т ̈̈вітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Quasinilpotents in rings and their applications

Jian CUI*
Department of Mathematics, Anhui Normal University, Wuhu, P.R. China

Received: 25.06.2017

- Accepted/Published Online: 19.09.2018

Final Version: 27.09.2018

Abstract

An element a of an associative ring R is said to be quasinilpotent if $1-a x$ is invertible for every $x \in R$ with $x a=a x$. Nilpotents and elements in the Jacobson radical of a ring are well-known examples of quasinilpotents. In this paper, properties and examples of quasinilpotents in a ring are provided, and the set of quasinilpotents is applied to characterize rings with some certain properties.

Key words: Quasinilpotent, nilpotent, idempotent, local ring, Boolean ring

1. Introduction

Rings are associative with identity. Let R be a ring. The symbols $U(R), I d(R)$, and $R^{\text {nil }}$ stand for the sets of all units, all idempotents, and all nilpotents of R, respectively. The commutant of $a \in R$ is defined by $\operatorname{comm}_{R}(a)=\{x \in R \mid a x=x a\}$ (if there is no ambiguity, we simply use comm (a) for short). For an integer $n \geq 1$, we write $M_{n}(R)$ for the $n \times n$ matrix ring over R whose identity element we write as I_{n} or I.

The intersection of all maximal left (right) ideals of R is said to be the Jacobson radical of R, which is denoted by $J(R)$. As is well known, $J(R)=\{a \in R \mid 1-a x \in U(R)$ for all $x \in R\}$. Due to Harte [10], an element $a \in R$ is called quasinilpotent if $1-a x \in U(R)$ for every $x \in \operatorname{comm}(a)$; the set of all quasinilpotents of R is denoted by $R^{\text {qnil }}$. It is clear that both $R^{\text {nil }}$ and $J(R)$ are contained in $R^{\text {qnil }}$. It is worth noting that quasinilpotents play an important role in a Banach algebra \mathcal{A}. According to [9], $\mathcal{A}^{\mathrm{qnil}}=\left\{a \in \mathcal{A} \mid \lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=0\right\}=\{a \in \mathcal{A} \mid x-a \in U(\mathcal{A})$ for all nonzero complex $x\}$. By means of quasinilpotents, some interesting concepts are introduced, such as strongly J-clean rings [3], nil clean rings [7], generalized Drazin inverses [11], quasipolar rings [16], etc. However, there were few results concerning properties of quasinilpotents in a ring. Recall that a ring R is local [13] if $R=U(R) \cup J(R)$, and it was shown in [4] that R is a division ring or a Boolean ring if and only if $R=U(R) \cup I d(R)$. A natural question is: What can be said about a ring R for which $R=U(R) \cup R^{\text {qnil }}$ (resp., $\left.R=U(R) \cup R^{\text {nil }} ; R=U(R) \cup R^{\text {qnil }} \cup I d(R)\right)$?

Motivated by the above, we study properties and structures of quasinilpotents in a ring and provide several illustrative examples. Jacobson's lemma for quasinilpotents is also considered. Furthermore, the sets $I d(R), U(R)$, and $R^{\text {qnil }}$ are used to characterize rings. We prove that a ring R is local if and only if $R=U(R) \cup R^{\text {qnil }}$, a ring R is local with $J(R)$ nil if and only if $R=U(R) \cup R^{\text {nil }}$, and if $R=U(R) \cup R^{\text {qnil }} \cup I d(R)$, then R is a local ring or a Boolean ring or a nonabelian directly finite ring with char $R=2$.

[^0]
2. Quasinilpotents in rings

We begin with the following examples, which will reveal that quasinilpotents in a ring R are very different from elements in $J(R)$ and nilpotents of R.

Example 2.1 (1) Let $R=M_{2}\left(\mathbb{Z}_{(2)}\right)$ where $\mathbb{Z}_{(2)}=\left\{\left.\frac{b}{a} \right\rvert\, a, b \in \mathbb{Z}, 2 \nmid a\right\}$. Take $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \in R$. Then $A^{2} \in J(R)$, and so $A \in R^{\text {qnil }}$ (as for any $X \in \operatorname{comm}(A),\left(I_{2}-A X\right)\left(I_{2}+A X\right)=I_{2}-A^{2} X^{2} \in U(R)$ implies $\left.I_{2}-A X \in U(R)\right)$. Clearly, A is neither nilpotent nor in $J(R)$.
(2) Define an operator A on the Banach space l^{1} by the infinite matrix $\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 / 2 & 0 & 0 & \cdots \\ 0 & 0 & 1 / 3 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots\end{array}\right)$. In view of [15, Example 4.2], A is quasinilpotent in the Banach algebra $L\left(l^{1}\right)$ of all bounded linear operators on l^{1}. However, A is not nilpotent and $A \notin J\left(L\left(l^{1}\right)\right)$ as $J\left(L\left(l^{1}\right)\right)=0$.

