Second Hankel determinant for a subclass of analytic bi-univalent functions defined by subordination

Ahmad MOTAMEDNEZHAD ${ }^{1}$, Teodor BULBOACA ${ }^{2}$, Ebrahim ANALOUEI ADEGANI ${ }^{1, *}$, Nesa DIBAGAR ${ }^{1}$
${ }^{1}$ Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
${ }^{2}$ Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

| Received: 30.10 .2017 | Accepted/Published Online: 05.09 .2018 | Final Version: 27.09 .2018 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

In this work with a different technique we obtain upper bounds of the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for functions belonging to a comprehensive subclass of analytic bi-univalent functions, which is defined by subordinations in the open unit disk. Moreover, our results extend and improve some of the previously known ones.

Key words: Bi-univalent functions, Fekete-Szegő determinant, second Hankel determinant, differential subordination, Carathéodory functions

1. Introduction and preliminaries

Let \mathcal{A} be a class of analytic functions in the open unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathbb{D} \tag{1.1}
\end{equation*}
$$

and let \mathcal{S} be the class of functions $f \in \mathcal{A}$ that are univalent in \mathbb{D}. It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z, z \in \mathbb{D}, \quad \text { and } \quad f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

with the power series expansion

$$
\begin{equation*}
g(w):=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{D} if both f and f^{-1} are univalent in \mathbb{D}, and let Σ denote the class of bi-univalent functions in \mathbb{D}. Examples of functions in the class Σ are

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and so on. However, the familiar Koebe function is not a member of Σ [23].

[^0]Lewin [18] investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$ for all the functions belonging to Σ. Recently, many researchers have introduced and investigated several interesting subclasses of the bi-univalent function class Σ and they have found nonsharp estimates on the first two TaylorMaclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (see, for example, [1, 9, 16, 17, 23, 25, 26, 29]).

The problem of estimating the coefficients $\left|a_{n}\right|$ with $n \geq 4$ is presumably still an open problem. Using the Faber polynomial expansions, several authors obtained coefficient estimates of $\left|a_{n}\right|$ for the functions belonging in different subclasses of bi-univalent functions (see, for example, [10-13, 30]). First, we will recall some definitions and lemmas that will be used in this work.

One of the important tools in the theory of univalent functions are the Hankel determinants, which are used, for example, in showing that a function of bounded characteristic in \mathbb{U}, that is, a function that is a ratio of two bounded analytic functions, with its Laurent series around the origin having integral coefficients, is rational [5].

In 1976, Noonan and Thomas [19] defined the q th Hankel determinant for integers $n \geq 1$ and $q \geq 1$ by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right| \quad\left(a_{1}=1\right)
$$

Note that

$$
H_{2}(1)=\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right| \quad \text { and } \quad H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|
$$

where the Hankel determinants $H_{2}(1)=a_{3}-a_{2}^{2}$ and $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$ are well known as Fekete-Szegő and second Hankel determinant functionals, respectively. Furthermore, Fekete and Szegő [8] introduced the generalized functional $a_{3}-\lambda a_{2}^{2}$, where λ is some real number, and recently, problems in this direction have been considered by several authors (see, for example, [2, 6, 15, 20-22, 27, 28]).

Definition 1.1 [7] For two functions f and g, which are analytic in \mathbb{D}, we say that the function f is subordinate to g and write $f(z) \prec g(z)$ if there exists a Schwarz function w, that is, a function w analytic in \mathbb{D} with $w(0)=0$ and $|w(z)|<1$ in \mathbb{D}, such that $f(z)=g(w(z))$ for all $z \in \mathbb{D}$. In particular, if the function g is univalent in \mathbb{D} then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\mathbb{D}) \subseteq g(\mathbb{D})$.

Throughout this paper, we assume that the function φ is an analytic function with positive real part in the unit disk \mathbb{D}, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$, such that $\varphi(\mathbb{D})$ is symmetric with respect to the real axis. Such a function has the power series expansion of the form

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots, z \in \mathbb{D} \quad\left(B_{1}>0\right) \tag{1.3}
\end{equation*}
$$

