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Abstract: In this work with a different technique we obtain upper bounds of the functional
∣∣a2a4 − a2

3

∣∣ for functions
belonging to a comprehensive subclass of analytic bi-univalent functions, which is defined by subordinations in the open
unit disk. Moreover, our results extend and improve some of the previously known ones.
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1. Introduction and preliminaries

Let A be a class of analytic functions in the open unit disk D := {z ∈ C : |z| < 1} , of the form

f(z) = z +

∞∑
n=2

anz
n, z ∈ D, (1.1)

and let S be the class of functions f ∈ A that are univalent in D . It is well known that every function f ∈ S
has an inverse f−1 , which is defined by

f−1 (f(z)) = z, z ∈ D, and f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) ≥

1

4

)
,

with the power series expansion

g(w) := f−1(w) = w − a2w
2 +

(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent in D , and let Σ denote
the class of bi-univalent functions in D . Examples of functions in the class Σ are

z

1− z
, − log(1− z),

1

2
log

(
1 + z

1− z

)
,

and so on. However, the familiar Koebe function is not a member of Σ [23].
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Lewin [18] investigated the class Σ of bi-univalent functions and showed that |a2| < 1.51 for all the
functions belonging to Σ . Recently, many researchers have introduced and investigated several interesting
subclasses of the bi-univalent function class Σ and they have found nonsharp estimates on the first two Taylor–
Maclaurin coefficients |a2| and |a3| (see, for example, [1, 9, 16, 17, 23, 25, 26, 29]).

The problem of estimating the coefficients |an| with n ≥ 4 is presumably still an open problem. Using the
Faber polynomial expansions, several authors obtained coefficient estimates of |an| for the functions belonging in
different subclasses of bi-univalent functions (see, for example, [10–13, 30]). First, we will recall some definitions
and lemmas that will be used in this work.

One of the important tools in the theory of univalent functions are the Hankel determinants, which are
used, for example, in showing that a function of bounded characteristic in U , that is, a function that is a ratio of
two bounded analytic functions, with its Laurent series around the origin having integral coefficients, is rational
[5].

In 1976, Noonan and Thomas [19] defined the q th Hankel determinant for integers n ≥ 1 and q ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1) .

Note that

H2(1) =

∣∣∣∣a1 a2
a2 a3

∣∣∣∣ and H2(2) =

∣∣∣∣a2 a3
a3 a4

∣∣∣∣
where the Hankel determinants H2(1) = a3 − a22 and H2(2) = a2a4 − a23 are well known as Fekete–Szegő
and second Hankel determinant functionals, respectively. Furthermore, Fekete and Szegő [8] introduced the
generalized functional a3 − λa22 , where λ is some real number, and recently, problems in this direction have
been considered by several authors (see, for example, [2, 6, 15, 20–22, 27, 28]).

Definition 1.1 [7] For two functions f and g , which are analytic in D , we say that the function f is
subordinate to g and write f(z) ≺ g(z) if there exists a Schwarz function w , that is, a function w analytic in
D with w(0) = 0 and |w(z)| < 1 in D , such that f(z) = g(w(z)) for all z ∈ D . In particular, if the function
g is univalent in D then f ≺ g if and only if f(0) = g(0) and f(D) ⊆ g(D) .

Throughout this paper, we assume that the function φ is an analytic function with positive real part in the
unit disk D , satisfying φ(0) = 1 , φ′(0) > 0 , such that φ(D) is symmetric with respect to the real axis. Such a
function has the power series expansion of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , z ∈ D (B1 > 0). (1.3)

Definition 1.2 [3, 24] A function f ∈ Σ is said to be in the class Hµ
Σ (λ, φ) if

(1− λ)

(
f(z)

z

)µ

+ λf ′(z)

(
f(z)

z

)µ−1

≺ φ(z) (λ ≥ 1, µ ≥ 0),
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and

(1− λ)

(
g(w)

w

)µ

+ λg′(w)

(
g(w)

w

)µ−1

≺ φ(w) (λ ≥ 1, µ ≥ 0),

where the function g = f−1 is given by (1.2) (all powers are the principal ones).

