
Turk J Math
(2018) 42: 2854 – 2862
© TÜBİTAK
doi:10.3906/mat-1706-79

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Quasinilpotents in rings and their applications

Jian CUI∗

Department of Mathematics, Anhui Normal University, Wuhu, P.R. China

Received: 25.06.2017 • Accepted/Published Online: 19.09.2018 • Final Version: 27.09.2018

Abstract: An element a of an associative ring R is said to be quasinilpotent if 1 − ax is invertible for every x ∈ R

with xa = ax . Nilpotents and elements in the Jacobson radical of a ring are well-known examples of quasinilpotents. In
this paper, properties and examples of quasinilpotents in a ring are provided, and the set of quasinilpotents is applied
to characterize rings with some certain properties.
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1. Introduction
Rings are associative with identity. Let R be a ring. The symbols U(R) , Id(R) , and Rnil stand for the sets
of all units, all idempotents, and all nilpotents of R , respectively. The commutant of a ∈ R is defined by
commR(a) = {x ∈ R | ax = xa} (if there is no ambiguity, we simply use comm(a) for short). For an integer
n ≥ 1, we write Mn(R) for the n× n matrix ring over R whose identity element we write as In or I .

The intersection of all maximal left (right) ideals of R is said to be the Jacobson radical of R , which
is denoted by J(R). As is well known, J(R) = {a ∈ R | 1 − ax ∈ U(R) for all x ∈ R} . Due to Harte
[10], an element a ∈ R is called quasinilpotent if 1 − ax ∈ U(R) for every x ∈ comm(a); the set of all
quasinilpotents of R is denoted by Rqnil . It is clear that both Rnil and J(R) are contained in Rqnil .
It is worth noting that quasinilpotents play an important role in a Banach algebra A . According to [9],
Aqnil = {a ∈ A | lim

n→∞
∥an∥1/n = 0} = {a ∈ A | x − a ∈ U(A) for all nonzero complex x} . By means of

quasinilpotents, some interesting concepts are introduced, such as strongly J -clean rings [3], nil clean rings [7],
generalized Drazin inverses [11], quasipolar rings [16], etc. However, there were few results concerning properties
of quasinilpotents in a ring. Recall that a ring R is local [13] if R = U(R)∪ J(R) , and it was shown in [4] that
R is a division ring or a Boolean ring if and only if R = U(R) ∪ Id(R) . A natural question is: What can be
said about a ring R for which R = U(R) ∪Rqnil (resp., R = U(R) ∪Rnil ; R = U(R) ∪Rqnil ∪ Id(R))?

Motivated by the above, we study properties and structures of quasinilpotents in a ring and provide
several illustrative examples. Jacobson’s lemma for quasinilpotents is also considered. Furthermore, the
sets Id(R), U(R) , and Rqnil are used to characterize rings. We prove that a ring R is local if and only if
R = U(R)∪Rqnil , a ring R is local with J(R) nil if and only if R = U(R)∪Rnil , and if R = U(R)∪Rqnil∪Id(R) ,
then R is a local ring or a Boolean ring or a nonabelian directly finite ring with charR = 2 .
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2. Quasinilpotents in rings

We begin with the following examples, which will reveal that quasinilpotents in a ring R are very different from
elements in J(R) and nilpotents of R .

Example 2.1 (1) Let R = M2(Z(2)) where Z(2) = { b
a | a, b ∈ Z, 2 ∤ a} . Take A = ( 1 1

1 1 ) ∈ R. Then
A2 ∈ J(R) , and so A ∈ Rqnil (as for any X ∈ comm(A) , (I2 − AX)(I2 + AX) = I2 − A2X2 ∈ U(R) implies
I2 −AX ∈ U(R) ) . Clearly, A is neither nilpotent nor in J(R) .

(2) Define an operator A on the Banach space l1 by the infinite matrix


0 0 0 0 ···
1 0 0 0 ···
0 1/2 0 0 ···
0 0 1/3 0 ···
...

...
...

...
...

 . In view of [15,

Example 4.2], A is quasinilpotent in the Banach algebra L(l1) of all bounded linear operators on l1 . However,
A is not nilpotent and A /∈ J(L(l1)) as J(L(l1)) = 0.

Example 2.2 Let R be a division ring and S = Mn(R) . Then Sqnil = Snil .

