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Abstract: In the first part of this study, we characterize the compact subspaces of Hp
u(Bp) and their relation to the

vanishing Carleson measures. In the second part, we discuss the dual complement of the complex ellipsoid and give a
duality result for Hp

u(Bp) spaces in the sense of Grothendieck–Köthe–da Silva.
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1. Introduction
In their seminal work [4], Poletsky and Stessin showed that it is possible to generalize the whole idea of Hardy
and Bergman spaces in the general context of hyperconvex domains in higher dimensions. After this leading
work, in [5, 6] we concentrated on these generalized spaces in various domains but especially complex ellipsoids
and in the present work of continuation, we consider the compactness and Grothendieck–Köthe–da Silva duality
properties of these spaces. Firstly, we try to identify the characteristics of compact subspaces of these generalized
Hardy spaces, and then relate these properties with vanishing Carleson measures and compact linear operators.
Secondly, we describe the dual complements of complex ellipsoids and give a duality result analogous to [2] in
the sense of Grothendieck–Köthe–da Silva.

The organization of the present paper is as follows: In Section 2, we recall the Poletsky–Stessin Hardy
spaces, Hp

u(Bp) , on the complex ellipsoid Bp and we introduce the Cauchy–Fantappie integral associated with
the Monge–Ampère measure µu , together with an integral representation for Hp

u(Bp) . The main results of the
present study are given in the following sections: In Section 3, compact subspaces of Hp

u(Bp) are considered and
through their characterization we can see the relation between the vanishing Carleson measures and compact
operators on Hp

u(Bp) . Finally, in Section 4, we first give a brief introduction about Grothendieck-Köthe-da
Silva duality for the spaces of holomorphic functions defined in a convex domain, and then using a general
characterization of dual complements of Reinhardt domains, [2] we give the dual complement of some special
type of complex ellipsoids. Finally, we prove a duality result for Poletsky–Stessin Hardy space of complex
ellipsoid.

2. Preliminaries
In this section, we give the preliminary definitions and some important results that we use throughout the
present study, where we focus on Poletsky–Stessin Hardy spaces on the complex ellipsoids in Cn , which are the
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basic examples of domains of finite type. Due to the Levi flat points at the boundary of these domains, they
are pseudoconvex but not strictly pseudoconvex, which is actually the reason behind the fact that PS-Hardy
spaces of the complex ellipsoid are a much richer class of holomorphic functions than the usual Hardy spaces of
the complex ellipsoids. The complex ellipsoid Bp ∈ Cn is given as

Bp = {z ∈ Cn, ρ(z) =

n∑
j=1

|zj |2pj − 1 < 0},

where p = (p1, p2, ..., pn) ∈ Zn . Clearly u(z) = log(|z1|2p1 + |z2|2p2 + ...+ |zn|2pn) is a continuous, plurisubhar-
monic exhaustion function for Bp , so we can consider the Poletsky–Stessin Hardy spaces Hp

u(Bp) associated
with this exhaustion function. For the most general case of PS-Hardy spaces on bounded hyperconvex domains,
one may refer to [4, 5]. For the given exhaustion function u , the corresponding Monge–Ampère measures sup-
ported on the sublevel sets Su(r) = {u = r}, r < 0 are defined as µu,r = ddc(max{u, r})n−χBp\{u<r}(dd

cu)n .
Once we have the well-defined sublevel sets and corresponding measures, practically we have all the necessary
tools to define the PS–Hardy spaces as follows:

Hp
u(Bp) = {f ∈ O(Bp)| sup

r<0

∫
u=r

|f |pdµu,r < ∞}.

Let d(ξ, z)
.
= |v(ξ, z)|+ |v(z, ξ)| be the quasi-metric defined on Bp , where v(ξ, z) = ⟨∂ρ(ξ), ξ − z⟩ . Then

explicitly v(ξ, z) =
∑n

j=1 pj |ξj |2(pj−1)ξ̄j(ξj − zj) . It is shown that (∂Bp, d, dµu) is a space of homogeneous type

([3],pg:1483) and 1

(v(ξ, z))n
is a standard kernel.

