Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/

Turk J Math
(2018) 42: $2166-2185$
© TÜBİTAK
doi:10.3906/mat-1801-62

Convolution and Jackson inequalities in Musielak-Orlicz spaces

Ramazan AKGÜN ${ }^{1}$ © ${ }^{(0)}$ Yunus Emre YILDIRIR ${ }^{2, \text { (1) }}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Science, Balıkesir University, Balıkesir, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Education, Balıkesir University, Balıkesir, Turkey

Received: 18.01.2018 • Accepted/Published Online: 31.05.2018 • Final Version: 27.09 .2018

Abstract

In the present work we prove some direct and inverse theorems for approximation by trigonometric polynomials in Musielak-Orlicz spaces. Furthermore, we get a constructive characterization of the Lipschitz classes in these spaces.

Key words: Musielak-Orlicz space, direct and inverse theorem, Lipschitz class, trigonometric approximation

1. Introduction

Musielak-Orlicz spaces are similar to Orlicz spaces but are defined by a more general function with two variables $\varphi(x, t)$. In these spaces, the norm is given by virtue of the integral

$$
\int_{T} \varphi(x,|f(x)|) d x
$$

where $T:=[-\pi, \pi]$. We know that in an Orlicz space, φ would be independent of $x, \varphi(|f(x)|)$. The special cases $\varphi(t)=t^{p}$ and $\varphi(x, t)=t^{p(x)}$ give the Lebesgue spaces L^{p} and the variable exponent Lebesgue spaces $L^{p(x)}$, respectively. In addition to being a natural generalization that covers results from both variable exponent and Orlicz spaces, the study of Musielak-Orlicz spaces can be motivated by applications to differential equations $[13,28]$, fluid dynamics [15, 23], and image processing [5, 10, 16]. Detailed information on Musielak-Orlicz spaces can be found in the book by Musielak [26].

Polynomial approximation problems in Musielak-Orlicz spaces have a long history. Orlicz spaces, which satisfy the translation invariance property, are a particular case of Musielak-Orlicz spaces. In these spaces, polynomial approximation problems were investigated by several mathematicians in [3, 11, 12, 20-25, 29, 35]. In some weighted Banach function spaces, similar problems were studied in $[6,7,9,17,18,30,34,36,37]$. In general, Musielak-Orlicz spaces may not attain the translation invariance property, as can be seen in the case of variable exponent Lebesgue spaces $L^{p(x)}$. Several inequalities of trigonometric polynomial approximation in $L^{p(x)}$ were obtained in $[2,4,14,19,31,33]$. Note that, under the translation invariance hypothesis on Musielak-Orlicz space, Musielak obtained some trigonometric approximation inequalities in [27]. The main aim of this work is to obtain solutions to some central problems of trigonometric approximation in Musielak-Orlicz

[^0]
AKGÜN and YILDIRIR/Turk J Math

spaces that may not have the translation invariance property. In this work, we prove some direct and inverse theorems of approximation theory in Musielak-Orlicz spaces.

The rest of the work is organized as follows. In Section 2, we give the definition and some properties of Musielak-Orlicz spaces. In Section 3, we prove the boundedness of the Steklov operator in Musielak-Orlicz spaces and define the modulus of smoothness by means of this operator. Section 4 formulates our main results. In Section 5, we investigate the boundedness of De la Vallée Poussin and Cesaro means of the Fourier series of the functions in Musielak-Orlicz spaces. Furthermore, we prove the Bernstein inequality and the equivalence of the modulus of smoothness to the K-functional in these spaces. Section 6 contains the proofs of our main results.

We will use the following notations: $A(x) \preceq B(x) \Leftrightarrow \exists c>0: A(x) \leq c B(x)$ and $A(x) \approx B(x) \Leftrightarrow A(x) \preceq$ $B(x) \wedge B(x) \preceq A(x)$.