Proof Let A ∈ S . Note that S can be viewed as the endomorphism ring of an n -dimensional vector space
over R . Then S is a simple Artinian ring, and so the chain AS ⊇ A2S ⊇ · · · must terminate. In view of [2,
Lemma 1], there exist an integer k ≥ 1 and X ∈ S such that Ak = Ak+1X and AX = XA. Assume that
A ∈ Sqnil. Then In − AX ∈ U(S) . From Ak(In − AX) = Ak − Ak+1X = 0 , we have Ak = 0 , so Sqnil ⊆ Snil ,
and therefore Sqnil = Snil . 2

Lemma 2.3 Let f : R → S be an isomorphism of rings. Then a ∈ Rqnil if and only if f(a) ∈ Sqnil. In
particular, if a ∈ Rqnil , then u−1au ∈ Rqnil for any u ∈ U(R).

Proof It suffices to show that if a ∈ Rqnil then f(a) ∈ Sqnil. Let s ∈ commS(f(a)). Then there exists b ∈ R

such that s = f(b) , so we have f(ab) = f(a)s = sf(a) = f(ba). Since f is an isomorphism, ab = ba. It follows
that 1− ab ∈ U(R) as a ∈ Rqnil . Thus, 1− f(a)s = f(1− ab) ∈ U(S), from which f(a) ∈ Sqnil. 2

The polynomial ring over a ring R in the indeterminate t is denoted by R[t]. For a monic polynomial
f(t) = tn − an−1t

n−1 − · · · − a1t − a0 ∈ R[t], the n × n matrix Cf =
(
0 a0

I α

)
is called the companion matrix

of f(t), where α = (a1, a2, . . . , an−1)
T . A matrix C ∈ Mn(R) is called a companion matrix if C = Cf for a

monic polynomial f(t) ∈ R[t] of degree n . The following result is due to Diesl and Dorsey.

Lemma 2.4 Let R be a commutative ring and C be a companion matrix of a monic polynomial of degree n .
Then commMn(R)(C) = {h(C)| for every h(t) ∈ R[t]} .

Proof It is enough to prove that commMn(R)(C) ⊆ {h(C)| for every h(t) ∈ R[t]} . Let C =


0 0 ··· 0 a0
1 0 ··· 0 a1
0 1 ··· 0 a2

...
... . . . ...

...
0 0 ··· 1 an−1

 .

Write e0 = (1, 0, . . . , 0)T , e1 = (0, 1, . . . , 0)T , . . . , en−1 = (0, 0, . . . , 1)T . Then Cei = ei+1 for every 0 ≤ i ≤ n−2

and Cen−1 = a0e0 + a1e1 + · · ·+ an−1en−1.
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Suppose that X ∈ Mn(R) and CX = XC . Set X = (X0, X1, . . . , Xn−1) with column vectors Xi . Then,
for every 0 ≤ i ≤ n− 2 , we have

CXi = C(Xei) = X(Cei) = Xei+1 = Xi+1

and

CXn−1 = C(Xen−1) = XCen−1

= X(a0e0 + a1e1 + · · ·+ an−1en−1)

= a0Xe0 + a1Xe1 + · · ·+ an−1Xen−1

= a0X0 + a1X1 + · · ·+ an−1Xn−1.

Write X0 = (b0, b1, . . . , bn−1)
T . Then all Xi (and thus X ) can be constructed by X0 . We claim that

X = b0I + b1C + · · · + bn−1C
n−1. Indeed, we only need to verify that it agrees on e0, e1, . . . , en−1. Note

that
(b0I + b1C + · · ·+ bn−1C

n−1)e0 = b0e0 + b1e1 + · · ·+ bn−1en−1 = X0 = Xe0,

and similarly, for each 1 ≤ i ≤ n− 1 ,

Xei = X(Cie0) = Ci(Xe0)

= Ci(b0I + b1C + · · ·+ bn−1C
n−1)e0

= (b0I + b1C + · · ·+ bn−1C
n−1)(Cie0)

= (b0I + b1C + · · ·+ bn−1C
n−1)ei.

This completes the proof. 2

For a ring R , let
√

J(R) = {x ∈ R | xn ∈ J(R) for some integer n ≥ 1}. One may easily check that√
J(R) ⊆ Rqnil. It is shown in [15] that Sqnil =

√
J(S) if S is a 2 × 2 matrix ring over a commutative ring.

We have the following result.