Definition 1.2 [3, 24] A function $f \in \Sigma$ is said to be in the class $\mathcal{H}_{\Sigma}^{\mu}(\lambda, \varphi)$ if

$$
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1} \prec \varphi(z) \quad(\lambda \geq 1, \mu \geq 0)
$$

and

$$
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1} \prec \varphi(w) \quad(\lambda \geq 1, \mu \geq 0)
$$

where the function $g=f^{-1}$ is given by (1.2) (all powers are the principal ones).
Lemma 1.3 [7, p. 190] Let u be analytic function in the unit disk \mathbb{D}, with $u(0)=0$, and $|u(z)|<1$ for all $z \in \mathbb{D}$, with the power series expansion

$$
u(z)=\sum_{n=1}^{\infty} c_{n} z^{n}, \quad z \in \mathbb{D}
$$

Then $\left|c_{n}\right| \leq 1$ for all $n=1,2,3, \ldots$. Furthermore, $\left|c_{n}\right|=1$ for some $n(n=1,2,3, \ldots)$ if and only if $u(z)=e^{i \theta} z^{n}, \theta \in \mathbb{R}$.

Lemma 1.4 [14] If $\psi(z)=\sum_{n=1}^{\infty} \psi_{n} z^{n}, z \in \mathbb{D}$, is a Schwarz function, then

$$
\begin{aligned}
& \psi_{2}=x\left(1-\psi_{1}^{2}\right) \\
& \psi_{3}=\left(1-\psi_{1}^{2}\right)\left(1-|x|^{2}\right) s-\psi_{1}\left(1-\psi_{1}^{2}\right) x^{2}
\end{aligned}
$$

for some x, , with $|x| \leq 1$ and $|s| \leq 1$.
The object of the present paper is to determine the functional $\left|H_{2}(2)\right|=\left|a_{2} a_{4}-a_{3}^{2}\right|$ for functions belonging to a comprehensive subclass of analytic bi-univalent functions, which is defined by subordinations in the open unit disk. Furthermore, our results generalize and improve some of the previously known results.

2. The functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the class $\mathcal{H}_{\Sigma}^{\mu}(\lambda, \varphi)$

First we state our main results and two interesting special cases.
Theorem 2.1 If the function $f \in \mathcal{H}_{\Sigma}^{\mu}(\lambda, \varphi)$ is given by (1.1), then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq B_{1}(P+Q+R)
$$

where

$$
\begin{align*}
P & =\left|\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right|+2\left(\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}\right. \\
& \left.+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right)+\frac{2 B_{1}}{2(\mu+3 \lambda)(\mu+\lambda)}+\frac{B_{1}}{(2 \lambda+\mu)^{2}}, \tag{2.1}\\
Q & =2\left(\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right)+\frac{2 B_{1}}{2(\mu+3 \lambda)(\mu+\lambda)}+\frac{2 B_{1}}{(2 \lambda+\mu)^{2}}, \\
R & =\frac{B_{1}}{(2 \lambda+\mu)^{2}},
\end{align*}
$$

and B_{1}, B_{2}, B_{3} are given by (1.3).

If we take in Theorem 2.1 the function

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+2(1-\beta) z^{3}+\cdots, z \in \mathbb{D} \quad(0 \leq \beta<1)
$$

then we have the following special case:
Corollary 2.2 If the function $f \in \mathcal{H}_{\Sigma}^{\mu}\left(\lambda, \frac{1+(1-2 \beta) z}{1-z}\right)$, with $0 \leq \beta<1$, is given by (1.1), then

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & 4(1-\beta)^{2}\left[\left|\frac{-2\left(\mu^{2}+3 \mu+2\right)(1-\beta)^{2}}{3(\mu+\lambda)^{4}}+\frac{1}{(\mu+3 \lambda)(\mu+\lambda)}\right|\right. \\
& +\frac{2}{(\mu+3 \lambda)(\mu+\lambda)}+4\left(\frac{1-\beta}{2(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{1}{(\mu+3 \lambda)(\mu+\lambda)}\right) \\
& \left.+\frac{4}{(2 \lambda+\mu)^{2}}\right]
\end{aligned}
$$

Remark 2.3 Previous researchers got wrong results by miscalculation. We corrected their mistakes and obtained the correct result.
(i) Theorem 2.2 is a correction of the obtained estimates given in [20, Theorem 2.1];
(ii) Letting the value $\lambda=1$ in Theorem 2.2, we get a correction of the obtained estimates of [2, Theorem 2.1];
(iii) Setting the values $\lambda=1, \mu=0$ in Theorem 2.2, then we gain a correction of the obtained estimates that were given in [6, Theorem 2.1];
(iv) Taking the values $\lambda=1, \mu=0$, and $\beta=0$ in Theorem 2.2, then we obtain a correction of the obtained estimates given in [6, Corollary 2.2];
(v) Supposing the values $\lambda=1, \mu=1$ in Theorem 2.2, then we get a correction of the obtained estimates from [4, Theorem 1].