Example 2.2 Let R be a division ring and $S=M_{n}(R)$. Then $S^{\mathrm{qnil}}=S^{\text {nil }}$.
Proof Let $A \in S$. Note that S can be viewed as the endomorphism ring of an n-dimensional vector space over R. Then S is a simple Artinian ring, and so the chain $A S \supseteq A^{2} S \supseteq \cdots$ must terminate. In view of [2, Lemma 1], there exist an integer $k \geq 1$ and $X \in S$ such that $A^{k}=A^{k+1} X$ and $A X=X A$. Assume that $A \in S^{\text {qnil }}$. Then $I_{n}-A X \in U(S)$. From $A^{k}\left(I_{n}-A X\right)=A^{k}-A^{k+1} X=0$, we have $A^{k}=0$, so $S^{\text {qnil }} \subseteq S^{\text {nil }}$, and therefore $S^{\text {qnil }}=S^{\text {nil }}$.

Lemma 2.3 Let $f: R \rightarrow S$ be an isomorphism of rings. Then $a \in R^{\text {qnil }}$ if and only if $f(a) \in S^{\text {qnil }}$. In particular, if $a \in R^{\mathrm{qnil}}$, then $u^{-1} a u \in R^{\text {qnil }}$ for any $u \in U(R)$.

Proof It suffices to show that if $a \in R^{\text {qnil }}$ then $f(a) \in S^{\text {qnil }}$. Let $s \in \operatorname{comm}_{S}(f(a))$. Then there exists $b \in R$ such that $s=f(b)$, so we have $f(a b)=f(a) s=s f(a)=f(b a)$. Since f is an isomorphism, $a b=b a$. It follows that $1-a b \in U(R)$ as $a \in R^{\text {qnil }}$. Thus, $1-f(a) s=f(1-a b) \in U(S)$, from which $f(a) \in S^{\text {qnil }}$.

The polynomial ring over a ring R in the indeterminate t is denoted by $R[t]$. For a monic polynomial $f(t)=t^{n}-a_{n-1} t^{n-1}-\cdots-a_{1} t-a_{0} \in R[t]$, the $n \times n$ matrix $C_{f}=\left(\begin{array}{cc}0 & a_{0} \\ I & \alpha\end{array}\right)$ is called the companion matrix of $f(t)$, where $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)^{T}$. A matrix $C \in M_{n}(R)$ is called a companion matrix if $C=C_{f}$ for a monic polynomial $f(t) \in R[t]$ of degree n. The following result is due to Diesl and Dorsey.

Lemma 2.4 Let R be a commutative ring and C be a companion matrix of a monic polynomial of degree n. Then $\operatorname{comm}_{M_{n}(R)}(C)=\{h(C) \mid$ for every $h(t) \in R[t]\}$.

Proof It is enough to prove that $\operatorname{comm}_{M_{n}(R)}(C) \subseteq\{h(C) \mid$ for every $h(t) \in R[t]\}$. Let $C=\left(\begin{array}{cccccc}0 & 0 & \cdots & 0 & a_{0} \\ 1 & 0 & \cdots & 0 & a_{1} \\ 0 & 1 & \cdots & 0 & a_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{n-1}\end{array}\right)$. Write $e_{0}=(1,0, \ldots, 0)^{T}$, $e_{1}=(0,1, \ldots, 0)^{T}, \ldots, e_{n-1}=(0,0, \ldots, 1)^{T}$. Then $C e_{i}=e_{i+1}$ for every $0 \leq i \leq n-2$ and $C e_{n-1}=a_{0} e_{0}+a_{1} e_{1}+\cdots+a_{n-1} e_{n-1}$.

Suppose that $X \in M_{n}(R)$ and $C X=X C$. Set $X=\left(X_{0}, X_{1}, \ldots, X_{n-1}\right)$ with column vectors X_{i}. Then, for every $0 \leq i \leq n-2$, we have

$$
C X_{i}=C\left(X e_{i}\right)=X\left(C e_{i}\right)=X e_{i+1}=X_{i+1}
$$

and

$$
\begin{aligned}
C X_{n-1} & =C\left(X e_{n-1}\right)=X C e_{n-1} \\
& =X\left(a_{0} e_{0}+a_{1} e_{1}+\cdots+a_{n-1} e_{n-1}\right) \\
& =a_{0} X e_{0}+a_{1} X e_{1}+\cdots+a_{n-1} X e_{n-1} \\
& =a_{0} X_{0}+a_{1} X_{1}+\cdots+a_{n-1} X_{n-1}
\end{aligned}
$$

Write $X_{0}=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)^{T}$. Then all X_{i} (and thus X) can be constructed by X_{0}. We claim that $X=b_{0} I+b_{1} C+\cdots+b_{n-1} C^{n-1}$. Indeed, we only need to verify that it agrees on $e_{0}, e_{1}, \ldots, e_{n-1}$. Note that

$$
\left(b_{0} I+b_{1} C+\cdots+b_{n-1} C^{n-1}\right) e_{0}=b_{0} e_{0}+b_{1} e_{1}+\cdots+b_{n-1} e_{n-1}=X_{0}=X e_{0}
$$

and similarly, for each $1 \leq i \leq n-1$,

$$
\begin{aligned}
X e_{i} & =X\left(C^{i} e_{0}\right)=C^{i}\left(X e_{0}\right) \\
& =C^{i}\left(b_{0} I+b_{1} C+\cdots+b_{n-1} C^{n-1}\right) e_{0} \\
& =\left(b_{0} I+b_{1} C+\cdots+b_{n-1} C^{n-1}\right)\left(C^{i} e_{0}\right) \\
& =\left(b_{0} I+b_{1} C+\cdots+b_{n-1} C^{n-1}\right) e_{i} .
\end{aligned}
$$