Lemma 1.3 [7, p. 190] Let u be analytic function in the unit disk D , with u(0) = 0 , and |u(z)| < 1 for all
z ∈ D , with the power series expansion

u(z) =

∞∑
n=1

cnz
n, z ∈ D.

Then |cn| ≤ 1 for all n = 1, 2, 3, . . . . Furthermore, |cn| = 1 for some n (n = 1, 2, 3, . . . ) if and only if
u(z) = eiθzn , θ ∈ R .

Lemma 1.4 [14] If ψ(z) =
∞∑

n=1
ψnz

n , z ∈ D , is a Schwarz function, then

ψ2 = x
(
1− ψ2

1

)
,

ψ3 =
(
1− ψ2

1

) (
1− |x|2

)
s− ψ1

(
1− ψ2

1

)
x2,

for some x, s , with |x| ≤ 1 and |s| ≤ 1 .

The object of the present paper is to determine the functional |H2(2)| =
∣∣a2a4 − a23

∣∣ for functions
belonging to a comprehensive subclass of analytic bi-univalent functions, which is defined by subordinations in
the open unit disk. Furthermore, our results generalize and improve some of the previously known results.

2. The functional
∣∣a2a4 − a23

∣∣ for the class Hµ
Σ (λ, φ)

First we state our main results and two interesting special cases.

Theorem 2.1 If the function f ∈ Hµ
Σ (λ, φ) is given by (1.1), then∣∣a2a4 − a23

∣∣ ≤ B1(P +Q+R),

where

P =

∣∣∣∣∣−
(
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣+ 2

(
B2

1

4(µ+ λ)2(µ+ 2λ)

+
|B2|

(µ+ 3λ)(µ+ λ)

)
+

2B1

2(µ+ 3λ)(µ+ λ)
+

B1

(2λ+ µ)2
, (2.1)

Q = 2

(
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

)
+

2B1

2(µ+ 3λ)(µ+ λ)
+

2B1

(2λ+ µ)2
,

R =
B1

(2λ+ µ)2
,

and B1 , B2 , B3 are given by (1.3).
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If we take in Theorem 2.1 the function

φ(z) =
1 + (1− 2β)z

1− z
= 1 + 2(1− β)z + 2(1− β)z2 + 2(1− β)z3 + · · · , z ∈ D (0 ≤ β < 1) ,

then we have the following special case:

Corollary 2.2 If the function f ∈ Hµ
Σ

(
λ,

1 + (1− 2β)z

1− z

)
, with 0 ≤ β < 1 , is given by (1.1), then

∣∣a2a4 − a23
∣∣ ≤4(1− β)2

[ ∣∣∣∣∣−2
(
µ2 + 3µ+ 2

)
(1− β)2

3(µ+ λ)4
+

1

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣
+

2

(µ+ 3λ)(µ+ λ)
+ 4

(
1− β

2(µ+ λ)2(µ+ 2λ)
+

1

(µ+ 3λ)(µ+ λ)

)

+
4

(2λ+ µ)2

]
.

Remark 2.3 Previous researchers got wrong results by miscalculation. We corrected their mistakes and obtained
the correct result.

(i) Theorem 2.2 is a correction of the obtained estimates given in [20, Theorem 2.1];
(ii) Letting the value λ = 1 in Theorem 2.2, we get a correction of the obtained estimates of [2, Theorem

2.1];
(iii) Setting the values λ = 1 , µ = 0 in Theorem 2.2, then we gain a correction of the obtained estimates

that were given in [6, Theorem 2.1];
(iv) Taking the values λ = 1 , µ = 0 , and β = 0 in Theorem 2.2, then we obtain a correction of the

obtained estimates given in [6, Corollary 2.2];
(v) Supposing the values λ = 1 , µ = 1 in Theorem 2.2, then we get a correction of the obtained estimates

from [4, Theorem 1].

