## Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tüвітак
Research Article

Turk J Math
(2018) 42: 2809 - 2818
© TÜBİTAK
doi:10.3906/mat-1711-36

# On the coefficient problem for close-to-convex functions 

Katarzyna TRĄBKA-WIĘCEAW ${ }^{1, *}$, Paweł ZAPRAWA ${ }^{2}$<br>Katarzyna Trąbka-Więcław, Lublin University of Technology, Mechanical Engineering Faculty, ul. Nadbystrzycka 36, 20-618 Lublin, Poland<br>${ }^{2}$ Paweł Zaprawa, Lublin University of Technology, Mechanical Engineering Faculty, ul. Nadbystrzycka 36, 20-618 Lublin, Poland

| Received: 09.11.2017 $\quad$ Accepted/Published Online: 05.09.2018 | • Final Version: 27.09 .2018 |
| :--- | :--- | :--- | :--- | :--- |


#### Abstract

This paper is concerned with the problem of estimating $\left|a_{4}-a_{2} a_{3}\right|$, where $a_{k}$ are the coefficients of a given close-to-convex function. The bounds of this expression for various classes of analytic functions have been applied to estimate the third Hankel determinant $H_{3}(1)$. The results for two subclasses of the class $\mathcal{C}$ of all close-to-convex functions are sharp. This bound is equal to 2 . It is conjectured that this number is also the exact bound of $\left|a_{4}-a_{2} a_{3}\right|$ for the whole class $\mathcal{C}$.


Key words: Close-to-convex functions, coefficient problem

## 1. Introduction

Let $\mathcal{A}$ be the family of all functions analytic in the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ given by the series expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Let $\mathcal{S}^{*}$ denote the class of starlike functions in $\mathcal{A}$ and let $\mathcal{P}$ denote the class of all analytic functions $p$ with a positive real part in $\Delta$ satisfying the normalization condition $p(0)=1$.

Given $\beta \in(-\pi / 2, \pi / 2)$ and $g \in \mathcal{S}^{*}$, a function $f \in \mathcal{A}$ is called close-to-convex with argument $\beta$ with respect to $g$ if

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{e^{i \beta} z f^{\prime}(z)}{g(z)}\right\}>0, \quad z \in \Delta \tag{1.2}
\end{equation*}
$$

Let $\mathcal{C}_{\beta}(g)$ be the class of all such functions. Moreover, let

$$
\mathcal{C}(g)=\bigcup_{\beta \in(-\pi / 2, \pi / 2)} \mathcal{C}_{\beta}(g) \quad \text { and } \quad \mathcal{C}_{\beta}=\bigcup_{g \in \mathcal{S}^{*}} \mathcal{C}_{\beta}(g)
$$

Let $\mathcal{C}$ denote the family of all close-to-convex functions (see $[3,5]$ ). It is obvious that

$$
\mathcal{C}=\bigcup_{\beta \in(-\pi / 2, \pi / 2)} \mathcal{C}_{\beta}=\bigcup_{g \in \mathcal{S}^{*}} \mathcal{C}(g)
$$

[^0]The number $e^{i \beta}$ is necessary in (1.2) for the definition of close-to-convex function. In addition, this factor significantly complicates the task of estimating some coefficient functionals. Therefore, to simplify the calculation, many authors take $\beta=0$ or use a specific starlike function, for example the Koebe function

$$
\begin{equation*}
k(z)=\frac{z}{(1-z)^{2}}, \quad z \in \Delta \tag{1.3}
\end{equation*}
$$

Then inequality (1.2) becomes:

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>0, \quad z \in \Delta \tag{1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathfrak{R e}\left\{e^{i \beta}(1-z)^{2} f^{\prime}(z)\right\}>0, \quad z \in \Delta \tag{1.5}
\end{equation*}
$$

respectively, and defines the related subclass of close-to-convex functions $\mathcal{C}_{0}$ and $\mathcal{C}(k)$, respectively. Let us cite the most important results concerning the estimates of some coefficient functionals within the class $\mathcal{C}$. Keogh and Merkes in [6] solved the Fekete-Szegö problem in the class $\mathcal{C}_{0}$. Koepf in [7] extended this result for the class $\mathcal{C}$. Kowalczyk and Lecko, in [9], studied the Fekete-Szegö problem in the class $\mathcal{C}(k)$ of all close-to-convex functions with respect to the Koebe function (and in [8], in the subclass of close-to-convex with respect to other starlike functions). Recently, several authors have extensively investigated the Hankel determinant for close-to-convex functions (see for example $[13,15,16,18]$ ) and the logarithmic coefficients of close-to-convex functions (see for example [20]).