This completes the proof.
For a ring R, let $\sqrt{J(R)}=\left\{x \in R \mid x^{n} \in J(R)\right.$ for some integer $\left.\mathrm{n} \geq 1\right\}$. One may easily check that $\sqrt{J(R)} \subseteq R^{\text {qnil }}$. It is shown in [15] that $S^{\text {qnil }}=\sqrt{J(S)}$ if S is a 2×2 matrix ring over a commutative ring. We have the following result.

Theorem 2.5 If R is a commutative local ring and $S=M_{n}(R)$, then $S^{\text {qnil }}=\sqrt{J(S)}$.

Proof It suffices to prove that $S^{\text {qnil }} \subseteq \sqrt{J(S)}$. Let $A \in S^{\text {qnil }}$. Then for any polynomial $f(t) \in R[t], I-A f(A)$ is a unit of $M_{n}(R)$. Thus, $\bar{I}+\bar{A} \overline{f(A)}$ is invertible in $M_{n}(R / J(R)) \cong S / J(S)$. Note that $R / J(R)$ is a field. Thus, \bar{A} is similar to its rational canonical form $C:=\left(\begin{array}{llll}C_{f_{1}} & & & \\ & C_{f_{2}} & & \\ & & \ddots & \\ & & & C_{f_{l}}\end{array}\right)$ where $C_{f_{i}}$ is the companion matrix over $R / J(R)$. Since $\bar{I}-\bar{A} \overline{f(A)}$ is invertible, it follows that $\bar{I}-C_{f_{i}} \overline{f\left(C_{f_{i}}\right)}$ is invertible for $i=1,2, \ldots, l$. As $\overline{f(t)} \in \bar{R}[t]$ is arbitrary, by Lemma 2.4 all $C_{f_{i}}$ are quasinilpotent. In view of Example 2.2, $C_{f_{i}}$ is nilpotent where $1 \leq i \leq l$. By Lemma 2.3, one has $(\bar{A})^{k}=0 \in S / J(S)$ for some integer k, which implies $A^{k} \in J(S)$. Therefore, $S^{\text {qnil }} \subseteq \sqrt{J(S)}$, as desired.

For a ring R, the center of R is denoted by $C(R)$.

Proposition 2.6 Let R be a ring. Then $R^{\text {qnil }}=J(R)$ if one of the following holds:
(1) $R^{\text {qnil }} \subseteq C(R)$.
(2) $R^{\text {qnil }}$ is an one-sided ideal of R.

Proof (1) Let $a \in R^{\text {qnil }} \subseteq C(R)$. Then for any $x \in R$, $a x=x a$, so we have $1-a x \in U(R)$, which implies $a \in J(R)$.
(2) Assume that $R^{\text {qnil }}$ is a right ideal of R. Given any $a \in R^{\text {qnil }}$, then $a x \in R^{\text {qnil }}$ for any $x \in R$. Thus, $1-a x \in U(R)$, and hence $a \in J(R)$.

Clearly, $R^{\text {qnil }}$ coincides with $J(R)$ if R is a commutative ring.

Proposition 2.7 Let R be a ring and $a \in R, c \in C(R)$.
(1) If $a^{n} \in R^{\text {qnil }}$ for some integer $n \geq 1$, then $a \in R^{\text {qnil }}$.
(2) If $a \in R^{\text {qnil }}$, then $a c \in R^{\text {qnil }}$. The converse holds if $c \in U(R)$.

Proof (1) Take $x \in \operatorname{comm}(a)$. Then we have $x^{n} a^{n}=a^{n} x^{n}$. Write $b=1+a x+(a x)^{2}+\cdots+(a x)^{n-1}$. It follows that $b(1-a x)=(1-a x) b=1-(a x)^{n}=1-a^{n} x^{n} \in U(R)$ since $a^{n} \in R^{\text {qnil }}$, so $1-a x \in U(R)$. This proves $a \in R^{\text {qnil }}$.
(2) Let $x \in R$ with $(a c) x=x(a c)$. As $c \in C(R), a(c x)=(c x) a$, so $a \in R^{\text {qnil }}$ implies that $1-a c x \in U(R)$, which yields $a c \in R^{\text {qnil }}$. Conversely, assume that $c \in U(R)$ and $y \in \operatorname{comm}(a)$. Then $a c\left(y c^{-1}\right)=\left(y c^{-1}\right) a c$. Since $a c \in R^{\text {qnil }}, 1-a y=1-a c\left(y c^{-1}\right) \in U(R)$, which implies that $a \in R^{\text {qnil }}$.

