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Abstract: For each Frenet curve α in the Euclidean 3-space E3 , there exists a unique unit speed curve β tangent to the
principal normal vector field of α . We simply call this curve β the natural mate of α . The main purpose of this paper
is to prove some relationships between a Frenet curve and its natural mate. In particular, we obtain some necessary
and sufficient conditions for the natural mate of a Frenet curve to be a helix, a spherical curve, or a curve of constant
curvature. Several applications of our main results are also presented.
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1. Introduction
Let α : I → E3 be a unit speed curve in the Euclidean 3-space E3 with Frenet–Serret apparatus {κ, τ, T,N,B} .
Important classes of Frenet curves are helices, spherical curves, and rectifying curves. A helix is defined by the
property that its tangent vector field makes a constant angle with a fixed direction. An important theorem that
characterizes a helix is that the ratio of its torsion and curvature is constant (Lancret’s theorem, cf. [14]). In
contrast, the ratio of torsion and curvature of a rectifying curve is a nontrivial linear function of its arc-length
[1]. Helices are an important class of curves since they have numerous applications ranging from physical and
medical sciences to engineering, biology, and even computer designs [27]. Rectifying curves are also important
in mathematics, mechanics, and medical imaging (cf. [1–7] and [13]).

Watson and Crick observed important roles of helices in nucleic acids for the first time in [26]. They
observed that in a molecular model of DNA there are two side by side in opposing direction helices linked by
hydrogen bonds (this phenomenon was also reported in [18, 19, 24, 25]). Helices exist quite extensively in the
structure of proteins, in particular as α -helices, and there are many studies on them (see [16, 21, 22]). Helices
have also been used in physics for studying different shapes of springs and helical gears as well as for elastic
rods (see [8, 11]).

One interesting topic in the theory of curves in E3 is to find new characterizations of important curves,
especially for helices, slant helices, spherical curves, and rectifying curves. In this paper, we are interested in
deriving some new characterizations of these curves. In order to do so we recall from [4] that for any given unit
speed Frenet curve α in E3 there is a unique unit speed curve β tangent to the principal normal vector field
of α . We simply call this curve β the natural mate of α .
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In this paper we establish some relationships between a Frenet curve and its natural mate. In particular,
we obtain necessary and sufficient conditions for the natural mate of a Frenet curve to be a helix, a spherical
curve, or a curve of constant curvature. Several applications of our results are also presented.

2. Preliminaries
Let α : I → E3 be a unit speed curve with the Frenet–Serret apparatus {κ, τ, T,N,B} such that κ > 0 . Then
α is called a Frenet curve if τ ̸= 0 . The Frenet–Serret equations for α are given by

T ′ = κN , N ′ = −κT + τB , B′ = −τN . (2.1)

A regular curve α : I → E3 is called a helix if its unit tangent vector field T makes a constant angle with a
constant vector in E3 , and α is called a slant helix if its principal normal field N makes a constant angle with
a constant vector in E3 (cf. [10]).

It is known that a Frenet curve α is a helix if and only if the ratio τ : κ is a constant (cf. [14]). Moreover,
it is also known that α is a slant helix if and only if (cf. [10])

σ =
κ2
(
τ
κ

)′
(τ2 + κ2)

3
2

= constant. (2.2)

The centrode of the unit speed curve α : I → E3 is given by the Darboux vector:

δ(s) = τT + κB, (2.3)

which is the angular velocity vector of the motion of a particle along the curve α , and it obeys the laws of
motion:

T ′ = δ × T , N ′ = δ ×N , B′ = δ ×B. (2.4)

The direction of the Darboux vector is that of the instantaneous axis of rotation and it length, denoted
traditionally in classical mechanics as

ω =
√

τ2 + κ2, (2.5)

is called the (scalar) angular velocity (see, e.g., [12, page 12]).
The co-centrode of α in the sense of [7] is defined to be the co-Darboux vector δ∗ as

δ∗(s) = −κT + τB. (2.6)

Notice that the co-Darboux vector of α defined by (2.6) is exactly the derivative of the principal normal vector
of the curve. Also, the co-centrode of α in the sense of [7] is different from the one defined in [3].