The main aim of this paper was to determine the estimates of the expression $\left|a_{4}-a_{2} a_{3}\right|$ for the classes $\mathcal{C}_{0}, \mathcal{C}(k)$, and $\mathcal{C}$. The functional $\left|a_{4}-a_{2} a_{3}\right|$ has been estimated for many classes. Babalola, in [1], derived the exact bounds of $\left|a_{4}-a_{2} a_{3}\right|$ for the class of starlike functions, for the class of convex functions and for the class of functions whose derivative has a positive real part; these values are equal to $2,4 / 9 \sqrt{3}$, and $5 \sqrt{5} / 18 \sqrt{3}$, respectively. In [14], Mishra et al. proved that this bound in the class of starlike functions with respect to symmetric points is $1 / 2$ and in the class of convex functions with respect to symmetric points is $4 / 27$. Krishna et al. published the same results in [21]. In [17], Raza and Malik, found that $\left|a_{4}-a_{2} a_{3}\right| \leq 1 / 6$ for the class of lemniscate starlike functions (for the definition of the class see [19]). All these authors used this functional $\left|a_{4}-a_{2} a_{3}\right|$ to estimate the third Hankel determinant $H_{3}(1)$.

Taking into account (1.2), we can write

$$
\begin{equation*}
\frac{e^{i \beta} z f^{\prime}(z)}{g(z)}=h(z) \cos \beta+i \sin \beta \tag{1.6}
\end{equation*}
$$

where $h \in \mathcal{P}$. If $g \in \mathcal{S}^{*}$ and $h \in \mathcal{P}$ are given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{1.8}
\end{equation*}
$$

then (1.6) leads to

$$
\begin{equation*}
z+\sum_{n=2}^{\infty} n a_{n} z^{n}=\left(z+\sum_{n=2}^{\infty} b_{n} z^{n}\right)\left(1+e^{-i \beta} \cos \beta \sum_{n=1}^{\infty} p_{n} z^{n}\right) \tag{1.9}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
n a_{n}=b_{n}+e^{-i \beta} \cos \beta\left(p_{n-1}+\sum_{k=2}^{n-1} b_{k} p_{n-k}\right) \tag{1.10}
\end{equation*}
$$

## 2. Preliminary results

We shall need the following results. The first one is known as Caratheodory's lemma (for example see [2]). The second one is by Libera and Złotkiewicz [10, 11].

Lemma 2.1 ([2]) If $h \in \mathcal{P}$ is given by (1.8), then the sharp estimate $\left|p_{n}\right| \leq 2$ holds for $n \geq 1$.
Lemma $2.2([\mathbf{1 0}, \mathbf{1 1}])$ Let $h$ be given by (1.8) and $p_{1} \in[0,2]$. Then $h \in \mathcal{P}$ if and only if

$$
2 p_{2}=p_{1}^{2}+\left(4-p_{1}^{2}\right) x
$$

and

$$
4 p_{3}={p_{1}}^{3}+2\left(4-{p_{1}}^{2}\right) p_{1} x-\left(4-p_{1}^{2}\right) p_{1} x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z
$$

for some complex numbers $x, z$ such that $|x| \leq 1,|z| \leq 1$.

Remark. Given $g \in \mathcal{S}^{*}$ defined by (1.7), the functional $\left|b_{4}-\mu b_{2} b_{3}\right|, \mu \in \mathbb{R}$ is invariant under rotation. This means that for $g_{\phi}(z)=e^{-i \phi} g\left(z e^{i \phi}\right), \phi \in \mathbb{R}$ of the form $g_{\phi}(z)=z+c_{2} z^{2}+c_{3} z^{3}+\ldots$ we have $\left|b_{4}-\mu b_{2} b_{3}\right|=\left|c_{4}-\mu c_{2} c_{3}\right|$. Similarly, it can be proved that $\left|p_{3}-\mu p_{1} p_{2}\right|$ for $h \in \mathcal{P}$ defined by (1.8) is invariant under rotation.