2. Preliminaries

A function $\varphi:[0, \infty) \rightarrow[0, \infty]$ is called Φ-function (briefly $\varphi \in \Phi$) if φ is convex and left-continuous and

$$
\varphi(0):=\lim _{t \rightarrow 0^{+}} \varphi(t)=0, \lim _{x \rightarrow \infty} \varphi(x)=\infty
$$

A Φ-function φ is said to be an N-function if it is continuous and positive and satisfies

$$
\lim _{t \rightarrow 0^{+}} \frac{\varphi(t)}{t}=0, \quad \lim _{t \rightarrow \infty} \frac{\varphi(t)}{t}=\infty
$$

Let $\Phi(T)$ be the collection of functions $\varphi: T \times[0, \infty) \rightarrow[0, \infty]$ such that:
(i) $\varphi(x, \cdot) \in \Phi$ for every $x \in T$;
(ii) $\varphi(x, u)$ is in $L^{0}(T)$, the set of measurable functions, for every $u \geq 0$.

A function $\varphi(\cdot, u) \in \Phi(T)$ is said to satisfy the Δ_{2} condition $\left(\varphi \in \Delta_{2}\right)$ with respect to parameter u if $\varphi(x, 2 u) \leq K \varphi(x, u)$ holds for all $x \in T, u \geq 0$, with some constant $K \geq 2$.

Subclass $\Phi(N) \subset \Phi(T)$ consists of functions $\varphi \in \Phi(T)$ such that, for every $x \in T, \varphi(x, \cdot)$ is an N-function and $\varphi \in \Delta_{2}$.

Two functions φ and φ_{1} are said to be equivalent (we shall write $\varphi \sim \varphi_{1}$) if there is $c>0$ such that

$$
\varphi_{1}(x, u / c) \leq \varphi(x, u) \leq \varphi_{1}(x, c u)
$$

for all x and u.
For $\varphi \in \Phi(N)$ we set

$$
\varrho_{\varphi}(f):=\int_{T} \varphi(x,|f(x)|) d x
$$

Musielak-Orlicz space L^{φ} (or generalized Orlicz space) is the class of Lebesgue measurable functions $f: T \rightarrow \mathbb{R}$ satisfying the condition

$$
\lim _{\lambda \rightarrow 0} \varrho_{\varphi}(\lambda f)=0
$$

The equivalent condition for $f \in L^{0}(T)$ to belong to L^{φ} is that $\varrho_{\varphi}(\lambda f)<\infty$ for some $\lambda>0$. L^{φ} becomes a
normed space with the Orlicz norm

$$
\|f\|_{[\varphi]}:=\sup \left\{\int_{T}|f(x) g(x)| d x: \varrho_{\psi}(g) \leq 1\right\}
$$

and with the Luxemburg norm

$$
\|f\|_{\varphi}=\inf \left\{\lambda>0: \varrho_{\varphi}\left(\frac{f}{\lambda}\right) \leq 1\right\}
$$

where

$$
\psi(t, v):=\sup _{u \geq 0}(u v-\varphi(t, u)), \quad v \geq 0, \quad t \in T
$$

is the complementary function (with respect to variable v) of φ in the sense of Young. These two norms are equivalent:

$$
\|f\|_{\varphi} \leq\|f\|_{[\varphi]} \leq 2\|f\|_{\varphi}
$$

Young's inequality,

$$
\begin{equation*}
u s \leq \varphi(x, u)+\psi(x, s) \tag{1}
\end{equation*}
$$

holds for complementary functions $\varphi, \psi \in \Phi(N)$ where $u, s \geq 0$ and $x \in T$.
From Young's inequality (1) we have

$$
\begin{gathered}
\|f\|_{[\varphi]} \leq \varrho_{\varphi}(f)+1 \\
\|f\|_{\varphi} \leq \varrho_{\varphi}(f) \text { if }\|f\|_{\varphi}>1 ; \text { and }\|f\|_{\varphi} \geq \varrho_{\varphi}(f) \text { if }\|f\|_{\varphi} \leq 1
\end{gathered}
$$

Hölder's inequality

$$
\begin{equation*}
\int_{T}|f(x) g(x)| d x \leq\|f\|_{\varphi}\|f\|_{[\psi]} \tag{2}
\end{equation*}
$$

holds for complementary functions $\varphi, \psi \in \Phi(N)$. The Jensen integral inequality can be formulated as follows. If φ is an N-function and $r(x)$ is a nonnegative measurable function, then

$$
\begin{equation*}
\varphi\left(\frac{1}{\int_{T} r(x) d x} \int_{T} f(x) r(x) d x\right) \leq \frac{1}{\int_{T} r(x) d x} \int_{T} \varphi(f(x)) r(x) d x \tag{3}
\end{equation*}
$$