For the special case

φ(z) =

(
1 + z

1− z

)α

= 1 + 2αz + 2α2z2 +
8α3 + 4α

6
z3 + · · · , z ∈ D (0 < α ≤ 1),

where the power is the principal one, Theorem 2.1 reduces to the next result:

Corollary 2.4 If the function f ∈ Hµ
Σ

(
λ,

(
1 + z

1− z

)α)
, with 0 < α ≤ 1 , is given by (1.1), then

∣∣a2a4 − a23
∣∣ ≤4α2

[ ∣∣∣∣∣−2
(
µ2 + 3µ+ 2

)
α2

3(µ+ λ)4
+

2α2 + 1

3(µ+ 3λ)(µ+ λ)

∣∣∣∣∣+ 2

(µ+ 3λ)(µ+ λ)

+ 4

(
α

2(µ+ λ)2(µ+ 2λ)
+

α

(µ+ 3λ)(µ+ λ)

)
+

4

(2λ+ µ)2

]
.

Remark 2.5 Taking the values λ = 1 , µ = 1 in Theorem 2.4, then we obtain a correction of the obtained
estimates given in [4, Theorem 2].
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3. Proof of the results

Proof of Theorem 2.1. If f ∈ Hµ
Σ (λ, φ) then, by Definition 1.2 and Lemma 1.3, there exist two Schwartz

functions u and v , of the form u(z) =
∞∑

n=1
pnz

n and v(z) =
∞∑

n=1
qnz

n , z ∈ D such that

(1− λ)

(
f(z)

z

)µ

+ λf ′(z)

(
f(z)

z

)µ−1

= φ(u(z)), z ∈ D, (3.1)

and

(1− λ)

(
g(w)

w

)µ

+ λg′(w)

(
g(w)

w

)µ−1

= φ(v(w)), w ∈ D. (3.2)

Using (1.3) we have

φ(u(z)) = 1 +B1c1z +
(
B1c2 +B2c

2
1

)
z2 +

(
B1c3 + 2c1c2B2 +B3c

3
1

)
z3 + · · · , (3.3)

and
φ(v(w)) = 1 +B1d1w +

(
B1d2 +B2d

2
1

)
w2 +

(
B1d3 + 2d1d2B2 +B3d

3
1

)
w3 + · · · . (3.4)

From (3.1), (3.3) and (3.2), (3.4), we get that, respectively,

(λ+ µ)a2 = B1c1, (3.5)

(µ+ 2λ)

[
a3 +

a22
2
(µ− 1)

]
= B1c2 +B2c

2
1, (3.6)

(µ+ 3λ)

[
a4 + (µ− 1)a2a3 + (µ− 1)(µ− 2)

a32
6

]
= B1c3 + 2c1c2B2 +B3c

3
1, (3.7)

and

− (λ+ µ)a2 = B1d1, (3.8)

(µ+ 2λ)

[
a22
2
(µ+ 3)− a3

]
= B1d2 +B2d

2
1, (3.9)

(µ+ 3λ)

[
−a4 + (4 + µ)a2a3 − (4 + µ)(5 + µ)

a32
6

]
= B1d3 + 2d1d2B2 +B3d

3
1. (3.10)

Now, from (3.5) and (3.8), we obtain
c1 = −d1. (3.11)

and

a2 =
B1c1
λ+ µ

.

In addition, from (3.6) and (3.9), we have

a3 =
B2

1c
2
1

(µ+ λ)2
+
B1(c2 − d2)

2(2λ+ µ)
.
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From (3.7) and (3.10), we also get

a4 =
−
(
µ2 + 3µ− 4

)
B3

1

6(µ+ λ)3
c31 +

5B2
1

4(µ+ λ)(µ+ 2λ)
c1(c2 − d2) +

B1(c3 − d3)

2(µ+ 3λ)

+
2B2c1(c2 + d2)

2(µ+ 3λ)
+

2B3c
3
1

2(µ+ 3λ)
.

