 1 .
By (3.3) and (3.4), we get respectively

α
′′

1 q − α2 ≤ q − 1 (3.9)

and
α

′′

1p− α2 ≤ p− 1. (3.10)
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Multiplying (3.9) by p and combining it with (3.7), we obtain

α2(q − 1) < α1 − α2p = p(α
′′

1 q − α2) ≤ p(q − 1),

and hence
α2 < p. (3.11)

Now, combining (3.10) and (3.11), we get

(α
′′

1 − 1)p < α
′′

1p− α2 ≤ p− 1.

This implies that α
′′

1 = 1 , so α1 = pq = N . 2

Proposition 3.4 Suppose that N is a Kα -number with gcd(α1, N) ̸= 1 . Then the following assertions hold:

1) If α ∈ Z ( i.e. α2 = 1;α = α1) , then q ∤ α, p | α and

α ∈
{⌊

q

p

⌋
p,

⌈
q

p

⌉
p

}
.

2) If α ∈ Q \ Z , then q

p
≤ α ≤ q + p− 1 .

Proof

1) See [7, Corollary 3.6 ].

2) Let α ∈ Q \ Z be such that gcd(α1, N) ̸= 1 . Let us show that α ≤ q + p− 1 .

Assume that q + p − 1 < α . Then, by Lemma 3.3, (S1) , and (3.11), we have 0 < q − α2 =
q − 1

k

with k ∈ N . Since α ̸= N ( i.e. α2 ̸= 1) and hence k ≥ 2 , it follows that q − α2 ≤ q − 1

2
; therefore,

α2 ≥ q + 1

2
>

q

2
. As by Lemma 3.3, α1 = pq = N , it yields that α =

pq

α2
<

2pq

q
= 2p < p+ q − 1 , which

contradicts the assumption α > q + p− 1 .

It remains to prove that q

p
≤ α . First, since q

p
< q − p+ 1 , we may suppose that α < q − p+ 1 .

By Proposition 3.2, α1 = α
′

1q with α
′

1 ∈ Z . Let us prove that α
′

1 > 0 . The result is immediate by
Proposition 3.2 when p | α1 . Now, if gcd(p, α1) = 1 and by (3.1) we have

α2p− α
′

1q = α2p− α1 ≤ q − 1,

this implies that p < α2p+ 1 ≤ q(1 + α
′

1) , which forces α
′

1 > 0.

On the other hand, we have by (S1)

(α2 − α
′

1)q = α2q − α1 ≤ q(p− 1).
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Hence, α2 ≤ α
′

1 + p− 1 , so

α =
α1

α2
=

α
′

1q

α2
≥ α

′

1q

α
′
1 + p− 1

.

Since, in addition, α
′

1

α
′
1 + p− 1

is minimum when α
′

1 = 1 , it follows that α ≥ q

p
.

2

By Propositions 3.4 and 3.1, the next two results follow immediately.

Corollary 3.5 Let α ∈ Q \ {0} .

If N is a Kα -number, then q

p
≤ α ≤ q + p− 1 .

Theorem 3.6 Let α ∈ Q \ {0} . If α ≤ 1 , then each Kα -number has at least three prime factors.

The next result shows that an α > 1 can belong to only finitely many Q -KS(pq) .

Theorem 3.7 Let α ∈ Q\{0} with α > 1 , and suppose that N is a Kα -number. Then the following assertions
hold:

(a) If α ∈ Z , then p < q ≤ 4α− 3 .

(b) If α =
α1

α2
∈ Q \ Z , then p < q ≤ α1 .

Proof

(a) See [3, Theorem 1.10 ].

(b) First, if q divides α1 , then the result is immediate.

Now assume that gcd(q, α1) = 1 . As N = pq is a Kα -number, it follows by (S2) that α2q − α1 divides

p− 1 . This implies that α2q − α1 ≤ p− 1 < q − 1 . Thus, q <
α1 − 1

α2 − 1
< α1 .

2

Remark 3.8 In case (b) of Theorem 3.7, the upper bound can be reached when q = 3, p = 2 , and α =
3

2
.

We obtain immediately from Theorem 3.7 the following result.

Theorem 3.9 Let α ∈ Q\{0} . Then there are only finitely many Kα -numbers with exactly two prime factors.

Now we ask: do there exist (and how many) rationals 1 < α < C , where C is a fixed rational number,
for which there are no Kα -numbers with two prime factors? Computationally, this problem can be solved by
running a computer program with exhaustive research (see [3, Example 1.11 ]). However, for the case α ∈ Q\Z ,
it seems to be more difficult computationally and theoretically to find such a solution. This does not prevent
us from providing, by the next proposition, all rationals 1 < α < 2 for which there are no Kα -numbers with
two prime factors.
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Proposition 3.10 Let α ∈ Q be such that 1 < α < 2 . N = pq is a Kα -number if and only if α =
q

p
with

(p, q) ∈ {(2, 3), (3, 5)} .

Proof Suppose that α ∈ Q -KS(N) . Since α < 2 ≤ q− p+1 , then by Proposition 3.2, q divides α1 . Hence,
α1 = α

′

1q with α
′

1 ∈ N .

First we claim that gcd(p, α1) = 1 . Suppose by contradiction that p divides α
′

1 ( i.e. N | α1) . Then, by

Proposition 3.2, α =
pq

2p− 1
, but, as by hypothesis pq

2p− 1
= α < 2 , we obtain p(q − 4) < −2 . Hence, q = 3

and p = 2 , and so α1 = pq = 6 and α2 = 2p− 1 = 3 , which contradicts the fact that gcd(α1, α2) = 1 .
Now, as gcd(p, α1) = 1 , then (S1) gives

α2p− α
′

1q | q − 1 (3.12)
(S4)

{
α2 − α

′

1 | p− 1. (3.13)

Since α =
α1

α2
< 2 , i.e. α

′

1q

2
=

α1

2
< α2 , we get by (3.12)

α
′

1

2
qp− α

′

1q ≤ α2p− α
′

1q ≤ q − 1 . Hence, α
′

1q(
p

2
− 1) < q , so p = 2 or (α′

1 = 1 and p = 3).

• If p = 2 , then by (3.13), we get α
′

1q

2
−α

′

1 < α2−α
′

1 ≤ p−1 = 1 . Hence, α′

1(q−2) < 2 , and consequently

α
′

1 = 1 , q = 3 , and α =
3

2
.

• Now assume that p = 3 and α
′

1 = 1 . As α1 = q and α2 >
q

2
, then by (3.13), we get q

2
− 1 < α2 − α

′

1 =

α2 − 1 ≤ p − 1 = 2 . Therefore, q < 6 . However, as in addition q > p = 3 , necessarily q = 5 , and so

α2 = 3 and α =
5

3
.

Conversely, we verify easily that 2 ∗ 3 = 6 is a K 3
2

-number and 3 ∗ 5 = 15 is a K 5
3

-number.

2

By Proposition 3.10, we may say that for each 1 < α < 2 with α ̸= 3

2
and α ̸= 5

3
, there is no squarefree

composite number N with two prime factors such that N is a Kα -number. The question about the infinitude
of the Kα -numbers for a given α ∈ Q remains posed. This can not be easily solved with an idea inspired by
the proof of the case α = 1 given by Alford et al. in [1]. However, following the heuristic ideas of Erdos, we
believe the following:

Conjecture 3.11 For any given α ∈ Q \ {0} there exist infinitely many Kα -numbers.

Acknowledgment I thank the referee for his/her report improving both the presentation and the mathematical
content of the paper.
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