Everywhere in this work we will assume that there exists a constant $A>0$ such that for all $x, y \in T$ with $|x-y| \leq 1 / 2$ we have

$$
\begin{equation*}
\frac{\varphi(x, u)}{\varphi(y, u)} \leq u^{\frac{A}{\log \left(\frac{1}{(x-y \mid}\right)}}, \quad u \geq 1 \tag{4}
\end{equation*}
$$

there exist some constants $c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
\inf _{x \in T} \varphi(x, 1) \geq c_{1} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{T} \varphi(x, 1) d x<\infty, \quad \psi(x, 1) \leq c_{2} \quad \text { a.e. on } T . \tag{6}
\end{equation*}
$$

Example 1 Let $p: T \rightarrow[1, \infty)$ be in $L^{0}(T)$ such that for all $x, y \in T$ with $|x-y| \leq 1 / 2$ we have the Dini-Lipschitz property,

$$
|p(x)-p(y)| \leq \frac{c}{\log \left(\frac{1}{|x-y|}\right)}
$$

with a constant $c>0$. Then the following functions belong to $\Phi(T)$ and satisfy conditions (4), (5), and (6):
(i) $\varphi(x, u)=u^{p(x)}, \sup _{x \in T} p(x)<\infty$,
(ii) $\varphi(x, u)=u^{p(x)} \log (1+u)$,
(iii) $\varphi(x, u)=u(\log (1+u))^{p(x)}$.

A function $\varphi \in \Phi(N)$ is in the class $\Phi(N, D L)$ if conditions (4), (5), and (6) are fulfilled.

3. Modulus of smoothness

For $f \in L^{\varphi}$ we define the Steklov operator A_{h} by

$$
\left(A_{h} f\right)(x):=\frac{1}{h} \int_{-h / 2}^{h / 2} f(x-t) d t, \quad 0<h<\pi, x \in T
$$

The characteristic function $\kappa_{[a, b]}(u)$ of a finite interval $[a, b]$ is the function on \mathbb{R} defined through

$$
\kappa_{[a, b]}(u)= \begin{cases}1, & u \in[a, b] \\ 0, & u \notin[a, b]\end{cases}
$$

The operator A_{h} can be written as a convolution integral [9, p. 33]:

$$
\left(A_{h} f\right)(x)=\frac{1}{2 \pi} \int_{T} f(t) \Re_{h}(t-x) d t
$$

where

$$
\Re_{h}(u):=\frac{2 \pi}{h} \kappa_{\left[-\frac{h}{2}, \frac{h}{2}\right]}(u)
$$

The kernel \Re_{h} satisfies the following conditions $[9$, p. 33]:

$$
\int_{T} \Re_{h}(u) d u \preceq 1, \quad\left|\Re_{h}(u)\right| \preceq 1, h \leq u \leq \pi, \quad \text { and } \max _{u}\left|\Re_{h}(u)\right| \preceq \frac{1}{h}
$$

Lemma 2 If $f \in L^{\varphi}$ with $\varphi \in \Phi(N, D L)$, then there exists a constant, independent of n and f, such that the inequality

$$
\left\|A_{h} f\right\|_{\varphi} \preceq\|f\|_{\varphi}
$$

holds for $0<h<\pi$.
Note that [8, p. 156, Lemma 6.1] is like Lemma 2. A necessary and sufficient condition for the translation operator in Musielak-Orlicz spaces to be continuous is well known. It was established first in [22].

Proof of Lemma 2 Let $N=\left\lfloor\frac{\pi}{h}\right\rfloor, x \in T, x_{k}:=(k h-1) \pi, U_{k}:=\left[x_{k}, x_{k+1}\right)$,

$$
E_{x}:= \begin{cases}T \backslash(x-\pi h, x+\pi h) & , \text { when }(x-\pi h, x+\pi h) \subset T \tag{7}\\ T \backslash\{(-\pi, x+\pi h) \cup(x-\pi h+2 \pi, \pi)\} & , \text { when } x-\pi h<-\pi \\ T \backslash\{(x-\pi h, \pi) \cup(-\pi, x+\pi h-2 \pi)\} & , \text { when } x+\pi h>\pi\end{cases}
$$

