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Abstract: This paper is concerned with the problem of estimating |as — asas|, where ar are the coefficients of a
given close-to-convex function. The bounds of this expression for various classes of analytic functions have been applied
to estimate the third Hankel determinant Hs(1). The results for two subclasses of the class C of all close-to-convex
functions are sharp. This bound is equal to 2. It is conjectured that this number is also the exact bound of |as — azas)|

for the whole class C.
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1. Introduction
Let A be the family of all functions analytic in the unit disk A = {z € C: |z| < 1} given by the series

expansion
o0
f(2) :z—|—Zanz". (1.1)
n=2

Let 8* denote the class of starlike functions in A and let P denote the class of all analytic functions p with a
positive real part in A satisfying the normalization condition p(0) = 1.
Given § € (—n/2,7/2) and g € §*, a function f € A is called close-to-convex with argument § with
respect to g if
Re {ewzf’(z) } >0, zeA. (1.2)
9(2)
Let Cg(g) be the class of all such functions. Moreover, let

Clo)= |J Cslo) and Cs= [ Cslo)

Be(—7/2,m/2) geES*

Let C denote the family of all close-to-convex functions (see [3, 5]). It is obvious that

c= U &= cw.

Be(—n/2,1/2) ges*
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The number e*? is necessary in (1.2) for the definition of close-to-convex function. In addition, this
factor significantly complicates the task of estimating some coefficient functionals. Therefore, to simplify the

calculation, many authors take 8 = 0 or use a specific starlike function, for example the Koebe function

k(z) = (1_%)2 Z€A. (1.3)
Then inequality (1.2) becomes:
SICIEP
me{ 9 > 0, €A (1.4)
or
Re{eP(1-2)2f'(2)} >0, z€A, (1.5)

respectively, and defines the related subclass of close-to-convex functions Cy and C(k), respectively. Let us cite
the most important results concerning the estimates of some coefficient functionals within the class C. Keogh
and Merkes in [6] solved the Fekete-Szegd problem in the class Cyp. Koepf in [7] extended this result for the
class C. Kowalczyk and Lecko, in [9], studied the Fekete-Szegé problem in the class C(k) of all close-to-convex
functions with respect to the Koebe function (and in [8], in the subclass of close-to-convex with respect to
other starlike functions). Recently, several authors have extensively investigated the Hankel determinant for
close-to-convex functions (see for example [13, 15, 16, 18]) and the logarithmic coefficients of close-to-convex
functions (see for example [20]).

The main aim of this paper was to determine the estimates of the expression |a4 — asas| for the classes
Co, C(k), and C. The functional |ay — agas| has been estimated for many classes. Babalola, in [1], derived
the exact bounds of |as — asas| for the class of starlike functions, for the class of convex functions and for the
class of functions whose derivative has a positive real part; these values are equal to 2, 4/ 9v/3, and 5vV/5 / 18v/3,
respectively. In [14], Mishra et al. proved that this bound in the class of starlike functions with respect to
symmetric points is 1/2 and in the class of convex functions with respect to symmetric points is 4/27. Krishna
et al. published the same results in [21]. In [17], Raza and Malik, found that |a4 — azas| < 1/6 for the class
of lemniscate starlike functions (for the definition of the class see [19]). All these authors used this functional
|ay — azas| to estimate the third Hankel determinant Hs(1).

Taking into account (1.2), we can write

elﬂ;é’;z) = h(z)cos S +isin g, (1.6)
where h € P. If g € §* and h € P are given by
g(z) =z + i by 2™ (1.7)
n=2
and
h(z) =1+ iw”, (1.8)
n=1
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then (1.6) leads to
z+ Z na,z" = <z + Z bnz"> (1 +e P cos B anz"> . (1.9)
n=2 n=2 n=1

Therefore,

n—1
na, = b, + e~ 8 cos 3 <pn_1 + Z bkpn_k> . (1.10)

k=2

2. Preliminary results

We shall need the following results. The first one is known as Caratheodory’s lemma (for example see [2]). The

second one is by Libera and Zlotkiewicz [10, 11].
Lemma 2.1 ([2]) If h € P is given by (1.8), then the sharp estimate |p,| < 2 holds for n > 1.
Lemma 2.2 ([10, 11]) Let h be given by (1.8) and p; € [0,2]. Then h € P if and only if

2p0 =p1® 4+ (4 —pi°)z

and
dps = p1® +2(4 — pi*)prz — (4 — p1?)pra® +2(4 — p1?)(1 = |z*)z

for some complex numbers x, z such that |x| <1, |z| <1.