Theorem 2.5 If R is a commutative local ring and S = Mn(R) , then Sqnil =
√
J(S) .

Proof It suffices to prove that Sqnil ⊆
√
J(S) . Let A ∈ Sqnil . Then for any polynomial f(t) ∈ R[t], I−Af(A)

is a unit of Mn(R). Thus, Ī + Āf(A) is invertible in Mn(R/J(R)) ∼= S/J(S) . Note that R/J(R) is a field.

Thus, Ā is similar to its rational canonical form C :=


Cf1

Cf2

. . .
Cfl

 where Cfi is the companion matrix

over R/J(R) . Since Ī − Āf(A) is invertible, it follows that Ī − Cfif(Cfi) is invertible for i = 1, 2, . . . , l. As

f(t) ∈ R̄[t] is arbitrary, by Lemma 2.4 all Cfi are quasinilpotent. In view of Example 2.2, Cfi is nilpotent
where 1 ≤ i ≤ l. By Lemma 2.3, one has (Ā)k = 0 ∈ S/J(S) for some integer k , which implies Ak ∈ J(S).

Therefore, Sqnil ⊆
√
J(S) , as desired. 2

For a ring R, the center of R is denoted by C(R) .
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Proposition 2.6 Let R be a ring. Then Rqnil = J(R) if one of the following holds :
(1) Rqnil ⊆ C(R) .
(2) Rqnil is an one-sided ideal of R .

Proof (1) Let a ∈ Rqnil ⊆ C(R). Then for any x ∈ R, ax = xa, so we have 1 − ax ∈ U(R), which implies
a ∈ J(R).

(2) Assume that Rqnil is a right ideal of R . Given any a ∈ Rqnil, then ax ∈ Rqnil for any x ∈ R. Thus,
1− ax ∈ U(R) , and hence a ∈ J(R). 2

Clearly, Rqnil coincides with J(R) if R is a commutative ring.

Proposition 2.7 Let R be a ring and a ∈ R , c ∈ C(R) .
(1) If an ∈ Rqnil for some integer n ≥ 1, then a ∈ Rqnil.

(2) If a ∈ Rqnil, then ac ∈ Rqnil. The converse holds if c ∈ U(R) .

Proof (1) Take x ∈ comm(a). Then we have xnan = anxn. Write b = 1 + ax + (ax)2 + · · · + (ax)n−1 . It
follows that b(1 − ax) = (1 − ax)b = 1 − (ax)n = 1 − anxn ∈ U(R) since an ∈ Rqnil , so 1 − ax ∈ U(R). This
proves a ∈ Rqnil.

(2) Let x ∈ R with (ac)x = x(ac). As c ∈ C(R) , a(cx) = (cx)a, so a ∈ Rqnil implies that 1−acx ∈ U(R) ,
which yields ac ∈ Rqnil . Conversely, assume that c ∈ U(R) and y ∈ comm(a). Then ac(yc−1) = (yc−1)ac .
Since ac ∈ Rqnil, 1− ay = 1− ac(yc−1) ∈ U(R), which implies that a ∈ Rqnil. 2

Lemma 2.8 Let q ∈ Rqnil and e2 = e ∈ R. If eq = qe , then eq ∈ Rqnil ∩ eRe = (eRe)qnil .

Proof In view of [16, Lemma 3.5], Rqnil ∩ eRe = (eRe)qnil . We only need to show that eq ∈ Rqnil . Let t ∈ R

with t(eq) = (eq)t . As eq = qe , we have q(qet2e) = (qeqe)t2e = qet2qe = (qet2e)q . Since q ∈ Rqnil , it follows
that (1− teq)(1+ teq) = 1− (teq)(teq) = 1− (qet2e)q ∈ U(R) . Thus, 1− teq ∈ U(R), and hence eq ∈ Rqnil. 2

The condition “eq = qe” in Lemma 2.8 is not superfluous. Let E = ( 1 0
0 0 ) and Q = ( 1 1

1 1 ) be in M2(Z2),

where Z2 is the ring of integers Z modulo 2. Then E2 = E and Q is nilpotent, but EQ = ( 1 1
0 0 ) = (EQ)2 is

not quasinilpotent in M2(Z2) .

Proposition 2.9 Let e2 = e ∈ R , and a ∈ R with ae = ea . The following are equivalent:
(1) ae is quasinilpotent in R .
(2) For any y ∈ commR(ae) , Re ⊆ R(1− ay) and l(1− ya) ⊆ l(e) .
(3) For any y ∈ commR(ae) , Re ⊆ (1− ya)R and r(1− ay) ⊆ r(e) .