For the special case

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\frac{8 \alpha^{3}+4 \alpha}{6} z^{3}+\cdots, z \in \mathbb{D} \quad(0<\alpha \leq 1)
$$

where the power is the principal one, Theorem 2.1 reduces to the next result:
Corollary 2.4 If the function $f \in \mathcal{H}_{\Sigma}^{\mu}\left(\lambda,\left(\frac{1+z}{1-z}\right)^{\alpha}\right)$, with $0<\alpha \leq 1$, is given by (1.1), then

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & 4 \alpha^{2}\left[\left|\frac{-2\left(\mu^{2}+3 \mu+2\right) \alpha^{2}}{3(\mu+\lambda)^{4}}+\frac{2 \alpha^{2}+1}{3(\mu+3 \lambda)(\mu+\lambda)}\right|+\frac{2}{(\mu+3 \lambda)(\mu+\lambda)}\right. \\
& \left.+4\left(\frac{\alpha}{2(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\alpha}{(\mu+3 \lambda)(\mu+\lambda)}\right)+\frac{4}{(2 \lambda+\mu)^{2}}\right]
\end{aligned}
$$

Remark 2.5 Taking the values $\lambda=1, \mu=1$ in Theorem 2.4, then we obtain a correction of the obtained estimates given in [4, Theorem 2].

MOTAMEDNEZHAD et al./Turk J Math

3. Proof of the results

Proof of Theorem 2.1. If $f \in \mathcal{H}_{\Sigma}^{\mu}(\lambda, \varphi)$ then, by Definition 1.2 and Lemma 1.3, there exist two Schwartz functions u and v, of the form $u(z)=\sum_{n=1}^{\infty} p_{n} z^{n}$ and $v(z)=\sum_{n=1}^{\infty} q_{n} z^{n}, z \in \mathbb{D}$ such that

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}=\varphi(u(z)), z \in \mathbb{D} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}=\varphi(v(w)), w \in \mathbb{D} \tag{3.2}
\end{equation*}
$$

Using (1.3) we have

$$
\begin{equation*}
\varphi(u(z))=1+B_{1} c_{1} z+\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) z^{2}+\left(B_{1} c_{3}+2 c_{1} c_{2} B_{2}+B_{3} c_{1}^{3}\right) z^{3}+\cdots \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(v(w))=1+B_{1} d_{1} w+\left(B_{1} d_{2}+B_{2} d_{1}^{2}\right) w^{2}+\left(B_{1} d_{3}+2 d_{1} d_{2} B_{2}+B_{3} d_{1}^{3}\right) w^{3}+\cdots \tag{3.4}
\end{equation*}
$$

From (3.1), (3.3) and (3.2), (3.4), we get that, respectively,

$$
\begin{align*}
& (\lambda+\mu) a_{2}=B_{1} c_{1} \tag{3.5}\\
& (\mu+2 \lambda)\left[a_{3}+\frac{a_{2}^{2}}{2}(\mu-1)\right]=B_{1} c_{2}+B_{2} c_{1}^{2} \tag{3.6}\\
& (\mu+3 \lambda)\left[a_{4}+(\mu-1) a_{2} a_{3}+(\mu-1)(\mu-2) \frac{a_{2}^{3}}{6}\right]=B_{1} c_{3}+2 c_{1} c_{2} B_{2}+B_{3} c_{1}^{3} \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
& -(\lambda+\mu) a_{2}=B_{1} d_{1} \tag{3.8}\\
& (\mu+2 \lambda)\left[\frac{a_{2}^{2}}{2}(\mu+3)-a_{3}\right]=B_{1} d_{2}+B_{2} d_{1}^{2} \tag{3.9}\\
& (\mu+3 \lambda)\left[-a_{4}+(4+\mu) a_{2} a_{3}-(4+\mu)(5+\mu) \frac{a_{2}^{3}}{6}\right]=B_{1} d_{3}+2 d_{1} d_{2} B_{2}+B_{3} d_{1}^{3} \tag{3.10}
\end{align*}
$$