Then $T=\bigcup_{k=0}^{2 N-1} U_{k}$, where the length of U_{k} is $l\left(U_{k}\right)=\left|x_{k+1}-x_{k}\right|=\pi / N$. Let $F(t)=f(t) / 2$ and $\|F\|_{\varphi} \leq 1$. It is necessary to show that

$$
\varrho_{\varphi}\left(A_{h} f\right)=\int_{T} \varphi\left(x,\left|\frac{1}{\pi} \int_{T} F(t) \Re_{h}(t-x) d t\right|\right) d x \leq c
$$

with a constant $c>0$ independent of f and h. From the convexity of φ we get

$$
\begin{aligned}
\varrho_{\varphi}\left(A_{h} f\right) & =\varrho_{\varphi}\left(\frac{1}{\pi} \int_{T} F(t) \Re_{h}(t-x) d t\right) \\
& \preceq \varrho_{\varphi}\left(\int_{x-\pi h}^{x+\pi h} F(t) \Re_{h}(t-x) d t\right)+\varrho_{\varphi}\left(\int_{E_{x}} F(t) \Re_{h}(t-x) d t\right) \\
& =: I_{1}+I_{2} .
\end{aligned}
$$

When $x \in T$ and $t \in E_{x}$, then

$$
\left|\Re_{h}(t-x)\right| \lesssim 1
$$

and using (2), (5), and (6) we get

$$
\begin{aligned}
\left|\int_{E_{x}} F(t) \Re_{h}(t-x) d t\right| & \preceq \int_{T}|F(t)| d t \\
& \preceq\|F\|_{\varphi}\|1\|_{\psi} \preceq\|1\|_{\psi} \preceq c+1
\end{aligned}
$$

and therefore

$$
\begin{aligned}
I_{2} & \preceq \int_{T} \varphi\left(x,\left|\int_{E_{x}} F(t) \Re_{h}(t-x) d t\right|\right) d x \\
& \preceq \int_{T} \varphi(x, c+1) d x \preceq \int_{T} \varphi(x, 1) d x \preceq 1 .
\end{aligned}
$$

Now

$$
\begin{aligned}
I_{1} & \preceq \int_{T} \varphi\left(x, \int_{x-\pi h}^{x+\pi h}|F(t)|\left|\Re_{h}(t-x)\right| d t\right) d x \\
& \leq \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} \varphi\left(x, 1+\int_{x-\pi h}^{x+\pi h}|F(t)|\left|\Re_{h}(t-x)\right| d t\right) d x
\end{aligned}
$$

We set

$$
\varphi_{k}(u):=\inf \left\{\varphi(x, u): x \in \Xi^{k}\right\} \leq \inf \left\{\varphi(x, u): x \in U_{k}\right\}
$$

for some larger set $\Xi^{k} \supset U_{k}$, which will be chosen later with the property

$$
\begin{equation*}
l\left(\Xi^{k}\right) \leq j \pi h \tag{8}
\end{equation*}
$$

for some $j>1$. On the other hand,

$$
I_{1} \lesssim \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} \bar{A}_{k}(x, h) \varphi_{k}\left(1+\int_{x-\pi h}^{x+\pi h}|F(t)|\left|\Re_{h}(t-x)\right| d t\right) d x
$$

where

$$
\bar{A}_{k}(x, h):=\frac{\varphi\left(x, 1+\int_{x-\pi h}^{x+\pi h}|F(t)|\left|\Re_{h}(t-x)\right| d t\right)}{\varphi_{k}\left(1+\int_{x-\pi h}^{x+\pi h}|F(t)|\left|\Re_{h}(t-x)\right| d t\right)}:=\frac{\varphi(x, \alpha(x, h))}{\varphi_{k}(\alpha(x, h))} .
$$

Now we prove the uniform estimate $\bar{A}_{k}(x, h) \preceq 1$ for $x \in U_{k}$ where $c>0$ is independent of x, k, and h. Indeed, since

$$
\frac{\varphi(x, t)}{\varphi_{k}(t)}=\frac{\varphi(x, t)}{\varphi_{k}\left(\varsigma_{k}, t\right)} \leq t^{\frac{A}{\log \left(\frac{1}{\left|x-\varsigma_{k}\right|}\right)}}, \quad x \in U_{k}, \varsigma_{k} \in \Xi^{k}
$$

we get

$$
\bar{A}_{k}(x, h)=\frac{\varphi(x, \alpha(x, h))}{\varphi_{k}(\alpha(x, h))} \leq \alpha(x, h)^{\frac{A}{\log \left(\frac{1}{\left|x-\varsigma_{k}\right|}\right)}}
$$