It is known that a Frenet curve α in E3 is a spherical curve if and only if

(p′q)
′
+

p

q
= 0 (2.7)

holds, where p = κ−1 , q = τ−1 . Moreover, if the Frenet curve α : I → E3 is a spherical curve lying on a sphere
of radius a , then we have (cf. [14])

p2 + (p′q)
2
= a2. (2.8)
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A Frenet curve α : I → E3 is called a rectifying curve if ⟨α(s), N(s)⟩ = 0 , ∀s ∈ I (cf. [1, 2, 9]). The
centrodes of unit speed curves were used to characterize rectifying curves in [3, Theorems 1 and 2] and in [6,
Theorem 1]. Moreover, it is known that a Frenet curve is a rectifying curve if and only if the ratio τ : κ is a
linear function in term of the arc length function (cf. [1]).

3. Natural mates of Frenet curves
First we recall the following result from [4, 23].

Theorem 1. Let α : I → E3 be a Frenet curve with Frenet-Serret apparatus {κ, τ, T,N,B} . Then there is a
unit speed curve β : I → E3 with Frenet-Serret apparatus {κ̄, τ̄ , T̄ , N̄ , B̄} , where

κ̄ = ω, τ̄ = σω =
κ2

ω2

( τ
κ

)′
, T̄ = N, N̄ =

δ∗

ω
, B̄ =

δ

ω
, (3.2)

and δ, ω, δ∗ are defined by (2.3), (2.5), and (2.6), respectively.
Conversely, every unit speed curve β : I → E3 tangent to the principal normal vector field N of α is

obtained in this way.

Proof Let α : I → E3 be a Frenet curve. It is easy to verify that the set {N, δ∗

ω , δ
ω} is an orthonormal frame

along the curve α in E3 . Now, using (κ
ω

)′
= −τσ and

( τ
ω

)′
= κσ

and the Frenet formulas, we get

N ′ = δ∗,

(
δ∗

ω

)′

= −ωN + σω

(
δ

ω

)
,

(
δ

ω

)′

= −σω

(
δ∗

ω

)
. (3.3)

In view of existence theorem, the equations in (3.3) guarantee that there exists a unit speed curve β : I → E3

with Frenet–Serret apparatus {κ̄, τ̄ , T̄ , N̄ , B̄} described as in the theorem.
Conversely, assume that β : I → E3 is a unit speed curve such that β is tangent to N at each s ∈ I .

Then it follows from the Frenet frame of α that the Frenet–Serret apparatus of β must be given in the way
given above.

Remark 1. For a unit speed Frenet curve α in E3 , the curve β in Theorem 1 is given by β(s) =
∫
N(s)ds . We

call such a curve β the natural mate of α for short. Clearly, the curve β is orthogonal to α since it is tangent
to the principal normal vector field N of α . On the other hand, the authors in [4] defined a principal-direction
curve of a Frenet curve α as an integral curve of the principal normal vector field of α , which is the same as a
natural mate of α . However, the definition of principal-direction curves in [4] is confusing since integral curves
are defined only for vector fields on a region containing a curve, not along a curve. For this reason we use the
terminology “natural mate” instead to avoid this confusion.

The following two corollaries are easy consequences of Theorem 1.

Corollary 1. [4, Theorem 4.1] A Frenet curve α : I → E3 is a helix if and only if its natural mate β is a
planar curve.
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Corollary 2. [4, Theorem 4.5] A Frenet curve α : I → E3 is a slant helix if and only if its natural mate β is
a helix.

By applying Theorem 1, we also have the following.