Therefore, we establish that

∣∣a2a4 − a23
∣∣ =∣∣∣∣∣

[
−
(
µ2 + 3µ+ 2

)
B4

1

6(µ+ λ)4
+

B3B1

(µ+ 3λ)(µ+ λ)

]
c41 +

B3
1c

2
1(c2 − d2)

4(µ+ λ)2(µ+ 2λ)

+
B2B1c

2
1(c2 + d2)

(µ+ 3λ)(µ+ λ)
+

B2
1c1(c3 − d3)

2(µ+ 3λ)(µ+ λ)
− B2

1(c2 − d2)
2

4(µ+ 2λ)2

∣∣∣∣∣. (3.12)

According to Lemma 1.4, we have

c2 = x
(
1− c21

)
and d2 = y

(
1− d21

)
,

so, from (3.11), we find that

c2 − d2 =
(
1− c21

)
(x− y) and c2 + d2 =

(
1− c21

)
(x+ y), (3.13)

and further

c3 =
(
1− c21

) (
1− |x|2

)
s− c1

(
1− c21

)
x2,

and

d3 =
(
1− d21

) (
1− |y|2

)
w − d1

(
1− d21

)
y2,

where

c3 − d3 =
(
1− c21

) [(
1− |x|2

)
s−

(
1− |y|2

)
w
]
− c1

(
1− c21

) (
x2 + y2

)
, (3.14)

for some x , y , s , and w , with |x| ≤ 1 , |y| ≤ 1 , |s| ≤ 1 , and |w| ≤ 1 . Using (3.13) and (3.14), in (3.12), we
obtain

∣∣a2a4 − a23
∣∣ =B1

∣∣∣ [− (
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

]
c41

+

[
B2

1(x− y)

4(µ+ λ)2(µ+ 2λ)
+

B2(x+ y)

(µ+ 3λ)(µ+ λ)

]
c21

(
1− c21

)
−

B1c
2
1

(
1− c21

)
2(µ+ 3λ)(µ+ λ)

(
x2 + y2

)
−
B1

(
1− c21

)2
4(µ+ 2λ)2

(x− y)2

+
B1c1

(
1− c21

)
2(µ+ 3λ)(µ+ λ)

[ (
1− |x|2

)
s−

(
1− |y|2

)
w
]∣∣∣.
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Setting c = |c1| , since |c1| ≤ 1 , then c ∈ [0, 1] , and so we deduce that

∣∣a2a4 − a23
∣∣ ≤B1

[ ∣∣∣∣∣−
(
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣ c4
+

[
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

]
c2

(
1 + c2

)
(|x|+ |y|)

+
B1c

2
(
1 + c2

)
2(µ+ 3λ)(µ+ λ)

(
|x|2 + |y|2

)
+
B1

(
1 + c2

)2
4(2λ+ µ)2

(|x|+ |y|)2

+
B1c

(
1 + c2

)
2(µ+ 3λ)(µ+ λ)

[ (
1− |x|2

)
|s|+

(
1− |y|2

)
|w|

]]

≤B1

[ ∣∣∣∣∣−
(
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣ c4
+

[
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

]
c2

(
1 + c2

)
(|x|+ |y|)

+
B1c

2
(
1 + c2

)
2(µ+ 3λ)(µ+ λ)

(
|x|2 + |y|2

)
+
B1

(
1 + c2

)2
4(2λ+ µ)2

(|x|+ |y|)2

+
B1c

(
1 + c2

)
2(µ+ 3λ)(µ+ λ)

[ (
1− |x|2

)
+

(
1− |y|2

) ]]

=B1

[ ∣∣∣∣∣−
(
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣ c4 + B1c(1 + c2)

(µ+ 3λ)(µ+ λ)

+

[
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

]
c2

(
1 + c2

)
(|x|+ |y|)

+

[
B1c

2
(
1 + c2

)
2(µ+ 3λ)(µ+ λ)

−
B1c

(
1 + c2

)
2(µ+ 3λ)(µ+ λ)

] (
|x|2 + |y|2

)
+
B1(1 + c2)2

4(2λ+ µ)2
(|x|+ |y|)2

]
.