Lemma 2.8 Let $q \in R^{\text {qnil }}$ and $e^{2}=e \in R$. If $e q=q e$, then $e q \in R^{\text {qnil }} \cap e R e=(e R e)^{\text {qnil }}$.
Proof In view of [16, Lemma 3.5], $R^{\text {qnil }} \cap e R e=(e R e)^{\text {qnil }}$. We only need to show that $e q \in R^{\text {qnil }}$. Let $t \in R$ with $t(e q)=(e q) t$. As $e q=q e$, we have $q\left(q e t^{2} e\right)=(q e q e) t^{2} e=q e t^{2} q e=\left(q e t^{2} e\right) q$. Since $q \in R^{\text {qnil }}$, it follows that $(1-t e q)(1+t e q)=1-(t e q)(t e q)=1-\left(q e t^{2} e\right) q \in U(R)$. Thus, $1-t e q \in U(R)$, and hence $e q \in R^{\text {qnil }}$.

The condition " $e q=q e$ " in Lemma 2.8 is not superfluous. Let $E=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $Q=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ be in $M_{2}\left(\mathbb{Z}_{2}\right)$, where \mathbb{Z}_{2} is the ring of integers \mathbb{Z} modulo 2 . Then $E^{2}=E$ and Q is nilpotent, but $E Q=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)=(E Q)^{2}$ is not quasinilpotent in $M_{2}\left(\mathbb{Z}_{2}\right)$.

Proposition 2.9 Let $e^{2}=e \in R$, and $a \in R$ with $a e=e a$. The following are equivalent:
(1) ae is quasinilpotent in R.
(2) For any $y \in \operatorname{comm}_{R}(a e), R e \subseteq R(1-a y)$ and $l(1-y a) \subseteq l(e)$.
(3) For any $y \in \operatorname{comm}_{R}(a e), R e \subseteq(1-y a) R$ and $r(1-a y) \subseteq r(e)$.

Proof By Lemma 2.8, the proof can be shown in a similar manner as [6, Corollary 3.2].
Let \mathcal{A} be a Banach algebra. It is well known that for any $a \in \mathcal{A}^{\text {qnil }}$ and $b \in \mathcal{A}$, if $a b=b a$ then $a b \in \mathcal{A}^{\text {qnil }}$, and in addition, $a+b \in \mathcal{A}^{\text {qnil }}$ if $b \in \mathcal{A}^{\text {qnil }}$ (see also [10]). However, it is still unknown whether the above results hold for a ring. For a ring R, let $Q(R)=\{q \in R \mid 1+q \in U(R)\}$.

Proposition 2.10 Let R be a ring with $Q(R)=R^{\text {qnil }}$ or $U(R)=1+R^{\text {qnil }}$.

CUI/Turk J Math

(1) If $a \in R^{\text {qnil }}$ and $b \in \operatorname{comm}(a)$, then $a b \in R^{\text {qnil }}$.
(2) If $a, b \in R^{\text {qnil }}$ and $a b=b a$, then $a+b \in R^{\text {qnil }}$.

Proof We first show the following claim.
Claim: $Q(R)=R^{\text {quil }}$ if and only if $U(R)=1+R^{\text {qnil }}$.
Proof of the Claim. Assume that $U(R)=1+R^{\text {qnil }}$. Clearly, $Q(R) \supseteq R^{\text {qnil }}$. Take $q \in Q(R)$. Then $1+q \in U(R)=1+R^{\text {qnil }}$. Therefore, $q \in R^{\text {qnil }}$, and thus $Q(R) \subseteq R^{\text {qnil }}$. Conversely, suppose that $Q(R)=R^{\text {qnil }}$. To show that $U(R)=1+R^{\text {qnil }}$, it suffices to prove that $U(R) \subseteq 1+R^{\text {qnil }}$. Let $u \in U(R)$. Since $1+(u-1)=u \in U(R)$, we have $u-1 \in Q(R)=R^{\text {qnil }}$, which implies that $u \in 1+R^{\text {qnil }}$, as desired.
(1) Since $a \in R^{\text {qnil }}$ and $a b=b a$, one has $1+a b \in U(R)$. Thus, $a b \in Q(R) \subseteq R^{\text {qnil }}$.
(2) As $a, b \in R^{\text {qnil }}$ and $a b=b a, 1+a \in U(R)$ and $(1+a)^{-1} \in \operatorname{comm}(b)$. It follows that $1+a+b=$ $(1+a)\left[1+(1+a)^{-1} b\right] \in U(R)$, so $a+b \in Q(R) \subseteq R^{\text {qnil }}$.

For a ring R, Jacobson's lemma states that for any $a, b \in R$, if $1-a b \in U(R)$ then $1-b a \in U(R)$ and $(1-b a)^{-1}=1+b(1-a b)^{-1} a$. We have the following result.