Corollary 3. A Frenet curve α : I → E3 with curvature κ and torsion τ is a spherical curve ( that lies on a
sphere of radius a) if and only if the curvature κ̄ and the torsion τ̄ of its natural mate satisfy

κ̄′

κ̄
=
( τ
κ

)
τ̄ ± τ

√
a2κ2 − 1. (3.4)

Proof Suppose α : I → E3 is a spherical curve with curvature κ and torsion τ that lies on a sphere of radius
a . Then we have p2 + (p′q)

2
= a2 , with p = κ−1 and q = τ−1 . That is,

1

κ2
+

κ′2

κ4τ2
= a2,

which gives

κ′ = ±τκ
√

a2κ2 − 1. (3.5)

Now differentiating

κ̄ = κ

√
1 +

( τ
κ

)2
and using the expression for τ̄ , we get condition (3.4).

Conversely, suppose the curvatures and torsion of the Frenet curve α and its mate satisfy Equation (3.4).
By differentiating κ̄ = ω =

√
τ2 + κ2 , we get

κ̄′ =
ττ ′ + κκ′

ω
,

which together with the value of τ̄ and Equation (3.4) gives

κ̄′

κ̄
=

ττ ′ + κκ′

ω2
=

τκ

ω2

( τ
κ

)′
± τ
√
a2κ2 − 1.

The above equation simplifies to
κ′

κ
= ±τ

√
a2κ2 − 1, (3.6)

that is, −κp′q = ±
√
a2κ2 − 1, which gives

−p′q = ±
√
a2κ2 − 1

κ
.

Differentiating the above equation and using equation (3.6) gives

− (p′q)
′
= ± κ′

κ2
√
a2κ2 − 1

=
τ

κ
,
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and consequently, we have

(p′q)
′
+

p

q
= − τ

κ
+

τ

κ
= 0,

which proves that α is a spherical curve.
Also, by applying Theorem 1, we have the following new characterization of rectifying curves in terms of

natural mates.

Corollary 4. A Frenet curve α : I → E3 with curvature κ and torsion τ is a rectifying curve if and only if
the curvature κ̄ and the torsion τ̄ of its natural mate satisfy

κ2 = cτ̄ κ̄2 (3.7)

for a nonzero constant c .

Proof Suppose α : I → E3 is a rectifying curve with curvature κ and torsion τ . Then we have (cf. [1])

α(s) = (s+ b)T (s) + cB(s),

where b and c are constants and c ̸= 0 . Differentiating the above equation yields cτ = (s+ b)κ . Thus, we find

( τ
κ

)′
=

1

c
.

Consequently, using expressions for κ̄ and τ̄ , we get κ2 = cτ̄ κ̄2 and hence condition (3.7) holds.
Conversely, suppose the curvature κ and the torsion τ of the Frenet curve α and the curvature κ̄ and

the torsion τ̄ of its natural mate satisfy condition (3.7), which together with the expressions for κ̄ and τ̄ give

( τ
κ

)′
=

1

c
,

that is
τ

κ
=

1

c
s+ c̄,

where c̄ is a constant. This proves that τ/κ is a linear function of s and hence α is a rectifying curve according
to [1, Theorem 2].

4. Frenet curves with spherical natural mates

In this section, we study the following.

Question. “Which Frenet curve has a spherical natural mate? ”

This question is answered by the following theorem.

Theorem 2. If a Frenet curve α : I → E3 has constant curvature κ = c > 0 , then its natural mate β lies on
a sphere of radius c−1 . The converse holds if the natural mate β has nonzero torsion, that is τ̄ ̸= 0 .
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Proof Assume that the Frenet curve α : I → E3 has constant curvature κ = c . Then the curvature κ̄ and
the torsion τ̄ of the natural mate β : I → E3 are given by

κ̄ =
√
c2 + τ2, τ̄ =

cτ ′

c2 + τ2
.