Now, for θ = |x| ≤ 1 and ϑ = |y| ≤ 1 , we obtain∣∣a2a4 − a23
∣∣ ≤ B1F (θ, ϑ), F (θ, ϑ) := T1 + (θ + ϑ)T2 +

(
θ2 + ϑ2

)
T3 + (θ + ϑ)2T4,

where

T1 = T1(c) =

∣∣∣∣∣−
(
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣ c4 + B1c
(
1 + c2

)
(µ+ 3λ)(µ+ λ)

≥ 0,

T2 = T2(c) =

[
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

]
c2

(
1 + c2

)
≥ 0,

T3 = T3(c) =
B1c(c− 1)

(
1 + c2

)
2(µ+ 3λ)(µ+ λ)

≤ 0,

T4 = T4(c) =
B1

(
1 + c2

)2
4(2λ+ µ)2

≥ 0.
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We now need to determine the maximum of the function F (θ, ϑ) on the closed square [0, 1] × [0, 1] for
c ∈ [0, 1] . For this work, we must investigate the maximum of F (θ, ϑ) according to c ∈ (0, 1) , c = 0 , and
c = 1 , taking into the account the sign of FθθFϑϑ − (Fθϑ)

2 .
First, if we let c = 1 , then we obtain

F (θ, ϑ) =

∣∣∣∣∣−
(
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣+ 2B1

(µ+ 3λ)(µ+ λ)

+ 2

[
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

]
(θ + ϑ) +

B1

(2λ+ µ)2
(θ + ϑ)2,

and hence we can see easily that

max {F (θ, ϑ) : (θ, ϑ) ∈ [0, 1]× [0, 1]} = F (1, 1)

=

∣∣∣∣∣−
(
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣+ 2B1

(µ+ 3λ)(µ+ λ)

+ 4

[
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

]
+

4B1

(2λ+ µ)2
.

Second, letting c = 0 , then we have

F (θ, ϑ) =
B1

4(2λ+ µ)2
(θ + ϑ)2,

and we can see easily that

max {F (θ, ϑ) : (θ, ϑ) ∈ [0, 1]× [0, 1]} = F (1, 1) =
B1

(2λ+ µ)2
.

Finally, let us consider the case c ∈ (0, 1) . Since T3 + 2T4 > 0 and T3 < 0 , we conclude that

FθθFϑϑ − (Fθϑ)
2
< 0,

and thus the function F cannot have a local maximum in the interior of the square [0, 1]× [0, 1] .
For θ = 0 and 0 ≤ ϑ ≤ 1 (similarly for ϑ = 0 and 0 ≤ θ ≤ 1), we get

H(ϑ) := F (0, ϑ) = (T3 + T4)ϑ
2 + T2ϑ+ T1.

(i) If T3+T4 ≥ 0 , it is clear that H ′(ϑ) = 2(T3+T4)ϑ+T2 > 0 for 0 < ϑ < 1 and any fixed c ∈ (0, 1) ; that is,
H(ϑ) is an increasing function. Hence, for fixed c ∈ (0, 1) , the maximum of H(ϑ) occurs at ϑ = 1 , and then

max {H(ϑ) : ϑ ∈ [0, 1]} = H(1) = T1 + T2 + T3 + T4.

(ii) If T3 + T4 < 0 , we consider for critical point ϑ =
−T2

2(T3 + T4)
=

T2
2k

for fixed c ∈ (0, 1) , where

k = −(T3 + T4) > 0 , the following two cases:
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Case 1. For ϑ =
T2
2k

> 1 , it follows that k < T2
2

≤ T2 , and so T2 + T3 + T4 ≥ 0 . Therefore,

H(0) = T1 ≤ T1 + T2 + T3 + T4 = H(1).

Case 2. For ϑ =
T2
2k

≤ 1 , since T2
2

≥ 0 , we get T
2
2

4k
≤ T2

2
≤ T2 . Also, we have H(1) = T1+T2+T3+T4 ≤

T1 + T2 , and hence

H(0) = T1 ≤ T1 +
T 2
2

4k
= H

(
T2
2k

)
≤ T1 + T2.

By considering cases (i) and (ii) , for θ = 0 , 0 ≤ ϑ ≤ 1 and for fixed c ∈ (0, 1) , it follows that H(ϑ) gets its
maximum when T3 + T4 ≥ 0 , which means

max {H(ϑ) : ϑ ∈ [0, 1]} = H(1) = T1 + T2 + T3 + T4.