Also, $\left|x-\varsigma_{k}\right| \leq l\left(\Xi^{k}\right) \leq j \pi h$ and

$$
\begin{gathered}
|\alpha(x, h)| \leq \frac{1}{h}\left(\int_{x-\pi h}^{x+\pi h}|F(t)| d t\right) \preceq \frac{1}{h}\|F\|_{\varphi} \preceq \frac{1}{h} \\
\alpha(x, h)^{\frac{A}{\log \left(\frac{1}{\left|x-\varsigma_{k}\right|}\right)}} \\
\leq \alpha(x, h)^{\frac{A}{\log \left(\frac{h}{6 j}\right)}} \leq\left(C \frac{1}{h}\right)^{\frac{A}{\log \left(\frac{h}{6 j}\right)}} \\
\left.\preceq\left(\frac{1}{h}\right)^{1 / \log \left(\frac{h}{6 j}\right)}\right)^{A} \preceq 1 .
\end{gathered}
$$

Let $\mu_{h}=\int_{x-\pi h}^{x+\pi h}\left|\Re_{h}(t-x)\right| d t=\int_{-\pi h}^{\pi h}\left|\Re_{h}(t)\right| d t$. Then $\mu_{h} \preceq 1$. Without loss of generality we may assume that
$\mu_{h}>0$. Using Jensen's integral inequality, we have

$$
\begin{aligned}
I_{1} & \preceq \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} \varphi_{k}\left(\frac{1}{\mu_{h}} \int_{x-\pi h}^{x+\pi h}|F(t)|\left|\Re_{h}(t-x)\right| d t\right) d x \\
& \preceq \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} \frac{1}{\mu_{h}} \int_{x-\pi h}^{x+\pi h} \varphi_{k}(|F(t)|)\left|\Re_{h}(t-x)\right| d t d x \\
& \preceq \sum_{k=0}^{N-1} \frac{1}{\mu_{h}} \int_{-\pi h}^{\pi h}\left|\Re_{h}(t)\right| \int_{x_{k}}^{x_{k+1}} \varphi_{k}(|F(x+t)|) d x d t \\
& \preceq \frac{1}{\mu_{h}} \int_{-\pi h}^{\pi h}\left|\Re_{h}(t)\right| \sum_{k=0}^{N-1} \int_{x_{k}-t}^{x_{k+1}-t} \varphi_{k}(|F(x)|) d x d t .
\end{aligned}
$$

We take as Ξ^{k} the set (11). Clearly $\Xi^{k} \supset U_{k}$ and $l\left(\Xi^{k}\right) \leq 3 \pi h$. Then (8) is satisfied with $j=3$. Since each point $x \in T$ belongs simultaneously to not more than a finite number n_{0} of the sets U_{k}, taking the maximum with respect to all the sets U_{k} containing x we obtain

$$
\begin{aligned}
I_{1} & \preceq \frac{1}{\mu_{h}} \int_{-\pi h}^{\pi h}\left|\Re_{h}(t)\right| d t \int_{-\pi}^{\pi} \tilde{\varphi}(x,|F(x)|) d x \\
& \preceq \int_{-\pi}^{\pi} \tilde{\varphi}(x,|F(x)|) d x
\end{aligned}
$$

with $\tilde{\varphi}(x, u):=\max _{i} \varphi_{i}(t)$. Now using

$$
\tilde{\varphi}(x, u) \leq \varphi(x, u), \quad \forall x \in T
$$

we have

$$
\varrho_{\varphi}\left(A_{h} f\right) \preceq \int_{-\pi}^{\pi} \varphi(x,|F(x)|) d x \preceq\|F\|_{\varphi} \preceq 1 .
$$

This gives

$$
\left\|A_{h} f\right\|_{\varphi} \preceq\|f\|_{\varphi}
$$

and the result follows.
We define the k th $(k \in \mathbb{N})$ order modulus of smoothness $\Omega_{\varphi}^{k}(\cdot, f)$ by

$$
\Omega_{\varphi}^{k}(\delta, f):=\sup _{0<h_{i} \leq \delta}\left\|\left(I-A_{h_{1}}\right) \ldots\left(I-A_{h_{k}}\right) f\right\|_{\varphi}, \quad \delta>0
$$

where I is the identity operator.