Proof By Lemma 2.8, the proof can be shown in a similar manner as [6, Corollary 3.2]. 2

Let A be a Banach algebra. It is well known that for any a ∈ Aqnil and b ∈ A , if ab = ba then
ab ∈ Aqnil , and in addition, a+ b ∈ Aqnil if b ∈ Aqnil (see also [10]). However, it is still unknown whether the
above results hold for a ring. For a ring R , let Q(R) = {q ∈ R | 1 + q ∈ U(R)} .

Proposition 2.10 Let R be a ring with Q(R) = Rqnil or U(R) = 1 +Rqnil.
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(1) If a ∈ Rqnil and b ∈ comm(a), then ab ∈ Rqnil.

(2) If a, b ∈ Rqnil and ab = ba , then a+ b ∈ Rqnil.

Proof We first show the following claim.
Claim: Q(R) = Rqnil if and only if U(R) = 1 +Rqnil.

Proof of the Claim. Assume that U(R) = 1 + Rqnil. Clearly, Q(R) ⊇ Rqnil . Take q ∈ Q(R) . Then
1 + q ∈ U(R) = 1 + Rqnil. Therefore, q ∈ Rqnil , and thus Q(R) ⊆ Rqnil . Conversely, suppose that
Q(R) = Rqnil . To show that U(R) = 1+Rqnil, it suffices to prove that U(R) ⊆ 1+Rqnil. Let u ∈ U(R). Since
1 + (u− 1) = u ∈ U(R) , we have u− 1 ∈ Q(R) = Rqnil, which implies that u ∈ 1 +Rqnil, as desired.

(1) Since a ∈ Rqnil and ab = ba, one has 1 + ab ∈ U(R) . Thus, ab ∈ Q(R) ⊆ Rqnil .

(2) As a, b ∈ Rqnil and ab = ba , 1 + a ∈ U(R) and (1 + a)−1 ∈ comm(b) . It follows that 1 + a + b =

(1 + a)[1 + (1 + a)−1b] ∈ U(R) , so a+ b ∈ Q(R) ⊆ Rqnil. 2

For a ring R, Jacobson’s lemma states that for any a, b ∈ R , if 1− ab ∈ U(R) then 1− ba ∈ U(R) and
(1− ba)−1 = 1 + b(1− ab)−1a. We have the following result.

Theorem 2.11 Let a, b ∈ R. If 1− ab ∈ Rqnil, then 1− ba ∈ Rqnil if and only if a, b ∈ U(R).

Proof Assume that a, b ∈ U(R). Let x ∈ comm(1 − ba). Then multiplying (1 − ba)x = x(1 − ba) by a

on the left and by b on the right yields (1 − ab)axb = axb(1 − ab). Thus, (ab)axb = axb(ab) . It follows that
[(ab)−1axb](1−ab) = (1−ab)[(ab)−1axb] . Since 1−ab ∈ Rqnil, 1− [(ab)−1axb](1−ab) = 1−(ab)−1ax(1−ba)b =

1 − b−1x(1 − ba)b ∈ U(R). By Jacobson’s lemma, 1 − x(1 − ba)bb−1 = 1 − x(1 − ba) ∈ U(R). This proves
1− ba ∈ Rqnil.

Conversely, 1 − ab ∈ Rqnil implies ab ∈ −1 + Rqnil ⊆ U(R). Similarly, we can get ba ∈ U(R) from the
assumption 1− ba ∈ Rqnil . Thus, a, b ∈ U(R). 2

Recall that a ring R is directly finite if ab = 1 implies ba = 1 for all a, b ∈ R (equivalently, aR = R

implies Ra = R). We have the following result immediately.

Corollary 2.12 Let R be a ring. Then for any a, b ∈ R, 1− ab ∈ Rqnil implies 1− ba ∈ Rqnil if and only if
R is a directly finite ring.

Corollary 2.13 Let a, b ∈ R. If 1− ab ∈ Rnil, then 1− ba ∈ Rnil if and only if a, b ∈ U(R).

Proof One direction follows from Theorem 2.11. Now suppose that a, b ∈ U(R) and (1− ab)k = 0 for some
integer k. Then

(ab)−1 = [1− (1− ab)]−1 = 1 + (1− ab) + (1− ab)2 + · · ·+ (1− ab)k−1.