The Cauchy–Fantappie integral (which will be referred to as the CF integral throughout the present
study) of an Lp(dµu) function f∗ is defined as

Hf(z) =

(
1

2πi

)n ∫
∂Bp

f∗(ξ)dµu(ξ)

(v(ξ, z))n
.

In [3], Hansson showed that the CF integral is a bounded operator on the boundary values of the classical
Hardy spaces defined with respect to the boundary measure ∂ρ ∧ (∂∂ρ)n−1 , where the function ρ is defined
as ρ(z) =

∑n
j=1 |zj |2pj − 1 . One may easily show that ρ(z) =

∑n
j=1 |zj |2pj − 1 is exactly the boundary

Monge–Ampère measure associated with the exhaustion function u(z) = log(|z1|2p1 + |z2|2p2 + ... + |zn|2pn) ,
p = (p1, p2, ..., pn) ∈ Zn of the complex ellipsoid Bp , which makes us deduce that the Hardy spaces that are
examined in [3] are merely the Poletsky–Stessin Hardy spaces Hp

u(Bp) that are generated by the exhaustion
function u . In [5, 6], it is shown that for the holomorphic functions f ∈ Hp

u(Bp) , the boundary value function
f∗ ∈ Lp(dµu) exists, so the CF integral of f∗ is well-defined. In [5], we showed that the CF integral has
reproducing property for the functions in Hp

u(Bp) :

Proposition 2.1 Let f ∈ Hp
u(Bp) be a holomorphic function, then

f(z) = Hf(z) =

(
1

2πi

)n ∫
∂Bp

f∗(ξ)dµu(ξ)

(v(ξ, z))n
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3. Compactness

In this section we will give the compactness properties for the subsets of Poletsky–Stessin Hardy spaces Hp
u(Bp)

and analytic characterization of the vanishing Carleson measures on Hp
u(Bp) , but before that we need to recall

the following from the leading work of Poletsky and Stessin:

Definition 1 Let D be a hyperconvex domain in Cn and v be a continuous, plurisubharmonic exhaustion
function. For ϕ being a nonnegative plurisubharmonic function on D , we have

∥ϕ∥v = lim
r→0−

∫
Sv(r)

ϕdµv,r

Theorem 3.1 ([4],Theorem 3.6) Let v be a continuous, plurisubharmonic exhaustion function on a hyper-
convex domain D . Then for any compact set K ⊂ D , there is a constant C such that for all w ∈ K , and all
nonnegative plurisubharmonic functions φ on D , we have

φ(w) ≤ C∥φ∥v

As an immediate consequence of the above result, we have the following:

Corollary 3.1 Let 1 ≤ p ≤ ∞ . Then for every relatively compact subdomain D0 ⊂⊂ Bp , we can find a
constant C = C(D0, p) > 0 such that

sup
z∈D0

|f(z)| ≤ C∥f∥Hp
u(Bp)

for all f ∈ Hp
u(Bp)

Now using this, we give a basic compactness property for the subsets of Poletsky–Stessin Hardy space Hp
u(Bp)

on complex ellipsoid Bp :

Lemma 3.1 Let Bp be the complex ellipsoid, 1 ≤ p < ∞ . Then:

(i) If {fk} ⊂ Hp
u(Bp) is a norm-bounded sequence converging uniformly on compact subsets to h ∈ O(Bp) ,

then h ∈ Hp
u(Bp) .

(ii) The inclusion Hp
u(Bp) ↪→ O(Bp) is compact, that is any norm-bounded subset of Hp

u(Bp) is relatively
compact in O(Bp) .