For θ = 1 and 0 ≤ ϑ ≤ 1 (similarly for ϑ = 1 and 0 ≤ θ ≤ 1), we get

G(ϑ) := F (1, ϑ) = (T3 + T4)ϑ
2 + (T2 + 2T4)ϑ+ T1 + T2 + T3 + T4.

(iii) If T3 +T4 ≥ 0 , it is clear that G′(ϑ) = 2(T3 +T4)ϑ+T2 +2T4 > 0 for 0 < ϑ < 1 and any fixed c ∈ (0, 1) ;
that is, G(ϑ) is an increasing function. Hence, for fixed c ∈ (0, 1) , the maximum of G(ϑ) occurs at ϑ = 1 , and

max {G(ϑ) : ϑ ∈ [0, 1]} = G(1) = T1 + 2T2 + 2T3 + 4T4.

(iv) If T3 + T4 < 0 , then we consider for critical point ϑ =
−(T2 + 2T4)

2(T3 + T4)
=
T2 + 2T4

2k
for any fixed c ∈ (0, 1) ,

where k = −(T3 + T4) > 0 , the following two cases:

Case 1. For µ =
T2 + 2T4

2k
> 1 , it follows that k <

T2 + 2T4
2

≤ T2 + 2T4 , so T2 + T3 + 3T4 ≥ 0 .

Therefore,

G(0) = T1 + T2 + T3 + T4 ≤ T1 + T2 + T3 + T4 + T2 + T3 + 3T4 = T1 + 2T2 + 2T3 + 4T4 = G(1).

Case 2. For ϑ =
T2 + 2T4

2k
≤ 1 , since T2 + 2T4

2
≥ 0 , we get that

(T2 + 2T4)
2

4k
≤ T2 + 2T4

2
≤ T2 + 2T4.

Therefore,

G(0) = T1 + T2 + T3 + T4 ≤ T1 + T2 + T3 + T4 +
(T2 + 2T4)

2

4k

= G

(
T2 + 2T4

2k

)
≤ T1 + 2T2 + T3 + 3T4.

By considering cases (iii) and (iv) for θ = 1 , 0 ≤ ϑ ≤ 1 and for fixed c ∈ (0, 1) , it follows that G(ϑ) gets its
maximum when T3 + T4 ≥ 0 , which means

max {G(ϑ) : ϑ ∈ [0, 1]} = G(1) = T1 + 2T2 + 2T3 + 4T4.
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Since H(1) ≤ G(1) for c ∈ [0, 1] , then max {F (θ, ϑ) : (θ, ϑ) ∈ [0, 1]× [0, 1]} = F (1, 1) , and thus the maximum
of F in the closed square [0, 1]× [0, 1] occurs at θ = 1 and ϑ = 1 .

Let the function K : [0, 1] → R defined by

K(c) : = B1 max {F (θ, ϑ) : (θ, ϑ) ∈ [0, 1]× [0, 1]} = B1F (1, 1)

= B1 (T1 + 2T2 + 2T3 + 4T4) .

Substituting the values of T1 , T2 , T3 , and T4 in the above function K , we have

K(c) = B1

{[ ∣∣∣∣∣−
(
µ2 + 3µ+ 2

)
B3

1

6(µ+ λ)4
+

B3

(µ+ 3λ)(µ+ λ)

∣∣∣∣∣
+ 2

(
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

)
+

2B1

2(µ+ 3λ)(µ+ λ)
+

B1

(2λ+ µ)2

]
c4

+

[
2

(
B2

1

4(µ+ λ)2(µ+ 2λ)
+

|B2|
(µ+ 3λ)(µ+ λ)

)
+

2B1

2(µ+ 3λ)(µ+ λ)
+

2B1

(2λ+ µ)2

]
c2

+
B1

(2λ+ µ)2

}
.

Setting c2 = t , and letting P , Q , R be given by (2.1), since P ≥ 0 , Q ≥ 0 , R ≥ 0 it follows that

max
{
Pt2 +Qt+R : t ∈ [0, 1]

}
= P +Q+R,

and consequently ∣∣a2a4 − a23
∣∣ ≤ B1(P +Q+R),

which completes our proof. 2
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