Now, from (3.5) and (3.8), we obtain

$$
\begin{equation*}
c_{1}=-d_{1} \tag{3.11}
\end{equation*}
$$

and

$$
a_{2}=\frac{B_{1} c_{1}}{\lambda+\mu} .
$$

In addition, from (3.6) and (3.9), we have

$$
a_{3}=\frac{B_{1}^{2} c_{1}^{2}}{(\mu+\lambda)^{2}}+\frac{B_{1}\left(c_{2}-d_{2}\right)}{2(2 \lambda+\mu)}
$$

From (3.7) and (3.10), we also get

$$
\begin{aligned}
a_{4}= & \frac{-\left(\mu^{2}+3 \mu-4\right) B_{1}^{3}}{6(\mu+\lambda)^{3}} c_{1}^{3}+\frac{5 B_{1}^{2}}{4(\mu+\lambda)(\mu+2 \lambda)} c_{1}\left(c_{2}-d_{2}\right)+\frac{B_{1}\left(c_{3}-d_{3}\right)}{2(\mu+3 \lambda)} \\
& +\frac{2 B_{2} c_{1}\left(c_{2}+d_{2}\right)}{2(\mu+3 \lambda)}+\frac{2 B_{3} c_{1}^{3}}{2(\mu+3 \lambda)}
\end{aligned}
$$

Therefore, we establish that

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \left\lvert\,\left[\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{4}}{6(\mu+\lambda)^{4}}+\frac{B_{3} B_{1}}{(\mu+3 \lambda)(\mu+\lambda)}\right] c_{1}^{4}+\frac{B_{1}^{3} c_{1}^{2}\left(c_{2}-d_{2}\right)}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}\right. \\
& \left.+\frac{B_{2} B_{1} c_{1}^{2}\left(c_{2}+d_{2}\right)}{(\mu+3 \lambda)(\mu+\lambda)}+\frac{B_{1}^{2} c_{1}\left(c_{3}-d_{3}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}-\frac{B_{1}^{2}\left(c_{2}-d_{2}\right)^{2}}{4(\mu+2 \lambda)^{2}} \right\rvert\, \tag{3.12}
\end{align*}
$$

According to Lemma 1.4, we have

$$
c_{2}=x\left(1-c_{1}^{2}\right) \quad \text { and } \quad d_{2}=y\left(1-d_{1}^{2}\right)
$$

so, from (3.11), we find that

$$
\begin{equation*}
c_{2}-d_{2}=\left(1-c_{1}^{2}\right)(x-y) \quad \text { and } \quad c_{2}+d_{2}=\left(1-c_{1}^{2}\right)(x+y) \tag{3.13}
\end{equation*}
$$

and further

$$
c_{3}=\left(1-c_{1}^{2}\right)\left(1-|x|^{2}\right) s-c_{1}\left(1-c_{1}^{2}\right) x^{2}
$$

and

$$
d_{3}=\left(1-d_{1}^{2}\right)\left(1-|y|^{2}\right) w-d_{1}\left(1-d_{1}^{2}\right) y^{2}
$$

where

$$
\begin{equation*}
c_{3}-d_{3}=\left(1-c_{1}^{2}\right)\left[\left(1-|x|^{2}\right) s-\left(1-|y|^{2}\right) w\right]-c_{1}\left(1-c_{1}^{2}\right)\left(x^{2}+y^{2}\right) \tag{3.14}
\end{equation*}
$$

for some x, y, s, and w, with $|x| \leq 1,|y| \leq 1,|s| \leq 1$, and $|w| \leq 1$. Using (3.13) and (3.14), in (3.12), we obtain

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & B_{1} \left\lvert\,\left[\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right] c_{1}^{4}\right. \\
& +\left[\frac{B_{1}^{2}(x-y)}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{B_{2}(x+y)}{(\mu+3 \lambda)(\mu+\lambda)}\right] c_{1}^{2}\left(1-c_{1}^{2}\right) \\
& -\frac{B_{1} c_{1}^{2}\left(1-c_{1}^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}\left(x^{2}+y^{2}\right)-\frac{B_{1}\left(1-c_{1}^{2}\right)^{2}}{4(\mu+2 \lambda)^{2}}(x-y)^{2} \\
& \left.+\frac{B_{1} c_{1}\left(1-c_{1}^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}\left[\left(1-|x|^{2}\right) s-\left(1-|y|^{2}\right) w\right] \right\rvert\,
\end{aligned}
$$

Setting $c=\left|c_{1}\right|$, since $\left|c_{1}\right| \leq 1$, then $c \in[0,1]$, and so we deduce that