4. Main results

By $E_{n}(f)_{\varphi}$ we denote the best approximation of L^{φ} by polynomials in \mathcal{T}_{n}, i.e.

$$
E_{n}(f)_{\varphi}=\inf _{T_{n} \in \mathcal{T}_{n}}\left\|f-T_{n}\right\|_{\varphi}
$$

where \mathcal{T}_{n} is the set of trigonometric polynomials of degree $\leq n$.

Let $W_{\varphi}^{r}, r \in \mathbb{N}, \varphi \in \Phi(N, D L)$, be the class of functions $f \in L^{\varphi}$ such that $f^{(r-1)}$ is absolutely continuous and $f^{(r)} \in L^{\varphi}$. $W_{\varphi}^{r}, \varphi \in \Phi(N, D L), r \in \mathbb{N}$, becomes a Banach space with the norm $\|f\|_{W_{\varphi}^{r}}:=$ $\|f\|_{\varphi}+\left\|f^{(r)}\right\|_{\varphi}$.

Our main results are the following.
Theorem 3 For every $f \in W_{\varphi}^{r}, \varphi \in \Phi(N, D L), n \in \mathbb{N}$, the inequality

$$
E_{n}(f)_{\varphi} \preceq \frac{1}{n^{r}} E_{n}\left(f^{(r)}\right)_{\varphi}, \quad r \in \mathbb{N}
$$

holds with some constant depending only on φ and r.

Theorem 4 Let $f \in L^{\varphi}, \varphi \in \Phi(N, D L), n \in \mathbb{N}$. Then we have the following estimate:

$$
E_{n}(f)_{\varphi} \preceq \Omega_{\varphi}^{r}\left(\frac{1}{n}, f\right), \quad r \in \mathbb{N}
$$

with some constant depending only on φ and r.
Theorem 5 Let $\varphi \in \Phi(N, D L)$. Then for $f \in L^{\varphi}$ and $n \in \mathbb{N}$

$$
\Omega_{\varphi}^{r}\left(\frac{1}{n}, f\right) \preceq \frac{1}{n^{2 r}}\left\{E_{0}(f)_{\varphi}+\sum_{m=1}^{n} m^{2 r-1} E_{m}(f)_{\varphi}\right\}, \quad r \in \mathbb{N}
$$

holds with some constant depending only on φ and r.
Similar theorems were obtained in Orlicz spaces [3, 12, 18, 24, 25] and in variable exponent Lebesgue spaces $[1,4,14,31,33]$.

From Theorems 4 and 5, we get the following Marchaud-type inequality:

Corollary 6 Let $f \in L^{\varphi}, \varphi \in \Phi(N, D L), n \in \mathbb{N}$. Then we have

$$
\Omega_{\varphi}^{r}(\delta, f) \preceq \delta^{2 r} \int_{\delta}^{1} \frac{\Omega_{\varphi}^{r+1}(u, f)}{u^{2 r}} \frac{d u}{u}, \quad 0<\delta<1
$$

for $r \in \mathbb{N}$.
Theorems 4 and 5 imply also the following estimate:
Corollary 7 Let $f \in L^{\varphi}, \varphi \in \Phi(N, D L)$, and $n \in \mathbb{N}$. If

$$
E_{n}(f)_{L_{w}^{p q}} \preceq n^{-\alpha}, \quad n \in \mathbb{N}
$$

for some $\alpha>0$, then, for a given $r \in \mathbb{N}$, we have the estimations

$$
\Omega_{\varphi}^{r}(\delta, f) \preceq \begin{cases}\delta^{\alpha} & , r>\alpha / 2 \\ \delta^{2 r} \log \frac{1}{\delta} & , r=\alpha / 2 \\ \delta^{2 r} & , r<\alpha / 2\end{cases}
$$