Proof

(i) Assume that {fk} ⊂ Hp
u(Bp) is a norm-bounded sequence converging uniformly on compact subsets to

h ∈ O(Bp) . Then, ∫
Su(r)

|h|pdµu,r =

∫
Su(r)

lim
k→∞

|fk|pdµu,r

≤ lim
k→∞

∫
Su(r)

|fk|pdµu,r ≤ sup
k

∥fk∥Hp
u(Bp)

by Fatou’s lemma and thus as r → 0 , we have ∥h∥Hp
u(Bp) ≤ supk ∥fk∥Hp

u(Bp) < ∞ and h ∈ Hp
u(Bp) as

claimed.
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(ii) We have to prove that any norm-bounded sequence in Hp
u(Bp) admits a subsequence converging uniformly

on compact subsets. However, indeed the previous theorem says that sup-norm on a relatively compact
subset D0 ⊂⊂ Bp of any f ∈ Hp

u(Bp) is bounded by a constant times its Hp
u(Bp) -norm. Therefore,

if {fk} ⊂ Hp
u(Bp) is norm-bounded, by considering Bu(r)s as an increasing exhaustion and applying

Montel’s theorem to each Bu(r) , we obtain a subsequence {fkj} converging uniformly on compact subsets
to a holomorphic h ∈ O(Bp) , and moreover, h ∈ Hp

u(Bp) .

2

Now we will see the relation between compactness and vanishing Carleson measures, but first let us give the
definition of Carleson measures in the most general setting (for more details see [1]):

Definition 2 Let A be a Banach space of holomorphic functions on a domain D ⊂ Cn ; given p ≥ 1 , a finite
positive Borel measure µ on D is a Carleson measure of A if there is a continuous inclusion A ↪→ Lp(µ) .
Furthermore, µ is called a vanishing Carleson measure of A if the inclusion A ↪→ Lp(µ) is compact.

Proposition 3.1 Let µ be a finite, positive Borel measure on Bp and 1 < p < ∞ . Then µ is a vanishing
Carleson measure of Hp

u(Bp) if and only if ∥fk∥Lp(µ) → 0 for all norm-bounded sequences {fk} ⊂ Hp
u(Bp)

converging to 0 uniformly on compact subsets.

Proof Assume that µ is a vanishing Carleson measure of Hp
u(Bp) . Then, Hp

u(Bp) ↪→ Lp(µ) is compact
by the definition of vanishing Carleson measure and take {fk} ⊂ Hp

u(Bp) norm bounded and converging to 0

uniformly on compacta. In particular, {fk} is relatively compact in Lp(µ) ; we must prove that fk → 0 in
Lp(µ) . Now, for 0 < h0 < 1 ,

∫
Bp

|fk|pdµ =

∫
Bp\(1−h0)Bp

|fk|pdµ+

∫
(1−h0)Bp

|fk|pdµ

and the second integral on the right can be made arbitrarily small since fk → 0 uniformly on compacta. For
the first integral by ([6], proof of Theorem 3.3) we know that by choosing appropriate h0 we have,

∫
Bp\(1−h0)Bp

|fk|pdµ ≤ Cε∥fk∥Hp
u(Bp)

for arbitrary ε > 0 since µ is a vanishing Carleson measure of Hp
u(Bp) . Therefore,

∫
Bp

|fk|pdµ → 0

as claimed.
Conversely assume that all norm-bounded sequences in Hp

u(Bp) converging to 0 uniformly on compacta
converge to 0 ∈ Lp(µ) . To prove that the inclusion Hp

u(Bp) ↪→ Lp(µ) is compact, it suffices to show that
if {fk} is norm-bounded in Hp

u(Bp) then it admits a subsequence converging in Lp(µ) . Lemma 2.1 yields a
subsequence {fkj

} converging uniformly on compacta to h ∈ Hp
u(Bp) . Then {fkj

−h} converges to 0 uniformly
on compacta, by assumption this yields ∥fkj

− h∥Lp(µ) → 0 , and thus {fkj
} → h in Lp(µ) as desired. 2
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Recall that a sequence {xk} in a normed space X is called weakly convergent if there is an x ∈ X such that
for every ϕ ∈ X∗ ,

lim
k→∞

ϕ(xk) = ϕ(x).

Now we will continue with a characterization of weakly convergent sequences in Hp
u(Bp) for 1 < p < ∞ but

before that we need the following lemma:

Lemma 3.2 Let 1 < p < ∞ . Hp
u(Bp) is reflexive, and thus the unit ball of Hp

u(Bp) is weakly compact.