Remark. Given g € §* defined by (1.7), the functional |by — pbebs|, u € R is invariant under rotation.
This means that for gs(2) = e *?g(ze'?), ¢ € R of the form g4(2) = 2 + c22? + c32% + ... we have
|by — pbabs| = |ca — pcacs|. Similarly, it can be proved that |ps — ppips| for h € P defined by (1.8) is

invariant under rotation.
To obtain our results, we also need a few sharp estimates.

Lemma 2.3 Let h € P be given by (1.8) and p € [1/2,1], then

PP = 3u2 =P +2, pe (0,52,

Ips — up1p2| <

where p = |p1|.
Proof From Lemma 2.2, we have
s — uprp2] = 1 |(1 = 20)p1® + 2(1 = p)(4 — pr*)prx — (4 — pr)pra® (2.1)
+2(4 — p12)(1 — |x|2)z| .
Applying the triangle inequality in (2.1) with || = o, ¢ € [0,1] and |p1| = p, p € [0,2], we obtain
Ips — ppipa] < 1 [(2p0 = 1)p* +2(1 = p)(4 = p*)pe + (4 — p*)pe* + 2(4 — p*)(1 — ¢%)]

=1 [2u— 1P’ +2(4-p) + 20— Wl - pIpe - (4= )2 - p)’] = w(o)
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(with the equality when x = —p and z = —1). If p < ﬁ, then

w (zfu) = 11%9° = gu(2 — p)p® + 2.
If p> 2%“, then

w(o) < w(1) = (3 —2u)p — (1 - pp’.
Therefore, for p € [1/2,1], we get the desired result.

O
In the second case, the equality holds when ¢ =1, i.e., x = —1. Then ps = p12 — 2. This means that
the extremal function is

h(z) = L2 tel-1,1]
T o1 22 T
It is easy to check that

max {|ps — pup1p2| : h € P} = max {|ps — up1p2| : [p1] € [0,2]}

(2.2)
= max{2,4u — 2} = 2,
which is the result obtained by Hayami and Owa [4].

From Lemma 2.3, we can easily get the following corollary:

Corollary 2.4 Let h € P be given by (1.8), then |p3 — §p1p2| < G(p), where

1.3 _ 4,2
5p° —gp° +2, pel0,3/2],
G(p) 5. 103 (2.3)
30— 3p°, p € [3/2,2]
and p = |p1].
Lemma 2.5 Let g € §* be given by (1.7), then }b4 - %b2b3| < H(q), where
L(249)(9¢> — 8¢ +16), q€[0,4/5],
(g < [BC+ ) ae4/3 o
304 —¢%), q €1[4/5,2]
and q = |bs[, ¢ €[0,2].
Proof Every function g € §* satisfies in A the equality
29'(2) = 9(2)Q(), (2.5)
where Q € P. Let Q(2) =1+ > ¢,2". Equating the coefficients in (2.5) gives
k=1
bo=q, b3=3(+a?), bi=1ie+iae+ia’ (2.6)
Applying (2.6), we get

|ba — 2b2bs| = 1 g3 + 2q1q2 — 301°] . (2.7)
2812
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Now, we use Lemma 2.2 to get
bs — 2b2bs| = &5 |(4 — 1®) Bz — qua® +2(1 — |2]*)z]].
Since the functional |b4 — %b2b3| is invariant under rotation, we may write ¢; = ¢, ¢ € [0,2]. Hence, applying
the triangle inequality with |z| = 0, ¢ € [0,1], we get
by — 2babs| = (4 - ¢°) [3qz — qz* + 2(1 — |z]?)z]
< 35(4—¢%) [3q0+q0® +2(1 - 0*)] = §5(4 — ¢*) [(g — 2)0° + 3q0 + 2]

(with the equality when x = —p and z = —1).
Let w(o) = (¢ —2)0* +3qo+2. If ¢ € [0,4/5), then

w(o) < w 3q _9q2—8q+16
9 ="Y\1 "2 42— q)

If g € [4/5,2], then

Therefore,

‘ =

L (24 ¢)(9¢*> — 8¢ +16), g € [0,4/5],
q(4—-q%), q € [4/5,2].

ol

by — %6253’ < {

This completes the proof of Lemma 2.5. O

In the second case, the equality holds when o = 1, i.e., = —1. Then bs = by> — 1, which means that

the extremal function is
z

=1 o2 te[-1,1].