Theorem 2.11 Let $a, b \in R$. If $1-a b \in R^{\text {qnil }}$, then $1-b a \in R^{\text {qnil }}$ if and only if $a, b \in U(R)$.
Proof Assume that $a, b \in U(R)$. Let $x \in \operatorname{comm}(1-b a)$. Then multiplying $(1-b a) x=x(1-b a)$ by a on the left and by b on the right yields $(1-a b) a x b=a x b(1-a b)$. Thus, $(a b) a x b=a x b(a b)$. It follows that $\left[(a b)^{-1} a x b\right](1-a b)=(1-a b)\left[(a b)^{-1} a x b\right]$. Since $1-a b \in R^{\text {qnil }}, 1-\left[(a b)^{-1} a x b\right](1-a b)=1-(a b)^{-1} a x(1-b a) b=$ $1-b^{-1} x(1-b a) b \in U(R)$. By Jacobson's lemma, $1-x(1-b a) b b^{-1}=1-x(1-b a) \in U(R)$. This proves $1-b a \in R^{\text {qnil }}$.

Conversely, $1-a b \in R^{\text {qnil }}$ implies $a b \in-1+R^{\text {qnil }} \subseteq U(R)$. Similarly, we can get $b a \in U(R)$ from the assumption $1-b a \in R^{\text {qnil }}$. Thus, $a, b \in U(R)$.

Recall that a ring R is directly finite if $a b=1$ implies $b a=1$ for all $a, b \in R$ (equivalently, $a R=R$ implies $R a=R)$. We have the following result immediately.

Corollary 2.12 Let R be a ring. Then for any $a, b \in R, 1-a b \in R^{\text {qnil }}$ implies $1-b a \in R^{\text {qnil }}$ if and only if R is a directly finite ring.

Corollary 2.13 Let $a, b \in R$. If $1-a b \in R^{\text {nil }}$, then $1-b a \in R^{\text {nil }}$ if and only if $a, b \in U(R)$.

Proof One direction follows from Theorem 2.11. Now suppose that $a, b \in U(R)$ and $(1-a b)^{k}=0$ for some integer k. Then

$$
(a b)^{-1}=[1-(1-a b)]^{-1}=1+(1-a b)+(1-a b)^{2}+\cdots+(1-a b)^{k-1}
$$

Thus, we have

$$
\begin{aligned}
(1-b a)^{k+1} & =\sum_{i=0}^{k+1} C_{k+1}^{i}(-1)^{i}(b a)^{i} \\
& =1-C_{k+1}^{1}(b a)+C_{k+1}^{2}(b a)^{2}+\cdots+(-1)^{i} C_{k+1}^{i}(b a)^{i}+\cdots+(-1)^{k+1}(b a)^{k+1} \\
& =1-b\left[C_{k+1}^{1}-C_{k+1}^{2}(b a)+\cdots+(-1)^{i-1} C_{k+1}^{i}(b a)^{i-1}+\cdots+(-1)^{k}(b a)^{k}\right] a \\
& =1-b\left[1+(1-a b)+(1-a b)^{2}+\cdots+(1-a b)^{k-1}\right] a \\
& =1-b(a b)^{-1} a=1-b b^{-1} a^{-1} a=0
\end{aligned}
$$

Thus, $1-b a \in R^{\text {nil }}$, and the proof is completed.

Corollary 2.14 Let $a, b \in R$. If $1-a b \in J(R)$, then $1-b a \in J(R)$ if and only if $a, b \in U(R)$.
Proof By Theorem 2.11, it suffices to show that if $a, b \in U(R)$ then $1-b a \in J(R)$. For any $x \in R$, $1-(b a)^{-1} x(1-b a) b a=1-(b a)^{-1} x b(1-a b) a \in U(R)$ since $1-a b \in J(R)$. By Jacobson's lemma, $1-x(1-b a) b a(b a)^{-1}=1-x(1-b a) \in U(R)$, so $1-b a \in J(R)$.

Cline proved in 1965 [5] that if $a b$ is Drazin invertible then so is $b a$. Many authors generalized the above result to elements of rings with some kind of property. For example, similar results hold for strongly clean elements [8], strongly nil clean elements [12], etc.

Lemma 2.15 [14, Lemma 2.2] Let $a, b \in R$. If $a b$ is quasinilpotent in R, then so is $b a$.
For positive integers m, n, let $R^{m \times n}$ be the set of all $m \times n$ matrices over the ring R.
Proposition 2.16 Let $A \in R^{m \times n}$ and $B \in R^{n \times m}$. Then $A B$ is quasinilpotent in $M_{m}(R)$ if and only if $B A$ is quasinilpotent in $M_{n}(R)$.