Case (1): If the torsion of the curve α is a constant, i.e. τ = c̄ (const.) , then we have

κ̄ =
√
c2 + c̄2, τ̄ = 0,

that is, the natural mate β of α is an arc of a small circle on the sphere of radius c−1 at a height c̄/(c
√
c2 + c̄2 )

from the center of the sphere, and then it is a spherical curve that lies on a sphere of radius c−1 .

Case (2): If τ is nonconstant, then by putting p̄ = κ̄−1 and q̄ = τ̄−1 , we have

p̄′ = − ττ ′

(c2 + τ2)
3
2

.

Consequently, we get

p̄′ q̄ = −1

c

τ√
c2 + τ2

,

that is,

(p̄′ q̄)
′
= − cτ ′

(c2 + τ2)
3
2

.

Also, we have
p̄

q̄
=

cτ ′

(c2 + τ2)
3
2

.

After combining the above two equations, we conclude that

(p̄′ q̄)
′
+

p̄

q̄
= 0.

Thus, by Equation (2.7), we know that the natural mate of α is a spherical curve. Now, to find the radius of
the sphere, we have

p̄2 + (p̄′ q̄)
2
=

1

c2 + τ2
+

τ2

c2 (c2 + τ2)
=

1

c2
,

which in view of Equation (2.8) implies that it lies on the sphere of radius c−1 .
Conversely, suppose that the natural mate β of the Frenet curve α is a spherical curve with nonzero

torsion lying on the sphere of radius c−1 . Then Equation (2.8) written in terms of κ̄ and τ̄ gives

1

κ̄2
+

κ̄′2

κ̄4 τ̄2
=

1

c2
.

Hence, we obtain
κ̄′

κ̄
√
κ̄2 − c2

= ± τ̄

c
.
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Integrating the above equation gives

sec−1
( κ̄
c

)
= ±

∫
τ̄ ds or κ̄ = c sec

(∫
τ̄ ds

)
. (4.1)

In general, from Theorem 1, the torsion of the natural mate is

τ̄ =

(
τ
κ

)′
1 +

(
τ
κ

)2 ,

which, by the substitution tan(θ + b) = τ/κ for some constant b , gives τ̄ = θ′ . Consequently, Equation (4.1)
gives κ̄ = c sec(θ + θ0) , where θ0 is a constant. Now, by choosing b = θ0 , we find

κ̄ = c sec(θ + b). (4.2)

On the other hand, since κ̄ =
√
τ2 + κ2 and τ = κ tan(θ + b) , we also have

κ̄ = κ sec(θ + b). (4.3)

Consequently, after comparing expressions of κ̄ in (4.2) and (4.3), we obtain κ = c , which completes the proof
of the theorem.

Remark 2. It follows from the proof of Theorem 2 that the natural mate β of the Frenet curve α lies in an
arc of a circle if and only if it has constant torsion and constant curvature > 0 .

Remark 3. Salkowski curves in E3 are curves with constant curvature but nonconstant torsion with explicit
parametrization. Such curves were initially studied and constructed in 1909 by Salkowski [20]. Similar curves
with constant torsion but nonconstant curvature are known as anti-Salkowski curves (see, e.g., [15]).

5. Natural mates with constant curvature
It follows from (2.5) and κ̄ = ω in (3.2) that if there exists a function φ(s) such that the curvature κ and the
torsion τ of a Frenet curve α satisfies

κ = c cos(φ(s)) and τ = c sin(φ(s)), (5.1)

then the natural mate of α has constant curvature κ̄ .
Conversely, we have the following.