Proof In the proof of Theorem 2.1 in [6], we have showed that Hp
u(Bp) is a closed subspace of the Lebesgue

space Lp
u(∂Bp) so Hp

u(Bp) is also reflexive. Hence the closed unit ball of Hp
u(Bp) is weakly compact. 2

Lemma 3.3 Let 1 < p < ∞ . Then a sequence {fk} ⊂ Hp
u(Bp) is norm-bounded and converges uniformly on

compacta to h ∈ Hp
u(Bp) if and only if it converges weakly to h .

Proof Let {fk} be a norm-bounded sequence in Hp
u(Bp) and converges uniformly to h ∈ Hp

u(Bp) on compact
subsets. We need to show that Φ(fk) converges to Φ(h) for all Φ ∈ (Hp

u(Bp))∗ . Take an arbitrary subsequence
Φ(fkj

) and by the previous lemma we know that the unit ball of Hp
u(Bp) is weakly compact and by the

Eberlein–Šmulian theorem we can characterize this by sequential compactness (although the weak topology is
not metrizable) so we have that there exists a subsequence fkjl

such that Φ(fkjl
) → Φ(γ) for all Φ ∈ (Hp

u(Bp))∗ .
Since this is true for all Φ ∈ (Hp

u(Bp))∗ , it is also true for point evaluations and fkjl
(x) = γ(x) = h(x) . The

last part is due to fk converging to h uniformly on compacta and consequently it being convergent pointwise.
Hence Φ(fkjl

) converges Φ(h) for all Φ ∈ (Hp
u(Bp))∗ . Therefore, every subsequence of Φ(fk) has a subsequence

converging to Φ(h) , hence Φ(fk) → Φ(h) .
Conversely, assume that a sequence fk → 0 weakly in Hp

u(Bp) , in particular, is norm bounded in
Hp

u(Bp) . Therefore by Lemma 3.1 (ii) to prove that fk → 0 uniformly on compacta it is sufficient to show
that any converging (uniformly on compacta) subsequence must converge to 0 . But if {fkj

} → h ∈ Hp
u(Bp)

uniformly on compacta, the previous argument shows that fkj
converges weakly to h , the uniqueness of weak

limit then gives h ≡ 0 and we are done. 2

Thus for 1 < p < ∞ , Proposition 3.1. is a particular case of the following well-known result; [1], Proposition
4.7.)

Theorem 3.2 Let T : X → Y be a linear operator between Banach spaces. Then:

(i) If T is compact then for any sequence {xk} ⊂ X weakly converging to 0 , the sequence {Txk} strongly
converges to 0 in Y .

(ii) Suppose that the unit ball of X is weakly compact. Then T is compact if for any sequence {xk} ⊂ X

weakly converging to 0 the sequence {Txk} strongly converges to 0 in Y .

Now as an immediate consequence of this, we have the following:

Corollary 3.2 Let 1 < p < ∞ . Then a linear operator T : Hp
u(Bp) → X taking values in a Banach space X

is compact if and only if for any norm-bounded sequence {fk} ⊂ Hp
u(Bp) converging uniformly on compacta to

0 , the sequence {Tfk} converges to 0 in X .
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4. Duality

Aizenberg et al. [2] considered Grothendieck–Köthe–da Silva duality for the classical Hardy spaces of a convex
domain and in this section, we will give analogous results for Poletsky–Stessin Hardy spaces following their
general idea. Before proceeding with the duality arguments, we will first consider the dual complement B̃p of
the complex ellipsoid Bp , and then we will prove the duality relation for the Poletsky–Stessin Hardy spaces of
complex ellipsoids. Now let us first give some basic facts about the dual complements following [2] :

Definition 3 A domain Ω ⊂ Cn is called linearly convex if for every ξ ∈ ∂Ω , there exists a complex hyperplane

α = {z ∈ Cn : α1z1 + ...+ αnzn + β = 0}

through ξ that does not intersect Ω .