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & B_{1}\left[\left|\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right| c^{4}\right. \\
& +\left[\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right] c^{2}\left(1+c^{2}\right)(|x|+|y|) \\
& +\frac{B_{1} c^{2}\left(1+c^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}\left(|x|^{2}+|y|^{2}\right)+\frac{B_{1}\left(1+c^{2}\right)^{2}}{4(2 \lambda+\mu)^{2}}(|x|+|y|)^{2} \\
& \left.+\frac{B_{1} c\left(1+c^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}\left[\left(1-|x|^{2}\right)|s|+\left(1-|y|^{2}\right)|w|\right]\right] \\
\leq & B_{1}\left[\left|\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right| c^{4}\right. \\
& +\left[\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right] c^{2}\left(1+c^{2}\right)(|x|+|y|) \\
& +\frac{B_{1} c^{2}\left(1+c^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}\left(|x|^{2}+|y|^{2}\right)+\frac{B_{1}\left(1+c^{2}\right)^{2}}{4(2 \lambda+\mu)^{2}}(|x|+|y|)^{2} \\
& \left.+\frac{B_{1} c\left(1+c^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}\left[\left(1-|x|^{2}\right)+\left(1-|y|^{2}\right)\right]\right] \\
= & B_{1}\left[\left|\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right| c^{4}+\frac{B_{1} c\left(1+c^{2}\right)}{(\mu+3 \lambda)(\mu+\lambda)}\right. \\
& +\left[\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right] c^{2}\left(1+c^{2}\right)(|x|+|y|) \\
& \left.+\left[\frac{B_{1} c^{2}\left(1+c^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}-\frac{B_{1} c\left(1+c^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)}\right]\left(|x|^{2}+|y|^{2}\right)+\frac{B_{1}\left(1+c^{2}\right)^{2}}{4(2 \lambda+\mu)^{2}}(|x|+|y|)^{2}\right] .
\end{aligned}
$$

Now, for $\theta=|x| \leq 1$ and $\vartheta=|y| \leq 1$, we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq B_{1} F(\theta, \vartheta), \quad F(\theta, \vartheta):=T_{1}+(\theta+\vartheta) T_{2}+\left(\theta^{2}+\vartheta^{2}\right) T_{3}+(\theta+\vartheta)^{2} T_{4}
$$

where

$$
\begin{aligned}
& T_{1}=T_{1}(c)=\left|\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right| c^{4}+\frac{B_{1} c\left(1+c^{2}\right)}{(\mu+3 \lambda)(\mu+\lambda)} \geq 0, \\
& T_{2}=T_{2}(c)=\left[\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right] c^{2}\left(1+c^{2}\right) \geq 0, \\
& T_{3}=T_{3}(c)=\frac{B_{1} c(c-1)\left(1+c^{2}\right)}{2(\mu+3 \lambda)(\mu+\lambda)} \leq 0, \\
& T_{4}=T_{4}(c)=\frac{B_{1}\left(1+c^{2}\right)^{2}}{4(2 \lambda+\mu)^{2}} \geq 0 .
\end{aligned}
$$

We now need to determine the maximum of the function $F(\theta, \vartheta)$ on the closed square $[0,1] \times[0,1]$ for $c \in[0,1]$. For this work, we must investigate the maximum of $F(\theta, \vartheta)$ according to $c \in(0,1), c=0$, and $c=1$, taking into the account the sign of $F_{\theta \theta} F_{\vartheta \vartheta}-\left(F_{\theta \vartheta}\right)^{2}$.

First, if we let $c=1$, then we obtain

$$
\begin{aligned}
F(\theta, \vartheta)= & \left|\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right|+\frac{2 B_{1}}{(\mu+3 \lambda)(\mu+\lambda)} \\
& +2\left[\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right](\theta+\vartheta)+\frac{B_{1}}{(2 \lambda+\mu)^{2}}(\theta+\vartheta)^{2}
\end{aligned}
$$

and hence we can see easily that

$$
\begin{aligned}
& \max \{F(\theta, \vartheta):(\theta, \vartheta) \in[0,1] \times[0,1]\}=F(1,1) \\
= & \left|\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right|+\frac{2 B_{1}}{(\mu+3 \lambda)(\mu+\lambda)} \\
& +4\left[\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right]+\frac{4 B_{1}}{(2 \lambda+\mu)^{2}} .
\end{aligned}
$$