To obtain our results, we also need a few sharp estimates.
Lemma 2.3 Let $h \in \mathcal{P}$ be given by (1.8) and $\mu \in[1 / 2,1]$, then

$$
\left|p_{3}-\mu p_{1} p_{2}\right| \leq \begin{cases}\frac{1}{4} \mu^{2} p^{3}-\frac{1}{2} \mu(2-\mu) p^{2}+2, & p \in\left[0, \frac{2}{2-\mu}\right] \\ (3-2 \mu) p-(1-\mu) p^{3}, & p \in\left[\frac{2}{2-\mu}, 2\right]\end{cases}
$$

where $p=\left|p_{1}\right|$.
Proof From Lemma 2.2, we have

$$
\begin{align*}
\left|p_{3}-\mu p_{1} p_{2}\right| & \left.=\frac{1}{4} \right\rvert\,(1-2 \mu) p_{1}^{3}+2(1-\mu)\left(4-p_{1}^{2}\right) p_{1} x-\left(4-p_{1}^{2}\right) p_{1} x^{2}  \tag{2.1}\\
& +2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z \mid
\end{align*}
$$

Applying the triangle inequality in (2.1) with $|x|=\varrho, \varrho \in[0,1]$ and $\left|p_{1}\right|=p, p \in[0,2]$, we obtain

$$
\begin{aligned}
\left|p_{3}-\mu p_{1} p_{2}\right| & \leq \frac{1}{4}\left[(2 \mu-1) p^{3}+2(1-\mu)\left(4-p^{2}\right) p \varrho+\left(4-p^{2}\right) p \varrho^{2}+2\left(4-p^{2}\right)\left(1-\varrho^{2}\right)\right] \\
& =\frac{1}{4}\left[(2 \mu-1) p^{3}+2\left(4-p^{2}\right)+2(1-\mu)\left(4-p^{2}\right) p \varrho-\left(4-p^{2}\right)(2-p) \varrho^{2}\right] \equiv w(\varrho)
\end{aligned}
$$

(with the equality when $x=-\varrho$ and $z=-1$ ). If $p<\frac{2}{2-\mu}$, then

$$
w(\varrho) \leq w\left(\frac{2}{2-\mu}\right)=\frac{1}{4} \mu^{2} p^{3}-\frac{1}{2} \mu(2-\mu) p^{2}+2
$$

If $p \geq \frac{2}{2-\mu}$, then

$$
w(\varrho) \leq w(1)=(3-2 \mu) p-(1-\mu) p^{3} .
$$

Therefore, for $\mu \in[1 / 2,1]$, we get the desired result.
In the second case, the equality holds when $\varrho=1$, i.e., $x=-1$. Then $p_{2}=p_{1}{ }^{2}-2$. This means that the extremal function is

$$
h_{t}(z)=\frac{1-z^{2}}{1-2 t z+z^{2}}, \quad t \in[-1,1] .
$$

It is easy to check that

$$
\begin{align*}
\max \left\{\left|p_{3}-\mu p_{1} p_{2}\right|: h \in \mathcal{P}\right\} & =\max \left\{\left|p_{3}-\mu p_{1} p_{2}\right|:\left|p_{1}\right| \in[0,2]\right\}  \tag{2.2}\\
& =\max \{2,4 \mu-2\}=2
\end{align*}
$$

which is the result obtained by Hayami and Owa [4].
From Lemma 2.3, we can easily get the following corollary:
Corollary 2.4 Let $h \in \mathcal{P}$ be given by (1.8), then $\left|p_{3}-\frac{2}{3} p_{1} p_{2}\right| \leq G(p)$, where

$$
G(p)= \begin{cases}\frac{1}{9} p^{3}-\frac{4}{9} p^{2}+2, & p \in[0,3 / 2]  \tag{2.3}\\ \frac{5}{3} p-\frac{1}{3} p^{3}, & p \in[3 / 2,2]\end{cases}
$$

and $p=\left|p_{1}\right|$.
Lemma 2.5 Let $g \in \mathcal{S}^{*}$ be given by (1.7), then $\left|b_{4}-\frac{2}{3} b_{2} b_{3}\right| \leq H(q)$, where

$$
H(q)= \begin{cases}\frac{1}{48}(2+q)\left(9 q^{2}-8 q+16\right), & q \in[0,4 / 5]  \tag{2.4}\\ \frac{1}{3} q\left(4-q^{2}\right), & q \in[4 / 5,2]\end{cases}
$$

and $q=\left|b_{2}\right|, q \in[0,2]$.
Proof Every function $g \in \mathcal{S}^{*}$ satisfies in $\Delta$ the equality

$$
\begin{equation*}
z g^{\prime}(z)=g(z) Q(z) \tag{2.5}
\end{equation*}
$$

where $Q \in \mathcal{P}$. Let $Q(z)=1+\sum_{k=1}^{\infty} q_{n} z^{n}$. Equating the coefficients in (2.5) gives

$$
\begin{equation*}
b_{2}=q_{1}, \quad b_{3}=\frac{1}{2}\left(q_{2}+q_{1}^{2}\right), \quad b_{4}=\frac{1}{3} q_{3}+\frac{1}{2} q_{1} q_{2}+\frac{1}{6} q_{1}^{3} . \tag{2.6}
\end{equation*}
$$