9t(2)

3. Main results

Theorem 3.1 If f € Cy is given by (1.1), then
lay — azag| < 2.
This result is sharp.

Proof From (1.4), we can write
2f'(2) = g(2)h(2), (3.1)
where h € P. Let g and h be given by (1.7) and (1.8), respectively. Equating the coefficients in (3.1) gives
2a20 = by +p1, 3ag = bz +bop1 +p2, 4as =0bs+ bzp1 + bops +ps. (3:2)
Therefore, using (3.2), we have
las — azas| = |3 (b — 2b2bs) + % (s — 2p1p2) + 1501 (bs — b2?)

+ &b (p2 — p1?) — Lpibo (p1 + ba)| .
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Applying the triangle inequality, we obtain
lag — azas| < L |bs — 2bobs| + % |ps — Zpipa| + L lpallbs — b27 (3.3)
+ Tlg\szpz —pi?|+ ﬁ|p1||bz||p1 + ba.
It is well known (see [12]) that
Ip2 —p1?[ <2 (3.4)

for h € P. Moreover, the Fekete-Szegd inequality for g € 8* (see for example [7]) gives
lbs — by*| < 1. (3.5)

From (3.3), using (3.4), (3.5), Lemma 2.5, and Corollary 2.4 and writing |p1| = p and |b2| = ¢, p,q € [0,2], we
get
|a4 - CLQCL3| < F(p7 Q)7

where
F(p,q) = 1H(q)+ 1G(p) + 5p+ ta+ 5palp+q), p,q€[0,2] (3.6)

and H(q),G(p) are given by (2.4) and (2.3).
We will show that F(p,q) <2 for p,q € [0,2]. It is easy to check that H is increasing for q € [0,2/+/3].
Suppose that ¢ € [2/+/3,2]. Then
F(p,q) = 50(4 = ¢*) + 1G(p) + 5P + §9 + 150°q + 1504,

SO
oF

T (6 —3¢° + p* +2pq) .

Thus, for ¢ € [2/v/3,v2], p € [0,2], we have %—5 >0,s0 F(p,q), with a fixed p, is increasing as a function of

q.
For this reason,

max {F(p.q) : (p,q) € [0,2] x [0,2]} = max {F(p,q) : (p.q) € [0.2] x [V2,2]}. (3.7)
Assume now that ¢ € [v/2,2]. If p € [0,3/2], then

F(p,q) = 2 (p* — 4p* 4+ 3p + 18 — 3¢® + 18¢ + 3p°q + 3pq?).

Therefore,

oF

= +(3p* —8p+ 3+ 6pg + 3¢°) > == <3p2 —8p+3+6f2p+6)
=41 (3p2+(6\/§—8)p+9) > 0.

So (3.7) remains true even for (p,q) € [3/2,2] x [v2,2].
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Now, let p € [3/2,2]. In this case,

F(p,q) = 15(p+q) [6—(p—q)?] <2

with the equality if p=¢ = 2.
The equalities |p1] = 2 and |by| = 2 hold only for the functions

_ 1+ ze® z

h(Z) = m and g(Z) = m, 9,¢ eR

respectively. This means that the equality in Theorem 3.1 holds for f given by

14 ze 1
fle) = 22 __
1—ze (1— ze%)2
For this f, we have
a4 — asaz = _i(20+0) _ %ei(6+2¢) _ %e3i9.

Thus,
lag — azas| = |1 + cos(¢ — 0) + Zisin(¢ — 0)|.

