Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: $2774-2774$
© TÜBİTAK doi:10.3906/mat-1806-7

Corrigendum and addendum to "Modules whose p-submodules are direct summands"

Yeliz KARA*
Department of Mathematics, Faculty of Arts and Science, Bursa Uludağ University, Bursa, Turkey

| Received: 02.06.2018 | Accepted/Published Online: 29.08 .2018 | Final Version: 27.09 .2018 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

This paper is written to correct the proof of Lemma $2.1(i)$ in [1] and to add some decomposition results for the class of $P D$-modules defined in [1].

Key words: $P D$-modules
In line 14 of the Introduction replace "[...] a sublattice of the lattice of submodules of M " with "closed under intersections."

In the proof of Lemma $2.1(i)$ replace "Observe that $\left(M / N_{1}\right) \oplus\left(M / N_{2}\right) \cong M /\left(N_{1} \cap N_{2}\right)$." with "Define the homomorphism $\alpha: M \rightarrow M /\left(N_{1} \cap N_{2}\right)$ by $\alpha(m)=\left(m+N_{1}, m+N_{2}\right)$. Observe that $M /\left(N_{1} \cap N_{2}\right) \cong$ $\alpha(M) \leq\left(M / N_{1}\right) \oplus\left(M / N_{2}\right)$. Hence $\alpha(M)$ is nonsingular, as $\left(M / N_{1}\right) \oplus\left(M / N_{2}\right)$ is nonsingular. Thus [...]"

In the statement of Proposition 2.4, insert " M_{1} is a p-submodule of M such that" before "and [...]".
In the proof of Proposition 3.6 replace "[3, Lemma 4.11]" with "[3, Lemma 4.13]".
Moreover, we obtain the following decomposition results with respect to the second singular submodule $Z_{2}(M)$ of M for the class of $P D$-modules.

Proposition 1 Let M be a $P D$-module and K a p-submodule of M. Then $M=Z_{2}(M) \oplus T \oplus Y$, where $K=Z_{2}(M) \oplus T$ and Y are $P D$-modules .

Proof Let M be a $P D$-module and K a p-submodule of M. Then $M=K \oplus K^{\prime}$ for some $K^{\prime} \leq M$. Since $K \unlhd_{p} M, K$ and K^{\prime} are $P D$-modules by [1, Proposition 3.6]. Recall that $Z_{2}(M) \subseteq K$, as M / K is nonsingular. Since $Z_{2}(M) \unlhd_{p} M$ and $Z_{2}(M) \subseteq K, Z_{2}(M) \unlhd_{p} K$. Moreover, $Z\left(K / Z_{2}(M)\right)=0$ yields that $Z_{2}(M)$ is a psubmodule of K. It follows that $K=Z_{2}(M) \oplus T$ for some $T \leq K$. Therefore, $M=K \oplus K^{\prime}=Z_{2}(M) \oplus T \oplus K^{\prime}$. Hence, $K^{\prime}=Y ; Y$ is the desired direct summand.

Corollary $2 M$ is a $P D$-module if and only if $M=Z_{2}(M) \oplus Y$, where $Z_{2}(M)$ and Y are $P D$-modules.
Proof It is clear from Proposition 1.

References

[1] Kara Y. Modules whose p-submodules are direct summands. Turk J Math 2018; 42: 28-33.
*Correspondence: yelizkara@uludag.edu.tr
2010 AMS Mathematics Subject Classification: Primary: 16D10, 16D50; Secondary: 16D40