Applying (2.6), we get

$$
\begin{equation*}
\left|b_{4}-\frac{2}{3} b_{2} b_{3}\right|=\frac{1}{3}\left|q_{3}+\frac{1}{2} q_{1} q_{2}-\frac{1}{2} q_{1}^{3}\right| . \tag{2.7}
\end{equation*}
$$

Now, we use Lemma 2.2 to get

$$
\left|b_{4}-\frac{2}{3} b_{2} b_{3}\right|=\frac{1}{12}\left|\left(4-q_{1}^{2}\right)\left[3 q_{1} x-q_{1} x^{2}+2\left(1-|x|^{2}\right) z\right]\right| .
$$

Since the functional $\left|b_{4}-\frac{2}{3} b_{2} b_{3}\right|$ is invariant under rotation, we may write $q_{1}=q, q \in[0,2]$. Hence, applying the triangle inequality with $|x|=\varrho, \varrho \in[0,1]$, we get

$$
\begin{aligned}
\left|b_{4}-\frac{2}{3} b_{2} b_{3}\right| & =\frac{1}{12}\left(4-q^{2}\right)\left|3 q x-q x^{2}+2\left(1-|x|^{2}\right) z\right| \\
& \leq \frac{1}{12}\left(4-q^{2}\right)\left[3 q \varrho+q \varrho^{2}+2\left(1-\varrho^{2}\right)\right]=\frac{1}{12}\left(4-q^{2}\right)\left[(q-2) \varrho^{2}+3 q \varrho+2\right]
\end{aligned}
$$

(with the equality when $x=-\varrho$ and $z=-1$ ).
Let $w(\varrho)=(q-2) \varrho^{2}+3 q \varrho+2$. If $q \in[0,4 / 5)$, then

$$
w(\varrho) \leq w\left(\frac{3 q}{4-2 q}\right)=\frac{9 q^{2}-8 q+16}{4(2-q)}
$$

If $q \in[4 / 5,2]$, then

$$
w(\varrho) \leq w(1)=4 q
$$

Therefore,

$$
\left|b_{4}-\frac{2}{3} b_{2} b_{3}\right| \leq \begin{cases}\frac{1}{48}(2+q)\left(9 q^{2}-8 q+16\right), & q \in[0,4 / 5] \\ \frac{1}{3} q\left(4-q^{2}\right), & q \in[4 / 5,2]\end{cases}
$$

This completes the proof of Lemma 2.5.
In the second case, the equality holds when $\varrho=1$, i.e., $x=-1$. Then $b_{3}=b_{2}{ }^{2}-1$, which means that the extremal function is

$$
g_{t}(z)=\frac{z}{1-2 t z+z^{2}}, \quad t \in[-1,1] .
$$

## 3. Main results

Theorem 3.1 If $f \in \mathcal{C}_{0}$ is given by (1.1), then

$$
\left|a_{4}-a_{2} a_{3}\right| \leq 2
$$

This result is sharp.
Proof From (1.4), we can write

$$
\begin{equation*}
z f^{\prime}(z)=g(z) h(z) \tag{3.1}
\end{equation*}
$$

where $h \in \mathcal{P}$. Let $g$ and $h$ be given by (1.7) and (1.8), respectively. Equating the coefficients in (3.1) gives

$$
\begin{equation*}
2 a_{2}=b_{2}+p_{1}, \quad 3 a_{3}=b_{3}+b_{2} p_{1}+p_{2}, \quad 4 a_{4}=b_{4}+b_{3} p_{1}+b_{2} p_{2}+p_{3} \tag{3.2}
\end{equation*}
$$

Therefore, using (3.2), we have

$$
\begin{aligned}
\left|a_{4}-a_{2} a_{3}\right| & =\left\lvert\, \frac{1}{4}\left(b_{4}-\frac{2}{3} b_{2} b_{3}\right)+\frac{1}{4}\left(p_{3}-\frac{2}{3} p_{1} p_{2}\right)+\frac{1}{12} p_{1}\left(b_{3}-b_{2}^{2}\right)\right. \\
& \left.+\frac{1}{12} b_{2}\left(p_{2}-p_{1}^{2}\right)-\frac{1}{12} p_{1} b_{2}\left(p_{1}+b_{2}\right) \right\rvert\,
\end{aligned}
$$