Proof If $m=n$, the result follows by Lemma 2.15. Assume that $m>n$. Let $A_{1}=(A, O), B_{1}=\binom{B}{O} \in M_{m}(R)$ where O is a matrix with all entries zeros. Clearly, $A_{1} B_{1}=A B$ and $B_{1} A_{1}=\left(\begin{array}{cc}B A & O \\ O & O\end{array}\right) \in M_{m}(R)$. Since $A B \in\left(M_{m}(R)\right)^{\text {qnil }}$, Lemma 2.15 implies that $\left(\begin{array}{cc}B A & O \\ O & O\end{array}\right) \in\left(M_{m}(R)\right)^{\text {qnil }}$. Clearly, $\left(\begin{array}{cc}B A & O \\ O & O\end{array}\right)$ is also quasinilpotent in $\left(\begin{array}{cc}M_{n}(R) & O \\ O & O\end{array}\right)$. We note that, as a subring of $M_{m}(R),\left(\begin{array}{cc}M_{n}(R) & O \\ O & O\end{array}\right)$ is isomorphic to $M_{n}(R)$. By Lemma 2.3, $B A \in\left(M_{n}(R)\right)^{\text {qnil }}$. If $m<n$, the result can be proved by a similar manner as above.

3. Applications

This section focuses on the study of rings with some certain properties by means of $U(R), I d(R)$, and $R^{\text {qnil }}$. We first give the following lemma, which will be used freely.

Lemma 3.1 Let R be a ring. Then $R^{\text {qnil }} \cap U(R)=\emptyset$ and $R^{\text {qnil }} \cap I d(R)=0$.
Theorem 3.2 Let R be a ring. The following are equivalent:
(1) R is a local ring.
(2) For every $a \in R, a$ is invertible or a is quasinilpotent.
(3) $R=U(R) \cup R^{\text {qnil }}$.
(4) $R=U(R) \cup J(R)$.

Proof $(1) \Rightarrow(2) \Rightarrow(3)$ and $(4) \Rightarrow(1)$ are clear.
$(3) \Rightarrow(4)$. For any $a \in R^{\text {qnil }}$, we first show that $a x \notin U(R)$ for all $x \in R$. Suppose that there exists $y \in R$ such that $a y \in U(R)$. Then $(a y) z=a(y z)=1$ for some $z \in U(R)$. Clearly, $((y z) a)^{2}=(y z) a$. As $R=U(R) \cup R^{\text {qnil }}$, we have $(y z) a=0$ or $(y z) a=1$. If $(y z) a=0$ then $y z=(y z) a(y z)=0$, which contradicts $a(y z)=1$. Therefore, $(y z) a=1$, and so $a \in U(R)$, which is impossible by Lemma 3.1. Thus, $a x \in R^{\text {qnil }}$ for all $x \in R$. It follows that $1-a x \in U(R)$. Therefore, $a \in J(R)$.

Corollary 3.3 Let R be a ring. Then $R=U(R) \cup R^{\text {nil }}$ if and only if R is a local ring and $J(R)$ is nil.
Proof Suppose that $R=U(R) \cup R^{\text {nil }}$. Since $R^{\text {nil }} \subseteq R^{\text {qnil }}$, we have $R=\left(U(R) \cup R^{\text {nil }}\right) \subseteq\left(U(R) \cup R^{\text {qnil }}\right) \subseteq R$. Thus, $R=U(R) \cup R^{\text {qnil }}$ and $R^{\text {qnil }}=R^{\text {nil }}$. By Theorem 3.2, R is a local ring, and hence $R^{\text {qnil }}=J(R)$. It follows that $J(R)=R^{\text {nil }}$. This proves that $J(R)$ is nil.

Conversely, assume that R is a local ring and $J(R)$ is nil. In view of Theorem 3.2, $R=U(R) \cup R^{\text {qnil }}$ and $R^{\text {qnil }}=J(R)$. As $J(R)$ is nil, we have $R^{\text {qnil }}=J(R) \subseteq R^{\text {nil }}$. Thus, $R^{\text {qnil }}=R^{\text {nil }}$ and $R=U(R) \cup R^{\text {nil }}$.

Recall that a ring R is called reduced if it has no nonzero nilpotents, and R is said to be abelian if all idempotents of R are central. It is well known that reduced rings are abelian, and abelian rings are directly finite.

In [1, Theorem 14], the authors proved that a commutative ring $R=U(R) \cup I d(R)$ if and only if R is a field or a Boolean ring. Chen and Cui [4] extended the above result to the case of noncommutative rings. We give a simpler proof here.

Proposition 3.4 Let R be a ring. Then $R=U(R) \cup I d(R)$ if and only if R is a division ring or a Boolean ring.

Proof One direction is obvious. Suppose that $R=U(R) \cup I d(R)$. If $2 \in U(R)$, then for any $e \in I d(R) \backslash\{1\}$, we have $-e \in I d(R)$, so $(-e)^{2}=e^{2}=e=-e$, and then $2 e=0$. Thus, $e=0$, and this proves that R is a division ring with $I d(R)=\{0,1\}$. If $2 \in I d(R)$, then $2=0$ as $2=2^{2}$. Note that R is reduced and thus abelian. We may choose $e \in I d(R) \backslash\{0,1\}$. For any $u \in U(R)$, then either $(u+e)^{2}=u+e$ or $(u+e) v=1$ for some $v \in U(R)$. As $2=0,(u+e)^{2}=u+e$ yields $u=1$. If $(u+e) v=1$ then $u v=1-e v$. Since $e \notin U(R)$, we have $(e v)^{2}=e v$, which implies $u v=1-e v \in U(R) \cap I d(R)=\{1\}$, so $e=0$, a contradiction. Thus, the only unit of R is 1 , and so R is a Boolean ring.