Theorem 3. Let α : I → E3 be a Frenet curve and let β : I → E3 be its natural mate. If the natural mate β

has constant curvature κ̄ = c > 0 , then the curvature κ and the torsion τ of α are related to the torsion τ̄ of
the natural mate by

κ = c cos
(∫

τ̄ ds

)
and τ = c sin

(∫
τ̄ ds

)
. (5.2)

Proof Suppose that the curvature of the natural mate β of α is a constant c > 0 . Then by the expression
for κ̄ in (3.2), we get

κ2 + τ2 = c2, κκ′ + ττ ′ = 0. (5.3)
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Thus, the expression for τ̄ in (3.2) yields τ̄ = (κτ ′ − τκ′) /c2 , which in view of equation (5.3) gives

τ̄ =
1

κc2
(
κ2τ ′ − κτκ′) = τ ′

κ
=

τ ′√
c2 − τ2

. (5.4)

Hence, we obtain
∫
τ̄ ds = sin−1 (τ/c) , or equivalently, τ = c sin

(∫
τ̄ ds
)
. Therefore, after using κ2 + τ2 = c2 ,

we also obtain κ = c cos
(∫

τ̄ ds
)
.

Remark 4. Theorem 3 implies that in order for the natural mate β of a Frenet curve α to have constant
curvature, the function φ in (5.1) cannot be an arbitrary function.

Corollary 5. Let α : I → E3 be a Frenet curve with curvature κ and torsion τ and let β : I → E3 be its
natural mate with curvature κ̄ and torsion τ̄ . If the natural mate has constant curvature c , then we have

sin−1
(τ
c

)
= cos−1

(κ
c

)
, κ = −

∫
τ τ̄ds, τ =

∫
κτ̄ds. (5.5)

Proof The first equality of (5.5) follows immediately from (5.2). The second and the third equalities of (5.5)
follow from (5.3) and (5.4).

By applying Theorem 3, we also have the following characterization of a spherical curve whenever the
natural mate has constant curvature c .

Theorem 4. Let α : I → E3 be a Frenet curve whose natural mate β has constant curvature c > 0 . Then α is
a spherical curve if and only if there is a positive constant a ≥ c such that with respect to a suitable arc-length
parametrization s the torsion τ̄ of β satisfies

τ̄ = ± c2
√
a2 − c2 cos(cs)

c2 + (a2 − c2) sin2(cs)
. (5.6)

Proof Assume that the natural mate β of a Frenet curve α has the constant curvature κ̄ = c > 0 and torsion
τ̄ given by (5.6). Then, by Theorem 3, as κ̄ = c , a constant, we have the following expressions for curvature
and torsion of α :

κ = c cos
(∫

τ̄ ds

)
and τ = c sin

(∫
τ̄ ds

)
, (5.7)

which gives p = c−1 sec
(∫

τ̄ ds
)

and q = c−1 csc
(∫

τ̄ ds
)
. Thus, by differentiating p we get

p′ =
τ̄

c
sec
(∫

τ̄ ds

)
tan

(∫
τ̄ ds

)
. (5.8)

Since

tan
(
±
∫

c2
√
a2 − c2 cos(cs)

c2 + (a2 − c2) sin2(cs)
ds

)
= ±

√
a2 − c2

c
sin(cs),

we obtain from the expression for τ̄ in (5.6) that

tan
(∫

τ̄ ds

)
= ±

√
a2 − c2

c
sin(cs). (5.9)
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Now, by differentiating the last equation and using (5.6), we find

sec2
(∫

τ̄ ds

)
=

1

c2
(
c2 + (a2 − c2) sin2(cs)

)
. (5.10)

Thus, using (5.6), (5.7), (5.8), and (5.10), we find p′q = ±c−2
√
a2 − c2 cos(cs) , which gives

(p′q)
′
= ∓

√
a2 − c2

c
sin(cs). (5.11)

Also, we find from (5.7) and (5.9) that

p

q
= tan

(∫
τ̄ ds

)
= ±

√
a2 − c2

c
sin(cs). (5.12)

Now, combining (5.11) and (5.12) gives (p′q)
′
+ p/q = 0. Hence, α is a spherical curve.

Conversely, let us assume that α is a spherical curve and that the natural mate β of α has constant
curvature κ̄ = c > 0 . Then it follows from (2.8) that p2 + (p′q)

2
= b2, where b is a positive constant. Hence,

using the expressions of p and p′ of (5.7) and (5.8), we have

1

c4
sec2

(∫
τ̄ ds

){
τ̄2 sec2

(∫
τ̄ ds

)
+ c2

}
= b2.