Second, letting $c=0$, then we have

$$
F(\theta, \vartheta)=\frac{B_{1}}{4(2 \lambda+\mu)^{2}}(\theta+\vartheta)^{2}
$$

and we can see easily that

$$
\max \{F(\theta, \vartheta):(\theta, \vartheta) \in[0,1] \times[0,1]\}=F(1,1)=\frac{B_{1}}{(2 \lambda+\mu)^{2}}
$$

Finally, let us consider the case $c \in(0,1)$. Since $T_{3}+2 T_{4}>0$ and $T_{3}<0$, we conclude that

$$
F_{\theta \theta} F_{\vartheta \vartheta}-\left(F_{\theta \vartheta}\right)^{2}<0,
$$

and thus the function F cannot have a local maximum in the interior of the square $[0,1] \times[0,1]$.
For $\theta=0$ and $0 \leq \vartheta \leq 1$ (similarly for $\vartheta=0$ and $0 \leq \theta \leq 1$), we get

$$
H(\vartheta):=F(0, \vartheta)=\left(T_{3}+T_{4}\right) \vartheta^{2}+T_{2} \vartheta+T_{1}
$$

(i) If $T_{3}+T_{4} \geq 0$, it is clear that $H^{\prime}(\vartheta)=2\left(T_{3}+T_{4}\right) \vartheta+T_{2}>0$ for $0<\vartheta<1$ and any fixed $c \in(0,1)$; that is, $H(\vartheta)$ is an increasing function. Hence, for fixed $c \in(0,1)$, the maximum of $H(\vartheta)$ occurs at $\vartheta=1$, and then

$$
\max \{H(\vartheta): \vartheta \in[0,1]\}=H(1)=T_{1}+T_{2}+T_{3}+T_{4}
$$

(ii) If $T_{3}+T_{4}<0$, we consider for critical point $\vartheta=\frac{-T_{2}}{2\left(T_{3}+T_{4}\right)}=\frac{T_{2}}{2 k}$ for fixed $c \in(0,1)$, where $k=-\left(T_{3}+T_{4}\right)>0$, the following two cases:

Case 1. For $\vartheta=\frac{T_{2}}{2 k}>1$, it follows that $k<\frac{T_{2}}{2} \leq T_{2}$, and so $T_{2}+T_{3}+T_{4} \geq 0$. Therefore,

$$
H(0)=T_{1} \leq T_{1}+T_{2}+T_{3}+T_{4}=H(1)
$$

Case 2. For $\vartheta=\frac{T_{2}}{2 k} \leq 1$, since $\frac{T_{2}}{2} \geq 0$, we get $\frac{T_{2}^{2}}{4 k} \leq \frac{T_{2}}{2} \leq T_{2}$. Also, we have $H(1)=T_{1}+T_{2}+T_{3}+T_{4} \leq$ $T_{1}+T_{2}$, and hence

$$
H(0)=T_{1} \leq T_{1}+\frac{T_{2}^{2}}{4 k}=H\left(\frac{T_{2}}{2 k}\right) \leq T_{1}+T_{2}
$$

By considering cases (i) and (ii), for $\theta=0,0 \leq \vartheta \leq 1$ and for fixed $c \in(0,1)$, it follows that $H(\vartheta)$ gets its maximum when $T_{3}+T_{4} \geq 0$, which means

$$
\max \{H(\vartheta): \vartheta \in[0,1]\}=H(1)=T_{1}+T_{2}+T_{3}+T_{4}
$$

For $\theta=1$ and $0 \leq \vartheta \leq 1$ (similarly for $\vartheta=1$ and $0 \leq \theta \leq 1)$, we get

$$
G(\vartheta):=F(1, \vartheta)=\left(T_{3}+T_{4}\right) \vartheta^{2}+\left(T_{2}+2 T_{4}\right) \vartheta+T_{1}+T_{2}+T_{3}+T_{4}
$$

(iii) If $T_{3}+T_{4} \geq 0$, it is clear that $G^{\prime}(\vartheta)=2\left(T_{3}+T_{4}\right) \vartheta+T_{2}+2 T_{4}>0$ for $0<\vartheta<1$ and any fixed $c \in(0,1)$; that is, $G(\vartheta)$ is an increasing function. Hence, for fixed $c \in(0,1)$, the maximum of $G(\vartheta)$ occurs at $\vartheta=1$, and

$$
\max \{G(\vartheta): \vartheta \in[0,1]\}=G(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