For a ring R, we say that $I d(R)$ (resp., $U(R) ; R^{\text {qnil }}$) is trivial whenever $I d(R)=\{0,1\}$ (resp., $\left.U(R)=\{1\} ; R^{\text {quil }}=0\right)$.

Theorem 3.5 Let R be a ring. If $R=U(R) \cup R^{\text {qnil }} \cup I d(R)$, then exactly one of the following holds:
(1) R is a local ring.
(2) R is a Boolean ring.
(3) R is a nonabelian directly finite ring and $\operatorname{char} R=2$.

Proof The proof is divided into the following cases.
Case 1. If $R^{\text {qnil }}$ is trivial, then $R=U(R) \cup I d(R)$. By Proposition 3.4, R is local as a division ring or R is a Boolean ring.

Case 2. Assume that $R^{\text {qnil }} \neq 0$. Then choose $q \in R^{\text {qnil }} \backslash\{0\}$. Thus, $U(R)$ is nontrivial as $1+q \in$ $U(R) \backslash\{1\}$.

Subcase 1. If $I d(R)$ is trivial, then by Theorem 3.2, $R=U(R) \cup R^{\text {qnil }}$ is a local ring.
Subcase 2. Suppose that $U(R), R^{\text {qnil }}$, and $I d(R)$ are all nontrivial. Set fixed elements $e \in I d(R) \backslash\{0,1\}$ and $u=1+q \in U(R) \backslash\{1\}$. We conclude that $2 \notin U(R)$. Otherwise, $2 \in U(R)$. Clearly, $2 e \notin U(R)$. If $2 e \in I d(R)$, then $(2 e)^{2}=2 e$ implies $e=0$, which contradicts the assumption $e \in \operatorname{Id}(R) \backslash\{0,1\}$. Thus, $2 e \in R^{\text {qnil }}$. Notice that $2 \in C(R)$. By Proposition $2.7(2), e \in R^{\text {qnil }}$, from which $e=0$, and this causes the same contradiction as above. Hence, $2 \in I d(R)$ or $2 \in R^{\text {qnil }}$.

If $2^{2}=2$ then $2=0$. If $2 \in R^{\text {qnil }}$, then $3 \in U(R)$. Clearly, $3 e \notin U(R)$ as $e \neq 1$. If $3 e \in R^{\text {qnil }}$, then by Proposition $2.7(2)$, $e \in R^{\text {qnil }} \cap I d(R)=0$. Thus, $3 e \in I d(R)$, and $(3 e)^{2}=3 e$ yields $6 e=0$. One thus gets $2 e=0$ as $3 \in U(R)$. Now replacing e by $1-e$, a similar argument will reveal that $2(1-e)=0$. Therefore, $2=2 e+2(1-e)=0$. Thus, char $R=2$. We now show that R is nonabelian. Assuming the contrary, then $e u=u e$. Clearly, $u e \notin U(R)$ and $u e \notin R^{\text {qnil }}$ (since $1-u^{-1}(u e)=1-(u e) u^{-1}$ is not a unit), so $(u e)^{2}=u e \in I d(R)$, which gives $u e=e$. Similarly, we can obtain $u(1-e)=1-e$. Combining $u e=e$ with $u(1-e)=1-e$, we have $u=1$, a contradiction. Thus, R is a nonabelian ring and char $R=2$.

We finish the proof by showing that R is directly finite. Let $a, b \in R$ with $a b=1$. Suppose that $a \in R^{\text {qnil }}$. Then $b \in R^{\text {qnil }}$ (indeed, $a b=1$ implies $b \notin U(R)$, and if $b \in I d(R)$ then $1-b=a b(1-b)=0$, so $b=1$ and $a=1 \in U(R))$. Since char $R=2$, it follows that $a+b=(1+a)(1+b):=v \in U(R)$. Multiplying the equation $a+b=v$ by b on the left, we have $b(a+b)=b v$. Clearly, $b v \notin U(R)$. If $b v \in I d(R)$, then $0=(b v)^{2}-b v=(b v b-b) v=b^{3} v$, so $b^{3}=0$, but this contradicts $1=a b=a^{3} b^{3}$. Thus, $b v \in R^{\text {qnil }}$. In view of Lemma 2.15, we have $v b \in R^{\text {qnil }}$. However, $v b=(a+b) b=1+b^{2} \in U(R)$ as $b \in R^{\text {qnil }}$. Therefore, $a \notin R^{\text {qnil }}$. If $a \in U(R)$, then we are done. If $a \in I d(R)$, then $1-a=(1-a)(a b)=\left(a-a^{2}\right) b=0$, so $a=1$ and $b a=1$. Hence, R is directly finite.