Thus, we have

τ̄2 sec2
(∫

τ̄ ds

)
+ c2 = b2c4 cos2

(∫
τ̄ ds

)
= a2 cos2

(∫
τ̄ ds

)
with a = bc2 , that is,

τ̄2 sec2
(∫

τ̄ ds

)
= a2 cos2

(∫
τ̄ ds

)
− c2.

The above expression implies a ≥ c and thus we have

τ̄ sec
(∫

τ̄ ds

)
= ± cos

(∫
τ̄ ds

)√
a2 − c2 sec2

(∫
τ̄ ds

)
,

that is,
cτ̄ sec2

(∫
τ̄ ds
)√

a2 − c2 sec2
(∫

τ̄ ds
) = ±c.

Now, by integrating the last equation, we obtain

sin−1

(
c√

a2 − c2
tan

(∫
τ̄ ds

))
= ±cs+ s0,

for some constant s0 . Hence, after applying a suitable translation in s , we get

tan
(∫

τ̄ ds

)
= ±

√
a2 − c2

c
sin(cs),
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which is equivalent to ∫
τ̄ ds = ± tan−1

(√
a2 − c2

c
sin(cs)

)
.

Consequently, after differentiating the last equation, we obtain (5.6).
Another result for a spherical curve whose natural mate has constant curvature is the following conse-

quence of Corollary 3.

Corollary 6. Let α : I → E3 be a Frenet curve with curvature κ and torsion τ . Assume that the natural
mate β of α has constant curvature c > 0 . Then α lies on a sphere of radius a if and only if either τ = 0 or
τ̄ = ∓κ

√
a2κ2 − 1 .

Proof Corollary 3 states that α lies on a sphere of radius a if and only if (3.4) holds. When the natural
mate has constant curvature κ̄ = c , Equation (3.4) reduces to τ̄ τ = ∓κτ

√
a2κ2 − 1 . Hence, α lies on a sphere

of radius a if and only if either τ = 0 or τ̄ = ∓κ
√
a2κ2 − 1 .

6. Conjugate mates for Frenet curves

We provide the following easy result for later use.

Proposition 1. Assume that α : I → E3 is a Frenet curve with Frenet–Serret apparatus {κ, τ, T,N,B} with
torsion τ < 0 (resp., torsion τ > 0) . Then there exists a Frenet curve ᾱ : I → E3 with Frenet–Serret apparatus
{−τ, κ,B,N,−T} (resp., {τ,−κ,B,−N,T}) .

Proof If the torsion of α is negative, then by Equation (2.4) we have

B′ = −τN, N ′ = −(−τ)B + κ(−T ), (−T )
′
= −κN.

Hence, there is a unique unit speed curve ᾱ : I → E3 with curvature −τ , torsion κ , and Frenet frame
{B,N,−T} according to the existence theorem. Moreover, as torsion κ ̸= 0 , it is a Frenet curve. If the torsion
τ of α is positive, then a similar argument shows that there exists a unique unit speed curve with curvature τ

and torsion −κ and with Frenet frame {B,−N,T} .
For the Frenet curve α : I → E3 , the curve ᾱ in Proposition 1 is given by ᾱ =

∫
Bds , which was called

the binormal-direction curve of the curve α in [4]. In this paper, we call ᾱ the conjugate mate of α for short.

Notice that the curves α and ᾱ are orthogonal curves and that α is a helix if and only if its conjugate
mate ᾱ is a helix. Similarly, we also have the following.

Corollary 7. A Frenet curve α : I → E3 with negative torsion (or with positive torsion) is a slant helix if and
only if its conjugate mate ᾱ is a slant helix.