(iv) If $T_{3}+T_{4}<0$, then we consider for critical point $\vartheta=\frac{-\left(T_{2}+2 T_{4}\right)}{2\left(T_{3}+T_{4}\right)}=\frac{T_{2}+2 T_{4}}{2 k}$ for any fixed $c \in(0,1)$, where $k=-\left(T_{3}+T_{4}\right)>0$, the following two cases:

Case 1. For $\mu=\frac{T_{2}+2 T_{4}}{2 k}>1$, it follows that $k<\frac{T_{2}+2 T_{4}}{2} \leq T_{2}+2 T_{4}$, so $T_{2}+T_{3}+3 T_{4} \geq 0$. Therefore,

$$
G(0)=T_{1}+T_{2}+T_{3}+T_{4} \leq T_{1}+T_{2}+T_{3}+T_{4}+T_{2}+T_{3}+3 T_{4}=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}=G(1)
$$

Case 2. For $\vartheta=\frac{T_{2}+2 T_{4}}{2 k} \leq 1$, since $\frac{T_{2}+2 T_{4}}{2} \geq 0$, we get that

$$
\frac{\left(T_{2}+2 T_{4}\right)^{2}}{4 k} \leq \frac{T_{2}+2 T_{4}}{2} \leq T_{2}+2 T_{4}
$$

Therefore,

$$
\begin{aligned}
G(0) & =T_{1}+T_{2}+T_{3}+T_{4} \leq T_{1}+T_{2}+T_{3}+T_{4}+\frac{\left(T_{2}+2 T_{4}\right)^{2}}{4 k} \\
& =G\left(\frac{T_{2}+2 T_{4}}{2 k}\right) \leq T_{1}+2 T_{2}+T_{3}+3 T_{4}
\end{aligned}
$$

By considering cases (iii) and (iv) for $\theta=1,0 \leq \vartheta \leq 1$ and for fixed $c \in(0,1)$, it follows that $G(\vartheta)$ gets its maximum when $T_{3}+T_{4} \geq 0$, which means

$$
\max \{G(\vartheta): \vartheta \in[0,1]\}=G(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

Since $H(1) \leq G(1)$ for $c \in[0,1]$, then $\max \{F(\theta, \vartheta):(\theta, \vartheta) \in[0,1] \times[0,1]\}=F(1,1)$, and thus the maximum of F in the closed square $[0,1] \times[0,1]$ occurs at $\theta=1$ and $\vartheta=1$.

Let the function $K:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
K(c): & =B_{1} \max \{F(\theta, \vartheta):(\theta, \vartheta) \in[0,1] \times[0,1]\}=B_{1} F(1,1) \\
& =B_{1}\left(T_{1}+2 T_{2}+2 T_{3}+4 T_{4}\right)
\end{aligned}
$$

Substituting the values of T_{1}, T_{2}, T_{3}, and T_{4} in the above function K, we have

$$
\begin{aligned}
& K(c)=B_{1}\left\{\left[\left|\frac{-\left(\mu^{2}+3 \mu+2\right) B_{1}^{3}}{6(\mu+\lambda)^{4}}+\frac{B_{3}}{(\mu+3 \lambda)(\mu+\lambda)}\right|\right.\right. \\
& \left.+2\left(\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right)+\frac{2 B_{1}}{2(\mu+3 \lambda)(\mu+\lambda)}+\frac{B_{1}}{(2 \lambda+\mu)^{2}}\right] c^{4} \\
& +\left[2\left(\frac{B_{1}^{2}}{4(\mu+\lambda)^{2}(\mu+2 \lambda)}+\frac{\left|B_{2}\right|}{(\mu+3 \lambda)(\mu+\lambda)}\right)+\frac{2 B_{1}}{2(\mu+3 \lambda)(\mu+\lambda)}+\frac{2 B_{1}}{(2 \lambda+\mu)^{2}}\right] c^{2} \\
& \left.+\frac{B_{1}}{(2 \lambda+\mu)^{2}}\right\}
\end{aligned}
$$

Setting $c^{2}=t$, and letting P, Q, R be given by (2.1), since $P \geq 0, Q \geq 0, R \geq 0$ it follows that

$$
\max \left\{P t^{2}+Q t+R: t \in[0,1]\right\}=P+Q+R
$$

and consequently

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq B_{1}(P+Q+R)
$$

which completes our proof.