Applying the triangle inequality, we obtain

$$
\begin{align*}
\left|a_{4}-a_{2} a_{3}\right| & \leq \frac{1}{4}\left|b_{4}-\frac{2}{3} b_{2} b_{3}\right|+\frac{1}{4}\left|p_{3}-\frac{2}{3} p_{1} p_{2}\right|+\frac{1}{12}\left|p_{1}\right|\left|b_{3}-b_{2}^{2}\right|  \tag{3.3}\\
& +\frac{1}{12}\left|b_{2}\right|\left|p_{2}-p_{1}^{2}\right|+\frac{1}{12}\left|p_{1}\right|\left|b_{2}\right|\left|p_{1}+b_{2}\right|
\end{align*}
$$

It is well known (see [12]) that

$$
\begin{equation*}
\left|p_{2}-p_{1}^{2}\right| \leq 2 \tag{3.4}
\end{equation*}
$$

for $h \in \mathcal{P}$. Moreover, the Fekete-Szegö inequality for $g \in \mathcal{S}^{*}$ (see for example [7]) gives

$$
\begin{equation*}
\left|b_{3}-b_{2}^{2}\right| \leq 1 \tag{3.5}
\end{equation*}
$$

From (3.3), using (3.4), (3.5), Lemma 2.5, and Corollary 2.4 and writing $\left|p_{1}\right|=p$ and $\left|b_{2}\right|=q, p, q \in[0,2]$, we get

$$
\left|a_{4}-a_{2} a_{3}\right| \leq F(p, q)
$$

where

$$
\begin{equation*}
F(p, q)=\frac{1}{4} H(q)+\frac{1}{4} G(p)+\frac{1}{12} p+\frac{1}{6} q+\frac{1}{12} p q(p+q), \quad p, q \in[0,2] \tag{3.6}
\end{equation*}
$$

and $H(q), G(p)$ are given by (2.4) and (2.3).
We will show that $F(p, q) \leq 2$ for $p, q \in[0,2]$. It is easy to check that $H$ is increasing for $q \in[0,2 / \sqrt{3}]$. Suppose that $q \in[2 / \sqrt{3}, 2]$. Then

$$
F(p, q)=\frac{1}{12} q\left(4-q^{2}\right)+\frac{1}{4} G(p)+\frac{1}{12} p+\frac{1}{6} q+\frac{1}{12} p^{2} q+\frac{1}{12} p q^{2}
$$

so

$$
\frac{\partial F}{\partial q}=\frac{1}{12}\left(6-3 q^{2}+p^{2}+2 p q\right)
$$

Thus, for $q \in[2 / \sqrt{3}, \sqrt{2}], p \in[0,2]$, we have $\frac{\partial F}{\partial q} \geq 0$, so $F(p, q)$, with a fixed $p$, is increasing as a function of $q$.

For this reason,

$$
\begin{equation*}
\max \{F(p, q):(p, q) \in[0,2] \times[0,2]\}=\max \{F(p, q):(p, q) \in[0,2] \times[\sqrt{2}, 2]\} \tag{3.7}
\end{equation*}
$$

Assume now that $q \in[\sqrt{2}, 2]$. If $p \in[0,3 / 2]$, then

$$
F(p, q)=\frac{1}{36}\left(p^{3}-4 p^{2}+3 p+18-3 q^{3}+18 q+3 p^{2} q+3 p q^{2}\right)
$$

Therefore,

$$
\begin{aligned}
\frac{\partial F}{\partial p} & =\frac{1}{36}\left(3 p^{2}-8 p+3+6 p q+3 q^{2}\right) \geq \frac{1}{36}\left(3 p^{2}-8 p+3+6 \sqrt{2} p+6\right) \\
& =\frac{1}{36}\left(3 p^{2}+(6 \sqrt{2}-8) p+9\right)>0
\end{aligned}
$$

So (3.7) remains true even for $(p, q) \in[3 / 2,2] \times[\sqrt{2}, 2]$.

Now, let $p \in[3 / 2,2]$. In this case,

$$
F(p, q)=\frac{1}{12}(p+q)\left[6-(p-q)^{2}\right] \leq 2
$$

with the equality if $p=q=2$.
The equalities $\left|p_{1}\right|=2$ and $\left|b_{2}\right|=2$ hold only for the functions

$$
h(z)=\frac{1+z e^{i \theta}}{1-z e^{i \theta}} \quad \text { and } \quad g(z)=\frac{z}{\left(1-z e^{i \phi}\right)^{2}}, \quad \theta, \phi \in \mathbb{R}
$$

respectively. This means that the equality in Theorem 3.1 holds for $f$ given by

$$
f^{\prime}(z)=\frac{1+z e^{i \theta}}{1-z e^{i \theta}} \frac{1}{\left(1-z e^{i \phi}\right)^{2}} .
$$

