

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Corrigendum and addendum to "Modules whose *p*-submodules are direct summands"

Yeliz KARA*

Department of Mathematics, Faculty of Arts and Science, Bursa Uludağ University, Bursa, Turkey

Received: 02.06.2018	•	Accepted/Published Online: 29.08.2018	•	Final Version: 27.09.2018

Abstract: This paper is written to correct the proof of Lemma 2.1(i) in [1] and to add some decomposition results for the class of *PD*-modules defined in [1].

Key words: *PD*-modules

In line 14 of the Introduction replace "[...] a sublattice of the lattice of submodules of M" with "closed under intersections."

In the proof of Lemma 2.1(*i*) replace "Observe that $(M/N_1) \oplus (M/N_2) \cong M/(N_1 \cap N_2)$." with "Define the homomorphism $\alpha : M \to M/(N_1 \cap N_2)$ by $\alpha(m) = (m + N_1, m + N_2)$. Observe that $M/(N_1 \cap N_2) \cong \alpha(M) \le (M/N_1) \oplus (M/N_2)$. Hence $\alpha(M)$ is nonsingular, as $(M/N_1) \oplus (M/N_2)$ is nonsingular. Thus [...]"

In the statement of Proposition 2.4, insert " M_1 is a p-submodule of M such that" before "and [...]".

In the proof of Proposition 3.6 replace "[3, Lemma 4.11]" with "[3, Lemma 4.13]".

Moreover, we obtain the following decomposition results with respect to the second singular submodule $Z_2(M)$ of M for the class of PD-modules.

Proposition 1 Let M be a PD-module and K a p-submodule of M. Then $M = Z_2(M) \oplus T \oplus Y$, where $K = Z_2(M) \oplus T$ and Y are PD-modules.

Proof Let M be a PD-module and K a p-submodule of M. Then $M = K \oplus K'$ for some $K' \leq M$. Since $K \leq_p M$, K and K' are PD-modules by [1, Proposition 3.6]. Recall that $Z_2(M) \subseteq K$, as M/K is nonsingular. Since $Z_2(M) \leq_p M$ and $Z_2(M) \subseteq K$, $Z_2(M) \leq_p K$. Moreover, $Z(K/Z_2(M)) = 0$ yields that $Z_2(M)$ is a p-submodule of K. It follows that $K = Z_2(M) \oplus T$ for some $T \leq K$. Therefore, $M = K \oplus K' = Z_2(M) \oplus T \oplus K'$. Hence, K' = Y; Y is the desired direct summand.

Corollary 2 M is a PD-module if and only if $M = Z_2(M) \oplus Y$, where $Z_2(M)$ and Y are PD-modules.

Proof It is clear from Proposition 1.

References

[1] Kara Y. Modules whose p-submodules are direct summands. Turk J Math 2018; 42: 28-33.

^{*}Correspondence: yelizkara@uludag.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: Primary: 16D10, 16D50; Secondary: 16D40