References

[1] Ali RM, Lee SK, Ravichandran V, Subramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl Math Lett 2012; 25: 344-351.
[2] Altinkaya Ş, Yalçın S. Upper bound of second Hankel determinant for bi-Bazilević functions. Mediterr J Math 2016; 13: 4081-4090.
[3] Bulut S. Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product. J Complex Anal 2014; 2014: 302019.
[4] Çağlar M, Deniz E, Srivastava HM. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk J Math 2017; 41: 694-706.
[5] Cantor DG. Power series with integral coefficients. B Am Math Soc 1963; 69: 362-366.
[6] Deniz E, Çağlar M, Orhan H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl Math Comput 2015; 271: 301-307.
[7] Duren PL. Univalent Functions. Grundlehren der mathematischen Wissenschaften, Band 259. Berlin, Germany: Springer-Verlag, 1983.
[8] Fekete M, Szegő G. Eine Bemerkung über ungerade schlichte Funktionen. J London Math Soc 1933; 8: 85-89 (in German).

MOTAMEDNEZHAD et al./Turk J Math

[9] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Appl Math Lett 2011; 24: 1569-1573.
[10] Hamidi SG, Halim SA, Jahangiri JM. Coefficient estimates for a class of meromorphic bi-univalent functions. C R Math Acad Sci Paris Ser I 2013; 351: 349-352.
[11] Hamidi SG, Jahangiri JM. Faber polynomial coefficients of bi-subordinate functions. C R Math Acad Sci Paris 2016; 354: 365-370.
[12] Jahangiri JM, Hamidi SG. Coefficient estimates for certain classes of bi-univalent functions. Int J Math Math Sci 2013; 2013: 190560.
[13] Jahangiri JM, Hamidi SG, Halim SA. Coefficients of bi-univalent functions with positive real part derivatives. Bull Malays Math Sci Soc 2014; 37: 633-640.
[14] Kanas S, Analouei Adegani E, Zireh A. An unified approach to second Hankel determinant of bi-subordinate functions, Mediterr J Math 2017; 14: 233.
[15] Kanas S, Darwish HE. Fekete-Szegő problem for starlike and convex functions of complex order. Appl Math Lett 2010; 23: 777-782.
[16] Kanas S, Kim SA, Sivasubramanian S. Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent function. Ann Polon Math 2015; 113: 295-304.
[17] Kedzierawski AW. Some remarks on bi-univalent functions. Ann Univ Mariae Curie-Skłodowska Sect A 1985; 39: 77-81.
[18] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
[19] Noonan JW, Thomas DK. On the second Hankel determinant of areally mean p-valent functions. T Am Math Soc 1976; 223: 337-346.
[20] Orhan H, Magesh N, Balaji VK. Second Hankel Determinant for certain class of bi-univalent functions. Turk J Math 2015; 40: 679-687.
[21] Orhan H, Magesh N, Yamini J. Bounds for the second Hankel determinant of certain bi-univalent functions. Turk J Math 2016; 40: 679-687.
[22] Radhika V, Sivasubramanian S, Murugusundaramoorthy G, Jahangiri JM. Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation. J Complex Anal 2016; 2016: 4960704.
[23] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and biunivalent functions. Appl Math Lett 2010; 23; 1188-1192.
[24] Tang H, Deng GT, Li SH. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J Inequal Appl 2013; 2013: 317.
[25] Xu QH, Gui YC, Srivastava HM. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl Math Lett 2012; 25: 990-994.
[26] Xu QH, Xiao HG, Srivastava HM. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl Math Comput 2012; 218: 11461-11465.
[27] Zaprawa P. On the Fekete-Szegő problem for classes of bi-univalent functions. Bull Belg Math Soc Simon Stevin 2014; 21: 169-178.
[28] Zaprawa P. Estimates of initial coefficients for bi-univalent functions. Abstr Appl Anal 2014; 2014: 357480.
[29] Zireh A, Analouei Adegani E. Coefficient estimates for a subclass of analytic and bi-univalent functions. Bull Iranian Math Soc 2016; 42: 881-889.
[30] Zireh A, Analouei Adegani E, Bulut S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination. Bull Belg Math Soc Simon Stevin 2016; 23: 487-504.

[^0]: *Correspondence: analoey.ebrahim@gmail.com
 2010 AMS Mathematics Subject Classification: Primary 30C45; Secondary 30C50, 30C80