For this $f$, we have

$$
a_{4}-a_{2} a_{3}=-e^{i(2 \theta+\phi)}-\frac{5}{6} e^{i(\theta+2 \phi)}-\frac{1}{6} e^{3 i \theta} .
$$

Thus,

$$
\left|a_{4}-a_{2} a_{3}\right|=\left|1+\cos (\phi-\theta)+\frac{2}{3} i \sin (\phi-\theta)\right| .
$$

This expression is less than or equal to 2 ; the equality holds only when $\theta=\phi$. So we obtain that equality in Theorem 3.1 holds only for the function $f(z)=\frac{z}{\left(1-z e^{i \phi}\right)^{2}}$ with arbitrary $\phi \in \mathbb{R}$.

Theorem 3.2 If $f \in \mathcal{C}$ is given by (1.1), then

$$
\left|a_{4}-a_{2} a_{3}\right|<2.5 .
$$

Proof From (1.10) we have

$$
\begin{align*}
& 2 a_{2}=b_{2}+p_{1} e^{-i \beta} \cos \beta, \quad 3 a_{3}=b_{3}+\left(b_{2} p_{1}+p_{2}\right) e^{-i \beta} \cos \beta,  \tag{3.8}\\
& 4 a_{4}=b_{4}+\left(b_{3} p_{1}+b_{2} p_{2}+p_{3}\right) e^{-i \beta} \cos \beta .
\end{align*}
$$

Hence, using (3.8), we get

$$
\begin{align*}
\left|a_{4}-a_{2} a_{3}\right| & =\left\lvert\, \frac{1}{4}\left(b_{4}-\frac{2}{3} b_{2} b_{3}\right)+\frac{1}{4}\left(p_{3}-\frac{2}{3} p_{1} p_{2} e^{-i \beta} \cos \beta\right) e^{-i \beta} \cos \beta\right.  \tag{3.9}\\
& +\frac{1}{12} p_{1}\left(b_{3}-b_{2}^{2}\right) e^{-i \beta} \cos \beta+\frac{1}{12} b_{2}\left(p_{2}-p_{1}{ }^{2} e^{-i \beta} \cos \beta\right) e^{-i \beta} \cos \beta \\
& \left.-\frac{1}{12} p_{1} b_{2}\left(b_{2}+p_{1} e^{-i \beta} \cos \beta\right) e^{-i \beta} \cos \beta \right\rvert\, .
\end{align*}
$$

Applying the triangle inequality, we obtain

$$
\begin{align*}
\left|a_{4}-a_{2} a_{3}\right| & \leq \frac{1}{4}\left|b_{4}-\frac{2}{3} b_{2} b_{3}\right|+\frac{1}{4}\left|p_{3}-\frac{2}{3} p_{1} p_{2} e^{-i \beta} \cos \beta\right|+\frac{1}{12}\left|p_{1}\right|\left|b_{3}-b_{2}{ }^{2}\right|  \tag{3.10}\\
& +\frac{1}{12}\left|b_{2}\right|\left|p_{2}-p_{1}{ }^{2} e^{-i \beta} \cos \beta\right|+\frac{1}{12}\left|p_{1}\right|\left|b_{2}\right|\left|b_{2}+p_{1} e^{-i \beta} \cos \beta\right| .
\end{align*}
$$

Using Lemma 2.2, we have

$$
\begin{aligned}
\left|p_{2}-p_{1}^{2} e^{-i \beta} \cos \beta\right| & =\left|\left(p_{2}-p_{1}^{2}\right) \cos \beta+i p_{2} \sin \beta\right| \\
& =\left|\left(\frac{1}{2}\left(4-p_{1}^{2}\right) x-\frac{1}{2}{p_{1}}^{2}\right) \cos \beta+i\left(\frac{1}{2}\left(4-p_{1}^{2}\right) x+\frac{1}{2} p_{1}^{2}\right) \sin \beta\right| \\
& =\left|\frac{1}{2}\left(4-p_{1}^{2}\right) x e^{i \beta}-\frac{1}{2} p_{1}^{2} e^{-i \beta}\right|
\end{aligned}
$$

Since the functional $\left|p_{2}-p_{1}{ }^{2} e^{-i \beta} \cos \beta\right|$ is invariant under rotation, we can assume (for a moment) that $p_{1}$ is a positive real number. In this case,

$$
\left|\frac{1}{2}\left(4-p_{1}^{2}\right) x e^{i \beta}-\frac{1}{2} p_{1}^{2} e^{-i \beta}\right| \leq \frac{1}{2}\left(4-p_{1}^{2}\right)+\frac{1}{2}{p_{1}}^{2}=2
$$