Thus, we have
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(1− ba)k+1 =

k+1∑
i=0

Ci
k+1(−1)i(ba)i

= 1− C1
k+1(ba) + C2

k+1(ba)
2 + · · ·+ (−1)iCi

k+1(ba)
i + · · ·+ (−1)k+1(ba)k+1

= 1− b[C1
k+1 − C2

k+1(ba) + · · ·+ (−1)i−1Ci
k+1(ba)

i−1 + · · ·+ (−1)k(ba)k]a

= 1− b[1 + (1− ab) + (1− ab)2 + · · ·+ (1− ab)k−1]a

= 1− b(ab)−1a = 1− bb−1a−1a = 0.

Thus, 1− ba ∈ Rnil, and the proof is completed. 2

Corollary 2.14 Let a, b ∈ R. If 1− ab ∈ J(R), then 1− ba ∈ J(R) if and only if a, b ∈ U(R).

Proof By Theorem 2.11, it suffices to show that if a, b ∈ U(R) then 1 − ba ∈ J(R). For any x ∈ R ,
1 − (ba)−1x(1 − ba)ba = 1 − (ba)−1xb(1 − ab)a ∈ U(R) since 1 − ab ∈ J(R) . By Jacobson’s lemma,
1− x(1− ba)ba(ba)−1 = 1− x(1− ba) ∈ U(R) , so 1− ba ∈ J(R). 2

Cline proved in 1965 [5] that if ab is Drazin invertible then so is ba . Many authors generalized the above
result to elements of rings with some kind of property. For example, similar results hold for strongly clean
elements [8], strongly nil clean elements [12], etc.

Lemma 2.15 [14, Lemma 2.2] Let a, b ∈ R. If ab is quasinilpotent in R , then so is ba.

For positive integers m,n , let Rm×n be the set of all m× n matrices over the ring R .

Proposition 2.16 Let A ∈ Rm×n and B ∈ Rn×m . Then AB is quasinilpotent in Mm(R) if and only if BA

is quasinilpotent in Mn(R) .

Proof If m = n, the result follows by Lemma 2.15. Assume that m > n. Let A1 = (A,O) , B1 = (BO ) ∈ Mm(R)

where O is a matrix with all entries zeros. Clearly, A1B1 = AB and B1A1 = (BA O
O O ) ∈ Mm(R) . Since

AB ∈ (Mm(R))qnil , Lemma 2.15 implies that (BA O
O O ) ∈ (Mm(R))qnil . Clearly, (BA O

O O ) is also quasinilpotent
in

(
Mn(R) O

O O

)
. We note that, as a subring of Mm(R) ,

(
Mn(R) O

O O

)
is isomorphic to Mn(R) . By Lemma 2.3,

BA ∈ (Mn(R))qnil. If m < n , the result can be proved by a similar manner as above. 2

3. Applications

This section focuses on the study of rings with some certain properties by means of U(R), Id(R) , and Rqnil .
We first give the following lemma, which will be used freely.

Lemma 3.1 Let R be a ring. Then Rqnil ∩ U(R) = ∅ and Rqnil ∩ Id(R) = 0.

Theorem 3.2 Let R be a ring. The following are equivalent :
(1) R is a local ring.
(2) For every a ∈ R, a is invertible or a is quasinilpotent.
(3) R = U(R) ∪Rqnil .
(4) R = U(R) ∪ J(R) .
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Proof (1) ⇒ (2) ⇒ (3) and (4) ⇒ (1) are clear.
(3) ⇒ (4) . For any a ∈ Rqnil, we first show that ax /∈ U(R) for all x ∈ R . Suppose that there exists

y ∈ R such that ay ∈ U(R). Then (ay)z = a(yz) = 1 for some z ∈ U(R). Clearly, ((yz)a)2 = (yz)a. As
R = U(R) ∪ Rqnil , we have (yz)a = 0 or (yz)a = 1 . If (yz)a = 0 then yz = (yz)a(yz) = 0, which contradicts
a(yz) = 1 . Therefore, (yz)a = 1 , and so a ∈ U(R) , which is impossible by Lemma 3.1. Thus, ax ∈ Rqnil for
all x ∈ R. It follows that 1− ax ∈ U(R). Therefore, a ∈ J(R) . 2

Corollary 3.3 Let R be a ring. Then R = U(R) ∪Rnil if and only if R is a local ring and J(R) is nil.