This expression is less than or equal to 2; the equality holds only when § = ¢. So we obtain that equality in
Theorem 3.1 holds only for the function f(z) = m with arbitrary ¢ € R. O

Theorem 3.2 If f € C is given by (1.1), then
\a4 — agag‘ < 2.5.
Proof From (1.10) we have
2a5 = by + pre P cos B, 3as = b3+ (bap1 +P2)67w cos f3, (3.8)
4ay = by + (bsp1 + bapa + p3)e™ " cos B.
Hence, using (3.8), we get
lag — asas| = ’i (bs — 2bobs) + 1 (ps — %plpge_w cos 3) e B cos B (3.9)
+ %pl (bg — b22) e B cosf+ %bg (pg —p12e” " cos B) e B cos 8
— Spiba (b2 + pre” P cos B) e cos | .
Applying the triangle inequality, we obtain
|CL4 — a2&3| < % ’b4 — %b2b3| + % |p3 — %plpge_w COSﬁ‘ + T12|p1| ‘bg — b22‘ (310)

+ 15102l |p2 —pie™ cos 3] + 15|p1/lba| b2 +pre cos 3 .
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Using Lemma 2.2, we have
i

BCOSB’ = ‘(pg —p12)cosﬁ+ipgsin,6”

|(%(4 — plz)x — %p12) cos B+ 1 (%(4 — p12)x + %p12) sinﬁ’

po—pile”

= |%(4 —p1%)ae? — %p12€7w| .

Since the functional ‘pg —p12e " cos /3’| is invariant under rotation, we can assume (for a moment) that p; is

a positive real number. In this case,
’%(4 —p1?)zet? — %plze_w‘ < %(4 —pi%) + %pl2 =2
Hence, in general (for an arbitrary p; )
Ip2 — p12e P cos B| < 2. (3.11)
From Corollary 2.4 and Lemma 2.1, we get

p3 — 2pipze P cos B| = | (p3 — Zpip2) cos B + ips sin 3|
< G(p) cos B + 2| sin |
<G(p) +2, (3.12)

where G(p) is given by (2.3) and p = |p1|. Taking into account (3.5), (3.11), (3.12), and Lemma 2.5 and writing
|p1] = p, |b2| = ¢, from (3.10), we obtain

|ag — azas| < 3H(q) + 3G (p) + 5 + 150 + g4+ 15040+ q) = F(p.q) + 3,

where F(p,q) is given by (3.6). Since F(p,q) < 2 (see proof of Theorem 3.1), we obtain the declared bound.

O
However, the result in Theorem 3.2 is not sharp, it is the best known estimate for the whole class C.

Moreover, we conjecture that the exact bound is 2. This presumption is supported by the following theorem.

Theorem 3.3 If f € C(k) is given by (1.1), then

lay — azag| < 2.
This result is sharp.
Proof From (3.9) for the Koebe function given by (1.3), we have

las — azas| = cos B |4 (p3 — 2pip2e ™" cos B) — Ep1 + & (p2 — p1%e ¥ cos B)
— Lpi (24 pie7P cos B)|
= cos B |[§ (ps = 3p1p2) + § (P2 —p1®) — §p1” — F3pa] cos B (3.13)

+ 1 (ipg + %pz — %pl) Sin5| .
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Using Lemma 2.1 it is easy to check that
1P+ gp2 — 301| < 3. (3.14)
Applying Corollary 2.4 and (3.4), we get
|1 (03 = Sp1p2) + § (P2 — 1) — §pi® — 51| < 3G () + 5 + §0° + 50 = w(p),

where G(p) is given by (2.3) and |p1| = p, p € [0,2]. We have

w(p) = 1 362" TP et g p 03/,
p)= 1.3, 1.2, 5 1
PP+ i+ 2p+ 3. pe3/2,2).

The function w is increasing, so w(p) < w(2) = 2. Therefore,
max {w(p) : p € [0,2]} = 2. (3.15)
Applying (3.14) and (3.15) in (3.13), we obtain
lag — agas|* < cos? B (4 cos? B+ % sin? ﬁ) < cos? 3 (4 cos? B + 4sin? ﬂ) = 4cos’ 8

Hence,
lag — azas| < 2cosf <2

and we get the desired result. O

Remark. In [15], Prajapat et al. proved that |agas — as| < 3 in the class Cy. Our results |azaz — aq| < 2 for

the classes Cy and C(k) are sharp. Obtaining a sharp estimate for the class C is still an open problem.
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