Hence, in general (for an arbitrary $p_{1}$ )

$$
\begin{equation*}
\left|p_{2}-p_{1}^{2} e^{-i \beta} \cos \beta\right| \leq 2 \tag{3.11}
\end{equation*}
$$

From Corollary 2.4 and Lemma 2.1, we get

$$
\begin{align*}
\left|p_{3}-\frac{2}{3} p_{1} p_{2} e^{-i \beta} \cos \beta\right| & =\left|\left(p_{3}-\frac{2}{3} p_{1} p_{2}\right) \cos \beta+i p_{3} \sin \beta\right| \\
& \leq G(p) \cos \beta+2|\sin \beta| \\
& \leq G(p)+2 \tag{3.12}
\end{align*}
$$

where $G(p)$ is given by (2.3) and $p=\left|p_{1}\right|$. Taking into account (3.5), (3.11), (3.12), and Lemma 2.5 and writing $\left|p_{1}\right|=p,\left|b_{2}\right|=q$, from (3.10), we obtain

$$
\left|a_{4}-a_{2} a_{3}\right| \leq \frac{1}{4} H(q)+\frac{1}{4} G(p)+\frac{1}{2}+\frac{1}{12} p+\frac{1}{6} q+\frac{1}{12} p q(p+q)=F(p, q)+\frac{1}{2}
$$

where $F(p, q)$ is given by (3.6). Since $F(p, q) \leq 2$ (see proof of Theorem 3.1), we obtain the declared bound.
However, the result in Theorem 3.2 is not sharp, it is the best known estimate for the whole class $\mathcal{C}$. Moreover, we conjecture that the exact bound is 2 . This presumption is supported by the following theorem.

Theorem 3.3 If $f \in \mathcal{C}(k)$ is given by (1.1), then

$$
\left|a_{4}-a_{2} a_{3}\right| \leq 2
$$

This result is sharp.
Proof From (3.9) for the Koebe function given by (1.3), we have

$$
\begin{align*}
\left|a_{4}-a_{2} a_{3}\right| & =\cos \beta \left\lvert\, \frac{1}{4}\left(p_{3}-\frac{2}{3} p_{1} p_{2} e^{-i \beta} \cos \beta\right)-\frac{1}{12} p_{1}+\frac{1}{6}\left(p_{2}-p_{1}{ }^{2} e^{-i \beta} \cos \beta\right)\right. \\
& \left.-\frac{1}{6} p_{1}\left(2+p_{1} e^{-i \beta} \cos \beta\right) \right\rvert\, \\
& =\cos \beta \left\lvert\,\left[\frac{1}{4}\left(p_{3}-\frac{2}{3} p_{1} p_{2}\right)+\frac{1}{6}\left(p_{2}-p_{1}^{2}\right)-\frac{1}{6} p_{1}^{2}-\frac{5}{12} p_{1}\right] \cos \beta\right.  \tag{3.13}\\
& \left.+i\left(\frac{1}{4} p_{3}+\frac{1}{6} p_{2}-\frac{5}{12} p_{1}\right) \sin \beta \right\rvert\,
\end{align*}
$$

Using Lemma 2.1 it is easy to check that

$$
\begin{equation*}
\left|\frac{1}{4} p_{3}+\frac{1}{6} p_{2}-\frac{5}{12} p_{1}\right| \leq \frac{5}{3} \tag{3.14}
\end{equation*}
$$

Applying Corollary 2.4 and (3.4), we get

$$
\left|\frac{1}{4}\left(p_{3}-\frac{2}{3} p_{1} p_{2}\right)+\frac{1}{6}\left(p_{2}-p_{1}^{2}\right)-\frac{1}{6} p_{1}^{2}-\frac{5}{12} p_{1}\right| \leq \frac{1}{4} G(p)+\frac{1}{3}+\frac{1}{6} p^{2}+\frac{5}{12} p \equiv w(p)
$$

where $G(p)$ is given by (2.3) and $\left|p_{1}\right|=p, p \in[0,2]$. We have

$$
w(p)= \begin{cases}\frac{1}{36} p^{3}+\frac{1}{18} p^{2}+\frac{5}{12} p+\frac{5}{6}, & p \in[0,3 / 2] \\ -\frac{1}{12} p^{3}+\frac{1}{6} p^{2}+\frac{5}{6} p+\frac{1}{3}, & p \in[3 / 2,2]\end{cases}
$$