Let Ω be a linearly convex domain. If 0 ∈ Ω , then its dual complement

Ω̃ = {w ∈ Cn : w1z1 + ...+ wnzn ̸= 1, z ∈ Ω}

is the set of hyperplanes that do not intersect the domain Ω . Now let us continue with the main result given in
[2] considering the duality of the classical Hardy spaces on linearly convex domains. The classical Hardy space
on the dual complement of the domain Ω is defined as follows:

Definition 4 Let 0 ∈ Ω be a linearly convex domain with C2 boundary. By Hardy space for q ≥ 1 on the dual
complement Ω̃ , we mean the space of functions g , holomorphic in the open domain int(Ω̃) so that

lim sup
ϵ→0

∫
∂Ω̃

|g(ξ − ϵνξ)|qdσ(ξ) < ∞,

where the vector νξ is the exterior normal unit vector at ξ ∈ Ω̃ . Since ∂Ω̃ = ∂int(Ω̃) , this definition is
meaningful and this space is denoted by Hq(Ω̃) .

The duality result for the classical Hardy spaces is the following ([2], Theorem 3.1, pp:1354):

Theorem 4.1 Let Ω = {z ∈ Cn : ϱ(z, z̄) < 0} , where ϱ ∈ C3(Ω) is its defining function, be a bounded,
strictly convex domain. If 0 ∈ Ω , then

(Hp(Ω))
′
= Hq(Ω̃),

where 1

p
+

1

q
= 1 , p > 1 . Furthermore, the isomorphism is realized:

F (f) = Fϕ(f) =

∫
∂Ω

ϕ(w)f(z)ω(z, w),

where ϕ ∈ Hq(Ω̃) and f ∈ Hp(Ω) .

As it can be seen, this theorem is valid on a strictly convex domain, and now combining our work in [5] and
[6] with the idea given in [2], we can extend this result to the Poletsky–Stessin Hardy spaces of the complex
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ellipsoids and this result is important in two different aspects: first, Poletsky–Stessin Hardy classes are much
more general than the classical Hardy spaces and second, the complex ellipsoids are not strictly convex domains.
They are the model domains for pseudoconvex domains of finite type, which is more general than the strictly
convex domains.

Now let us first give the setting for this generalization:
As it is pointed out in [2], in general it is quite complicated to describe the dual complement of a domain

Ω ; however, for the case of Reinhardt domains with center at the origin there are precise results. If Ω is a
Reinhardt domain centered at the origin then F (Ω) ⊂ Rn

+ , where Rn
+ = {(x1, x2, ..., xn) ∈ Rn : xi ≥ 0}

and F (z1, z2, ..., zn) = (|z1|, |z2|, ..., |zn|) . For any B ⊂ Rn
+ , its inverse image by F−1 is defined to be the set

F−1(B) = {(z1, z2, ..., zn) ∈ Cn : F (z1, z2, ..., zn) ∈ B} . Then one can verify that the domain Ω ⊂ Cn is
Reinhardt if and only if Ω = F−1(F (Ω)) . Hence, any Reinhardt domain Ω is determined completely by its
absolute image F (Ω) . Thus, we have the following definition:

Definition 5 Let Ω ⊂ Cn be a Reinhardt domain centered at the origin 0 ∈ Cn . We say that the point

(y1, ..., yn) ∈ ˜F (Ω) ∈ Rn
+ if and only if

∑n
i=1 xiyi < 1 for every (x1, ..., xn) ∈ F (Ω) . Then the dual complement

of Ω is the set Ω̃ = F−1(F̃ (Ω)) .

From [2], we have the following characterization of the dual complement of a Reinhardt domain centered at the
origin 0 ∈ Cn , ([2], p. 1342).

Lemma 4.1 For r > 0 , p > 1 and ki ∈ Rn
+ \ {0} fixed numbers, let

Ω = {z ∈ Cn|
n∑

i=1

ki|zi|p < rp}

be a Reinhardt domain centered at the origin. Then for q = p
p−1 , the dual complement is

Ω̃ = {ξ ∈ Cn|
n∑

i=1

(ki)
1

1−p |ξi|q <
1

rq
}.