Proof Let α be a Frenet curve with curvature κ and torsion τ and let κ̄ and τ̄ be the curvature and torsion
of its conjugate mate ᾱ . If τ < 0 , then we have κ̄ = −τ and τ̄ = κ . Thus, we have

( τ̄
κ̄

)′
= −

(κ
τ

)′
=

κτ ′ − τκ′

τ2
=

κ2

τ2

( τ
κ

)′
,
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which gives
κ̄2
(
τ̄
κ̄

)′
(τ̄2 + κ̄2)

3
2

=
κ2
(
τ
κ

)′
(τ2 + κ2)

3
2

.

Hence, in view of Equation (2.2), the above equation implies that α is a slant helix if and only if its conjugate
mate ᾱ is a slant helix.

A similar argument applies to the case τ > 0 .
Combining Theorem 1 and Proposition 1, we obtain immediately the following.

Corollary 8. Let α : I → E3 be a Frenet curve with negative torsion (or with positive torsion) . Then there
exists a unique pair of a unit speed curve β : I → E3 and a Frenet curve ᾱ : I → E3 , such that the curves α ,
β , and ᾱ are mutually orthogonal.

Finally, we prove the next result for Frenet curves with nonzero constant torsion.

Theorem 5. If a Frenet curve α in E3 has constant torsion τ ̸= 0 , then its natural mate β lies on a sphere
of radius c−1 .

Proof Let α be a Frenet curve with Frenet–Serret apparatus {κ, τ, T,N,B} . Assume that the torsion of α is
a negative constant, say τ = −c . Then Proposition 1 implies that α has a conjugate mate ᾱ with Frenet–Serret
apparatus{−τ, κ,B,N,−T} so that ᾱ is a Frenet curve with constant curvature κ∗ = c > 0 .

Now we claim that α and ᾱ have the same natural mate. According to Theorem 1, the natural mate β

of α has Frenet–Serret apparatus
{
κ̄, τ̄ , T̄ , N̄ , B̄

}
as in (3.2).

Suppose that β̄ is the natural mate of the conjugate mate ᾱ . Let {κ∗, τ∗, T ∗, N∗, B∗} be the Frenet–
Serret apparatus of β̄ . Then, by Theorem 1, we have

κ∗ =

√
(−τ)

2
+ κ2 = κ̄, τ∗ =

τ2
(

κ
−τ

)′
τ2 + κ2

. (6.1)

Clearly, we have

τ2
(

κ

−τ

)′

= −τ2
(κ
τ

)′
= κτ ′ − τκ′ = κ2

( τ
κ

)′
.

Combining this with the second equation in (6.1) gives

τ∗ =
κ2
(
τ
κ

)′
τ2 + κ2

= τ̄ . (6.2)

By Proposition 1, we also have

N∗ =
1√

τ2 + κ2
(−(−τ)B + κ(−T )) = N̄ (6.3)

and similarly

B∗ =
1√

τ2 + κ2
(κB + (−τ)(−T )) = B̄. (6.4)
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Therefore, we get β = β̄ from (6.1), (6.2), (6.3), and (6.4) and the uniqueness part of the fundamental theorem
of curves.

Since the torsion τ of α is a constant −c < 0 , the conjugate mate ᾱ of α has constant curvature c > 0 .
Consequently, the natural mate β̄ = β is a spherical curve lying on the sphere of radius c−1 according to
Theorem 2.

A similar argument applies to the case τ > 0 .

Example 1. Let α : (0, 2π) → E3 be the unit speed Frenet curve defined by

α(s) =

(√
1− sin s,

√
1 + sin s,

1√
2

cos−1(sin s)

)
.

The Frenet–Serret apparatus of α is given by{
1

2
√
2
,
−1

2
√
2
,

(
− cos s

2
√
1− sin s

,
cos s

2
√
1 + sin s

,
− cos s√
2− 2 sin2 s

)
,

(
−
√
1− sin s√

2
,−

√
1 + sin s√

2
, 0

)
,

(
− cos s

2
√
1− sin s

,
cos s

2
√
1 + sin s

,
cos s√

2− 2 sin2 s

)}
.