Hence, if we define the Lipschitz class $\operatorname{Lip}\left(\alpha, L^{\varphi}\right)$ for $\alpha>0$ and $r:=\lfloor\alpha / 2\rfloor+1,\lfloor x\rfloor:=\max \{n \in \mathbb{Z}: n \leq x\}$ as

$$
\operatorname{Lip}\left(\alpha, L^{\varphi}\right):=\left\{f \in L^{\varphi}: \Omega_{\varphi}^{r}(\delta, f) \lesssim \delta^{\alpha}, \quad \delta>0\right\},
$$

then, from Theorem 4 and Corollary 7, we get the following constructive characterization of the class $\operatorname{Lip}\left(\alpha, L^{\varphi}\right)$.
Corollary 8 Let $f \in L^{\varphi}, \varphi \in \Phi(N, D L), n \in \mathbb{N}$, and $\alpha>0$. The following assertions are equivalent:

$$
\text { (i) } f \in \operatorname{Lip}\left(\alpha, L^{\varphi}\right), \quad \text { (ii) } E_{n}(f)_{L^{\varphi}} \preceq n^{-\alpha}, \quad n \in \mathbb{N} \text {. }
$$

5. Auxiliary estimates

Let

$$
\begin{equation*}
f(x) \backsim \frac{a_{0}(f)}{2}+\sum_{k=1}^{\infty}\left(a_{k}(f) \cos k x+b_{k}(f) \sin k x\right)=: \sum_{k=0}^{\infty} A_{k}(x, f) \tag{9}
\end{equation*}
$$

be the Fourier series of $f \in W_{\varphi}^{1}$ and

$$
S_{n}(f):=S_{n}(x, f):=\sum_{k=0}^{n} A_{k}(x, f), \quad n=0,1,2, \ldots
$$

be the partial sum of the Fourier series (9). In this case, for $f \in W_{\varphi}^{1}$, we have

$$
f(x)=\frac{a_{0}(f)}{2}+\frac{1}{\pi} \int_{T} f^{\prime}(t) B_{r}(t-x) d t,
$$

where

$$
B_{r}(u)=\sum_{k=1}^{\infty} \frac{\cos (k u+\pi / 2)}{k}
$$

is the Bernoulli kernel. Since $\left(S_{n}(\cdot, f)\right)^{\prime}=S_{n}\left(\cdot, f^{\prime}\right)$ we have

$$
f(x)-S_{n}(x, f)=\frac{1}{\pi} \int_{T} f^{\prime}(t) R_{n}(t-x) d t,
$$

where

$$
R_{n}(u)=\sum_{k=n+1}^{\infty} \frac{\cos (k u+\pi / 2)}{k} .
$$

We define the De la Vallée Poussin mean of series (9) as

$$
V_{m}^{n}(f, \cdot)=\frac{1}{m+1} \sum_{i=0}^{m} S_{n+i}(\cdot, f)
$$

for $n, m \in \mathbb{N} \cup\{0\}$. Then we get

$$
f(x)-V_{m}^{n}(f, x)=\frac{1}{\pi} \int_{T} f^{\prime}(t) \frac{1}{m+1} \sum_{i=0}^{m} R_{n+i}(t-x) d t .
$$

Setting

$$
k_{m+1}^{n}(u):=\frac{1}{m+1} \sum_{i=0}^{m} R_{n+i}(t-x)
$$

we find

$$
f(x)-V_{m}^{n}(f, x)=\frac{1}{\pi(m+1)} \int_{T} f^{\prime}(t) k_{m+1}^{n}(t-x) d t
$$

Let $n \in \mathbb{N}$. From $[32, \operatorname{Lemmas} 3,4,5]$ we have, for $m=n-1$ or $m=n$,

$$
\begin{gathered}
\int_{T}\left|k_{m+1}^{n}(u)\right| d u \preceq 1 \\
\left|k_{m+1}^{n}(u)\right| \lesssim 1 \text { for }(\sqrt{n})^{-1} \leq u \leq 2 \pi-(\sqrt{n})^{-1},
\end{gathered}
$$

and

$$
\max _{u}\left|k_{m+1}^{n}(u)\right| \lesssim n
$$

Lemma 9 If $f \in L^{\varphi}$ with $\varphi \in \Phi(N, D L)$, then there exist some constants, independent of n and f, such that the inequalities

$$
\begin{aligned}
\left\|f(\cdot)-V_{n-1}^{n}(f, \cdot)\right\|_{\varphi} & \preceq \frac{1}{n}\left\|f^{\prime}\right\|_{\varphi} \\
\left\|f(\cdot)-V_{n}^{n}(f, \cdot)\right\|_{\varphi} & \preceq \frac{1}{n}\left\|f^{\prime}\right\|_{\varphi}
\end{aligned}
$$