Proof Suppose that R = U(R)∪Rnil . Since Rnil ⊆ Rqnil , we have R = (U(R)∪Rnil) ⊆ (U(R)∪Rqnil) ⊆ R .
Thus, R = U(R) ∪ Rqnil and Rqnil = Rnil . By Theorem 3.2, R is a local ring, and hence Rqnil = J(R) . It
follows that J(R) = Rnil . This proves that J(R) is nil.

Conversely, assume that R is a local ring and J(R) is nil. In view of Theorem 3.2, R = U(R) ∪ Rqnil

and Rqnil = J(R) . As J(R) is nil, we have Rqnil = J(R) ⊆ Rnil . Thus, Rqnil = Rnil and R = U(R) ∪Rnil . 2

Recall that a ring R is called reduced if it has no nonzero nilpotents, and R is said to be abelian if all
idempotents of R are central. It is well known that reduced rings are abelian, and abelian rings are directly
finite.

In [1, Theorem 14], the authors proved that a commutative ring R = U(R)∪ Id(R) if and only if R is a
field or a Boolean ring. Chen and Cui [4] extended the above result to the case of noncommutative rings. We
give a simpler proof here.

Proposition 3.4 Let R be a ring. Then R = U(R) ∪ Id(R) if and only if R is a division ring or a Boolean
ring.

Proof One direction is obvious. Suppose that R = U(R)∪ Id(R) . If 2 ∈ U(R), then for any e ∈ Id(R)\{1} ,
we have −e ∈ Id(R) , so (−e)2 = e2 = e = −e , and then 2e = 0 . Thus, e = 0, and this proves that R is
a division ring with Id(R) = {0, 1} . If 2 ∈ Id(R) , then 2 = 0 as 2 = 22. Note that R is reduced and thus
abelian. We may choose e ∈ Id(R)\{0, 1} . For any u ∈ U(R) , then either (u+ e)2 = u+ e or (u+ e)v = 1 for
some v ∈ U(R). As 2 = 0, (u+ e)2 = u+ e yields u = 1. If (u+ e)v = 1 then uv = 1− ev . Since e /∈ U(R) ,
we have (ev)2 = ev , which implies uv = 1 − ev ∈ U(R) ∩ Id(R) = {1} , so e = 0 , a contradiction. Thus, the
only unit of R is 1 , and so R is a Boolean ring. 2

For a ring R , we say that Id(R) (resp., U(R) ; Rqnil ) is trivial whenever Id(R) = {0, 1} (resp.,
U(R) = {1} ; Rqnil = 0).

Theorem 3.5 Let R be a ring. If R = U(R) ∪Rqnil ∪ Id(R) , then exactly one of the following holds :
(1) R is a local ring.
(2) R is a Boolean ring.
(3) R is a nonabelian directly finite ring and charR = 2 .

Proof The proof is divided into the following cases.
Case 1. If Rqnil is trivial, then R = U(R) ∪ Id(R) . By Proposition 3.4, R is local as a division ring or

R is a Boolean ring.
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Case 2. Assume that Rqnil ̸= 0 . Then choose q ∈ Rqnil\{0} . Thus, U(R) is nontrivial as 1 + q ∈
U(R)\{1}.

Subcase 1. If Id(R) is trivial, then by Theorem 3.2, R = U(R) ∪Rqnil is a local ring.
Subcase 2. Suppose that U(R) , Rqnil , and Id(R) are all nontrivial. Set fixed elements e ∈ Id(R)\{0, 1}

and u = 1 + q ∈ U(R)\{1} . We conclude that 2 /∈ U(R) . Otherwise, 2 ∈ U(R) . Clearly, 2e /∈ U(R) .
If 2e ∈ Id(R), then (2e)2 = 2e implies e = 0, which contradicts the assumption e ∈ Id(R)\{0, 1}. Thus,
2e ∈ Rqnil. Notice that 2 ∈ C(R). By Proposition 2.7(2), e ∈ Rqnil , from which e = 0, and this causes the
same contradiction as above. Hence, 2 ∈ Id(R) or 2 ∈ Rqnil.