By Proposition 1, the conjugate mate ᾱ : (0, 2π) → E3 of α has Frenet–Serret apparatus{
1

2
√
2
,

1

2
√
2
,

(
− cos s

2
√
1− sin s

,
cos s

2
√
1 + sin s

,
cos s√

2− 2 sin2 s

)
,

(
−
√
1− sin s√

2
,−

√
1 + sin s√

2
, 0

)
,

(
cos s

2
√
1− sin s

,
− cos s

2
√
1 + sin s

,
cos s√

2− 2 sin2 s

)}
.

By Theorem 1, the natural mate β of α has Frenet–Serret apparatus

{
1

2
, 0,

(
−
√
1− sin s√

2
,−

√
1 + sin s√

2
, 0

)
,

(
cos s√

2− 2 sin s
,

− cos s√
2 + 2 sin s

, 0

)
, (0, 0, 1)

}
.

By integrating N(s) and B(s) , respectively, we obtain

β(s) =

{
−

cos(π4 − s
2 )
√
2− 2 sin s

cos(π4 + s
2 )

,
cos(π4 + s

2 )
√
2 + 2 sin s

cos(π4 − s
2 )

, 0

}
,

ᾱ(s) =

{√
1− sin s,

√
1 + sin s,

s cos s√
1 + cos 2s

}
.

Notice that α and ᾱ of Example 1 are arcs of helices in opposing directions as seen in the following figure and
the natural mate is β , an arc of a circle of radius 2 (cf. [25]).

From Corollary 7, we know that the conjugate mate ᾱ of a slant helix α(t) of negative torsion is a slant
helix, and by Corollary 2 its natural mate β is a helix. Next, we provide an example of a slant helix α with
negative torsion.
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Figure 1. Graph of α (in red), ᾱ (in blue), β (in black).

Example 2. Consider the unit speed curve α : (−π, π) → E3 given by

α(s) =
3

4

(
cos s+ cos 3s

9
, sin s+

sin 3s

9
,
−2 cos s√

3

)
.

The curvature and torsion of α are κ =
√
3 cos s , τ = −

√
3 sin s . The Frenet frame of α is

T =
3

4

(
− sin s− sin 3s

3
, cos s+ cos 3s

3
,
2 sin s√

3

)
,

N =

(
−
√
3 cos 2s
2

,
−
√
3 sin 2s

2
,
1

2

)
, B =

(
3 cos s− cos 3s

4
, sin3 s,

√
3 cos s
2

)
.

Since the natural mate β of α has curvature κ̄ =
√
3 and torsion τ̄ = −1 , the Frenet frame of β is given by

T̄ = N, N̄ =

(
sin 4s

4
,
−3− cos 4s

4
,−

√
3 sin 2s

2

)
,

B̄ =

(
3− cos 4s

4
,
− cos s− cos 3s

2
,

√
3 cos 2s
2

)
.

The conjugate mate ᾱ of α has curvature κ∗ =
√
3 sin s and torsion τ∗ =

√
3 cos s and the Frenet frame

{T ∗, N∗, B∗} of ᾱ is given by {B,N,−T} .
After integrating N(s) and B(s) , respectively, we obtain

β(s) =
1

4

{
−
√
3 sin 2s,

√
3 cos2s, 2s

}
,
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ᾱ(s) =
1

12

{
9 sin s− sin 3s,−9 cos s+ cos 3s, 6

√
3 sin s

}
.

The curves α , β , and ᾱ of Example 2 are shown in the following computer generated graph, of which α and
ᾱ are slant helices moving in opposing directions and β is the helix.

-0.5

0.0

0.5

-0.5

0.0

0.5

-1

0

1

Figure 2. Graph of α (in red), ᾱ (in blue), β (in black).
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