There are plenty of rings that satisfy $R=U(R) \cup R^{\text {qnil }} \cup I d(R)$. For instance, let $R=T_{2}\left(\mathbb{Z}_{2}\right)$ be the 2×2 upper triangular matrix ring over \mathbb{Z}_{2}. Then $U(R)=\left\{I_{2},\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\}, \operatorname{Id}(R)=\left\{O, I_{2},\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)\right\}$, and $R^{\text {qnil }}=\left\{O,\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right\}$. Clearly, $R=U(R) \cup R^{\text {qnil }} \cup I d(R)$. One may check that $R=U(R) \cup R^{\text {qnil }} \cup I d(R)$ does also hold if $R=M_{2}\left(\mathbb{Z}_{2}\right)$.

Remark 3.6 There exists a nonabelian directly finite ring R with char $R=2$ but $R \neq U(R) \cup R^{\mathrm{qnil}} \cup I d(R)$. Let $R=M_{2}\left(\mathbb{Z}_{2}[[x]]\right)$ where $\mathbb{Z}_{2}[[x]]$ is the power series ring over \mathbb{Z}_{2}. Clearly, R is a nonabelian ring and char $R=2$. As $\mathbb{Z}_{2}[[x]]$ is commutative, R is directly finite. Take $A=\left(\begin{array}{ll}1 & 0 \\ 0 & x\end{array}\right) \in R$. Then $A \notin U(R)$ and $A \notin I d(R)$. Notice that $I_{2}-A \notin U(R)$, so $A \notin U(R) \cup R^{\mathrm{qnil}} \cup I d(R)$.

Note that local rings and Boolean rings are abelian (and thus directly finite). We thus have the following result immediately.

Corollary 3.7 If $R=U(R) \cup R^{\text {qnil }} \cup I d(R)$, then R is a directly finite ring.

Corollary 3.8 Let R be a commutative ring. The following are equivalent:
(1) $R=U(R) \cup J(R) \cup I d(R)$.
(2) R is a local ring or a Boolean ring.
(3) $R=U(R) \cup J(R)$ or $R=U(R) \cup I d(R)$.

Proof $(1) \Rightarrow(2)$. Since R is a commutative ring, $R^{\text {qnil }}=J(R)$. Note that R is abelian. The result follows from Theorem 3.5.
$(2) \Rightarrow(3)$ follows from Theorem 3.2 and Proposition 3.4.
$(3) \Rightarrow(1)$. If $R=U(R) \cup J(R)$, take $I d(R)=\{0,1\}$ and then $R=U(R) \cup J(R) \cup I d(R)$. If $R=U(R) \cup I d(R)$, then the result follows by taking $J(R)=0$.

Acknowledgments

The author is highly grateful to the anonymous referees for their insights and many valuable corrections, and he also thanks Professor Yiqiang Zhou for several valuable comments. This research was supported by the National Natural Science Foundation of China (No. 11401009) and the Anhui Provincial Natural Science Foundation (No. 1408085QA01).

References

[1] Anderson DD, Camillo VP. Commutative rings whose elements are a sum of a unit and an idempotent. Comm Algebra 2002; 30: 3327-3336.
[2] Azumaya G. Strongly π-regular rings. J Fac Sci Hokkaido Univ 1954; 13: 34-39.
[3] Chen H. On strongly J-clean rings. Comm Algebra 2010; 38: 3790-3804.
[4] Chen W, Cui S. On clean rings and clean elements. Southeast Asian Bull Math 2008; 32: 855-861.
[5] Cline RE. An Application of Representation for the Generalized Inverse of a Matrix. MRC Technical Report, 1965.
[6] Cui J, Chen J. Characterizations of quasipolar rings. Comm Algebra 2013; 41: 3207-3217.
[7] Diesl AJ. Classes of strongly clean rings. PhD, University of California, Berkeley, CA, USA, 2006.
[8] Gurgun O. On Cline's formula for some certain elements in a ring. An Ştiinţ Univ Al I Cuza Iaşi Mat (N.S.) 2016; 62: 403-410.
[9] Harte RE. Invertibility and Singularity for Bounded Linear Operators. New York, NY, USA: Marcel Dekker, 1988.
[10] Harte RE. On quasinilpotents in rings. Pan Am Math J 1991; 1: 10-16.
[11] Koliha JJ. A generalized Drazin inverse. Glasgow Math J 1996; 38: 367-381.
[12] Kosan T, Wang Z, Zhou Y. Nil-clean and strongly nil-clean rings. J Pure Appl Algebra 2016; 220: 633-646.
[13] Lam TY. A First Course in Noncommutative Rings. 2nd ed. Berlin, Germany: Springer-Verlag, 2001.
[14] Lian H, Zeng Q. An extension of Cline's formula for a generalized Drazin inverse. Turk J Math 2016; 40: 161-165.
[15] Wang Z, Chen J. Pseudo Drazin inverses in associative rings and Banach algebras. Linear Algebra Appl 2012; 437: 1332-1345.
[16] Ying Z, Chen J. On quasipolar rings. Algebra Colloq 2012; 19: 683-692.

[^0]: *Correspondence: cui368@ahnu.edu.cn
 2010 AMS Mathematics Subject Classification: 16N99, 16L99