If 22 = 2 then 2 = 0. If 2 ∈ Rqnil, then 3 ∈ U(R). Clearly, 3e /∈ U(R) as e ̸= 1. If 3e ∈ Rqnil,

then by Proposition 2.7(2), e ∈ Rqnil ∩ Id(R) = 0 . Thus, 3e ∈ Id(R) , and (3e)2 = 3e yields 6e = 0. One
thus gets 2e = 0 as 3 ∈ U(R). Now replacing e by 1 − e , a similar argument will reveal that 2(1 − e) = 0 .
Therefore, 2 = 2e + 2(1 − e) = 0. Thus, charR = 2 . We now show that R is nonabelian. Assuming the
contrary, then eu = ue . Clearly, ue /∈ U(R) and ue /∈ Rqnil (since 1 − u−1(ue) = 1 − (ue)u−1 is not a unit),
so (ue)2 = ue ∈ Id(R), which gives ue = e . Similarly, we can obtain u(1− e) = 1− e. Combining ue = e with
u(1− e) = 1− e , we have u = 1 , a contradiction. Thus, R is a nonabelian ring and charR = 2 .

We finish the proof by showing that R is directly finite. Let a, b ∈ R with ab = 1. Suppose that
a ∈ Rqnil. Then b ∈ Rqnil (indeed, ab = 1 implies b /∈ U(R) , and if b ∈ Id(R) then 1 − b = ab(1 − b) = 0 , so
b = 1 and a = 1 ∈ U(R)). Since charR = 2 , it follows that a + b = (1 + a)(1 + b) := v ∈ U(R) . Multiplying
the equation a + b = v by b on the left, we have b(a + b) = bv. Clearly, bv /∈ U(R). If bv ∈ Id(R) , then
0 = (bv)2 − bv = (bvb− b)v = b3v , so b3 = 0 , but this contradicts 1 = ab = a3b3 . Thus, bv ∈ Rqnil . In view of
Lemma 2.15, we have vb ∈ Rqnil . However, vb = (a+ b)b = 1 + b2 ∈ U(R) as b ∈ Rqnil. Therefore, a /∈ Rqnil.

If a ∈ U(R), then we are done. If a ∈ Id(R) , then 1− a = (1− a)(ab) = (a− a2)b = 0 , so a = 1 and ba = 1.

Hence, R is directly finite. 2

There are plenty of rings that satisfy R = U(R)∪Rqnil∪Id(R) . For instance, let R = T2(Z2) be the 2×2

upper triangular matrix ring over Z2 . Then U(R) = {I2, ( 1 1
0 1 )}, Id(R) = {O, I2, ( 1 0

0 0 ) , (
0 0
0 1 ) , (

1 1
0 0 ) , (

0 1
0 1 )} ,

and Rqnil = {O, ( 0 1
0 0 )} . Clearly, R = U(R) ∪ Rqnil ∪ Id(R) . One may check that R = U(R) ∪ Rqnil ∪ Id(R)

does also hold if R = M2(Z2) .

Remark 3.6 There exists a nonabelian directly finite ring R with charR = 2 but R ̸= U(R) ∪ Rqnil ∪ Id(R) .
Let R = M2(Z2[[x]]) where Z2[[x]] is the power series ring over Z2. Clearly, R is a nonabelian ring and
charR = 2 . As Z2[[x]] is commutative, R is directly finite. Take A = ( 1 0

0 x ) ∈ R. Then A /∈ U(R) and
A /∈ Id(R) . Notice that I2 −A /∈ U(R) , so A /∈ U(R) ∪Rqnil ∪ Id(R).

Note that local rings and Boolean rings are abelian (and thus directly finite). We thus have the following
result immediately.

Corollary 3.7 If R = U(R) ∪Rqnil ∪ Id(R) , then R is a directly finite ring.

Corollary 3.8 Let R be a commutative ring. The following are equivalent :
(1) R = U(R) ∪ J(R) ∪ Id(R) .
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(2) R is a local ring or a Boolean ring.
(3) R = U(R) ∪ J(R) or R = U(R) ∪ Id(R) .

Proof (1) ⇒ (2) . Since R is a commutative ring, Rqnil = J(R). Note that R is abelian. The result follows
from Theorem 3.5.

(2) ⇒ (3) follows from Theorem 3.2 and Proposition 3.4.
(3) ⇒ (1) . If R = U(R) ∪ J(R) , take Id(R) = {0, 1} and then R = U(R) ∪ J(R) ∪ Id(R) . If

R = U(R) ∪ Id(R) , then the result follows by taking J(R) = 0. 2
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