The function $w$ is increasing, so $w(p) \leq w(2)=2$. Therefore,

$$
\begin{equation*}
\max \{w(p): p \in[0,2]\}=2 \tag{3.15}
\end{equation*}
$$

Applying (3.14) and (3.15) in (3.13), we obtain

$$
\left|a_{4}-a_{2} a_{3}\right|^{2} \leq \cos ^{2} \beta\left(4 \cos ^{2} \beta+\frac{25}{9} \sin ^{2} \beta\right) \leq \cos ^{2} \beta\left(4 \cos ^{2} \beta+4 \sin ^{2} \beta\right)=4 \cos ^{2} \beta
$$

Hence,

$$
\left|a_{4}-a_{2} a_{3}\right| \leq 2 \cos \beta \leq 2
$$

and we get the desired result.
Remark. In [15], Prajapat et al. proved that $\left|a_{2} a_{3}-a_{4}\right| \leq 3$ in the class $\mathcal{C}_{0}$. Our results $\left|a_{2} a_{3}-a_{4}\right| \leq 2$ for the classes $\mathcal{C}_{0}$ and $\mathcal{C}(k)$ are sharp. Obtaining a sharp estimate for the class $\mathcal{C}$ is still an open problem.

## References

[1] Babalola KO. On $H_{3}(1)$ Hankel determinants for some classes of univalent functions. In: Dragomir SS, Cho JY, editors. Inequality Theory and Applications. New York, NY, USA: Nova Science Publishers, 2010, pp. 1-7.
[2] Duren PL. Univalent Functions. New York, NY, USA: Springer-Verlag, 1983.
[3] Goodman AW, Saff EB. On the definition of close-to-convex function. International Journal of Mathematics and Mathematical Sciences 1978; 1: 125-132.
[4] Hayami T, Owa S. Generalized Hankel determinant for certain classes. International Journal of Mathematical Analysis 2010; 52: 2573-2585.
[5] Kaplan W. Close to convex schlicht functions. Mich Math J 1952; 1: 169-185.
[6] Keogh FR, Merkes EP. A coefficient inequality for certain classes of analytic functions. P Am Math Soc 1969; 20: 8-12.
[7] Koepf W. On the Fekete-Szegö problem for close-to-convex functions. P Am Math Soc 1987; 101: 89-95.
[8] Kowalczyk B, Lecko A. The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter. J Inequal Appl 2014; 65: 1-16.
[9] Kowalczyk B, Lecko A. The Fekete-Szegö problem for close-to-convex functions with respect to the Koebe function. Acta Math Sci 2014; 34: 1571-1583.
[10] Libera RJ, Złotkiewicz EJ. Early coefficients of the inverse of a regular convex function. P Am Math Soc 1982; 85: 225-230.
[11] Libera RJ, Złotkiewicz EJ. Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$. P Am Math Soc 1983; 87: 251-257.
[12] Livingston AE. The coefficients of multivalent close-to-convex functions. P Am Math Soc 1969; 21: 545-552.
[13] Marjono, Thomas DK. The Second Hankel Determinant of Functions Convex in One Direction. International Journal of Mathematical Analysis 2016; 10: 423-428.
[14] Mishra AK, Prajapat JK, Maharana S. Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points. Cogent Math 2016; 3: 1160557.
[15] Prajapat JK, Bansal D, Singh A, Mishra AK. Bounds on third Hankel determinant for close-to-convex functions. Acta Universitatis Sapientiae, Mathematica 2015; 7: 210-219.
[16] Rǎducanu D, Zaprawa P. Second Hankel determinant for close-to-convex functions. C R Math 2017; 355: 1063-1071.
[17] Raza M, Malik SN. Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J Inequal Appl 2013; 2013: 412.
[18] Selvaraj C, Kumar TRK. Second Hankel determinant for certain classes of analytic functions. Int J Appl Math 2015; 28: 37-50.
[19] Sokół J, Stankiewicz J. Radius of convexity of some subclasses of strongly starlike functions. Zesz Nauk Politech Rzeszowskiej Mat 1996; 19: 101-105.
[20] Thomas DK. On the logarithmic coefficients of close-to-convex functions. P Am Math Soc 2016; 144: 1681-1687.
[21] Vamshee Krishna D, Venkateswarlua B, RamReddy T. Third Hankel determinant for starlike and convex functions with respect to symmetric points. Ann Univ Mariae Curie-Skłodowska Sect A 2016; 70: 37-45.


[^0]:    *Correspondence: k.trabka@pollub.pl
    2010 AMS Mathematics Subject Classification: Primary 30C45, Secondary 30C50