Now since the complex ellipsoid Bp is a Reinhardt domain centered at the origin, the above lemma allows us
to deduce the following:

Corollary 4.1 Let Bp = {z ∈ Cn,
∑n

i=1 |zi|2p − 1 < 0} , p ∈ Z+ be the complex ellipsoid. Then for q ∈ R+

such that q = p
2p−1 , the dual complement of Bp is

B̃p = {ξ ∈ Cn,

n∑
i=1

|ξi|2q − 1 ≤ 0}. (1)

For Bp and dual complement B̃p , choose the exhaustion functions u and ũ respectively as follows:

u(z) = ln(|z1|2p + |z2|2p + ...+ |zn|2p)
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ũ(z) = ln(|z1|2q + |z2|2q + ...+ |zn|2q),

where p and q are given as in the previous corollary.
Now define the Poletsky–Stessin Hardy space on the dual complement of a linearly convex domain

following the classical definition given in [2]:

Definition 6 Let 0 ∈ Ω be a linearly convex domain with C2 boundary and ũ be a continuous, negative,
plurisubharmonic exhaustion function for Ω̃ . For 1 < p < ∞ , the Poletsky–Stessin Hardy space on the dual
complement Ω̃ is the space of functions f holomorphic in the open domain int(Ω̃) so that

lim
r→0−

∫
Sũ(r)

|f |pdµũ,r < ∞.

We will continue with the following duality argument for the Poletsky–Stessin Hardy spaces of the complex
ellipsoids:

Theorem 4.2 (Hr
u(Bp))

′
= (Hs

ũ(B̃p)) , r > 1 , 1

r
+

1

s
= 1 . Furthermore, the following isomorphism is realized:

F (f) = Fϕ(f) =

∫
∂Bp

ϕfdµu,

where ϕ ∈ Hs
ũ(B̃p) and f ∈ Hr

u(Bp) .

Proof Consider the space Lr
u(∂Bp) . Then the space Hr

u(Bp) is a closed subspace of Lr
u(∂Bp) with respect

to the Lr
u -norm. Thus for every element F ∈ (Hr

u(Bp))
′ , there exists a function g ∈ Ls

u(∂Bp) such that

F (f) =

∫
∂Bp

f(z)g(z)dµu(z).

Now using the Cauhcy-Fantappie representation of Hr
u(Bp) functions, we write [4] again

F (f) =

∫
∂Bp

f(z)g(z)dµu(z) =

∫
∂Bp

g(z)

(
lim
t→1

∫
∂Bp

t

f(ξ)dµu(ξ)

(v(z, ξ)n)

)
dµu(z).

Taking the limit outside the integral and changing the order of integration leads to

F (f) = lim
t→1

∫
∂Bp

t

f(ξ)

(∫
∂Bp

g(z)dµu(z)

(v(z, ξ))n

)
dµu(ξ)

and the convexity of the ellipsoid implies that (̃B̃p) = Bp . Thus in the inner integral, we make a change of
variables

w : ξ ∈ Bp → w(ξ) ∈ (B̃p)

(ξ1, ξ2, ..., ξn) → (ξ
p
q

1 , ξ
p
q

2 , ..., ξ
p
q
n ) = w
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and deduce that

F (f) = lim
t→1

∫
∂Bp

t

f(ξ)

(∫
∂B̃p

G(w)

(v(w, ξ))n
dµũ(w)

)
dµu(ξ).

Now by using the boundary value characterization of Poletsky–Stessin Hardy spaces of complex ellipsoids [5, 6]
and the fact that the CF integral operator is bounded on Lr

u to Hr
u ([3], Theorem 1), the inner integral is a

function from Hs
ũ(B̃p) . Now as t → 1 , we have

F (f) = Fϕ(f) =

∫
∂Bp

ϕfdµu,

where ϕ ∈ Hs
ũ(B̃p) . Thus (Hr

u(Bp))
′
= (Hs

ũ(B̃p)) . 2
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