hold for any $T_{n} \in \mathcal{T}_{n}$.
Proof of Lemma 9 Let the set E_{x} be defined as in (7) with $h=1 /\left\lfloor n^{1 / 2}\right\rfloor$. Assume that $F(t)=f^{\prime}(t) /(m+1)$ and $\|F\|_{\varphi} \leq 1$. We need to show that

$$
\rho_{\varphi}\left(f-V_{m}^{n}(f, \cdot)\right)=\int_{T} \varphi\left(x,\left|\frac{1}{\pi} \int_{T} F(t) k_{m+1}^{n}(t-x) d t\right|\right) d x \preceq 1
$$

with $c>0$ independent of f and n. Then convexity of φ implies

$$
\begin{aligned}
\rho_{\varphi}\left(f-V_{m}^{n}(f, \cdot)\right) & =\rho_{\varphi}\left(\frac{1}{\pi} \int_{T} F(t) k_{m+1}^{n}(t-x) d t\right) \\
& \leq \frac{1}{\pi} \rho_{\varphi}\left(\left\{\int_{x-\pi h}^{x+\pi h}+\int_{E_{x}}\right\} F(t) k_{m+1}^{n}(t-x) d t\right) \\
& \preceq \rho_{\varphi}\left(\int_{x-\pi h}^{x+\pi h} F(t) k_{m+1}^{n}(t-x) d t\right)+\rho_{\varphi}\left(\int_{E_{x}} F(t) k_{m+1}^{n}(t-x) d t\right) \\
& =: I_{1}+I_{2} .
\end{aligned}
$$

If $x \in T$ and $t \in E_{x}$, then

$$
\left|k_{m+1}^{n}(t-x)\right| \preceq 1
$$

and using Hölder's inequality (2), (5), and (6), we obtain

$$
\left|\int_{E_{x}} F(t) k_{m+1}^{n}(t-x) d t\right| \preceq \int_{T}|F(t)| d t \preceq\|F\|_{\varphi}\|1\|_{\psi} \preceq\|1\|_{\psi} \preceq 1
$$

and hence

$$
\begin{aligned}
I_{2} & \preceq \rho_{\varphi}\left(\int_{E_{x}} F(t) k_{m+1}^{n}(t-x) d t\right) \preceq \int_{T} \varphi\left(x,\left|\int_{E_{x}} F(t) k_{m+1}^{n}(t-x) d t\right|\right) d x \\
& \preceq \int_{T} \varphi(x, c+1) d x \preceq \int_{T} \varphi(x, 1) d x \preceq 1 .
\end{aligned}
$$

Now

$$
\begin{aligned}
I_{1} & \preceq \int_{T} \varphi\left(x, \int_{x-\pi h}^{x+\pi h}|F(t)|\left|k_{m+1}^{n}(t-x)\right| d t\right) d x \\
& \leq \sum_{k=0}^{2 N-1} \int_{x_{k}}^{x_{k+1}} \varphi\left(x, 1+\int_{x-\pi h}^{x+\pi h}|F(t)|\left|k_{m+1}^{n}(t-x)\right| d t\right) d x
\end{aligned}
$$

We set

$$
\varphi_{k}(u):=\inf \left\{\varphi(x, u): x \in \Xi^{k}\right\} \leq \inf \left\{\varphi(x, u): x \in U_{k}\right\}
$$

for some larger set $\Xi^{k} \supset U_{k}$, which will be chosen later with the property

$$
\begin{equation*}
l\left(\Xi^{k}\right) \leq j \pi /\left\lfloor n^{1 / 2}\right\rfloor \tag{10}
\end{equation*}
$$

for some $j>1$. On the other hand,

$$
I_{1} \lesssim \sum_{k=0}^{2 N-1} \int_{x_{k}}^{x_{k+1}} A_{k}(x, m, n) \varphi_{k}\left(1+\int_{x-\pi h}^{x+\pi h}|F(t)|\left|k_{m+1}^{n}(t-x)\right| d t\right) d x
$$

where

$$
A_{k}(x, m, n):=\frac{\varphi\left(x, 1+\int_{x-\pi h}^{x+\pi h}|F(t)|\left|k_{m+1}^{n}(t-x)\right| d t\right)}{\varphi_{k}\left(1+\int_{x-\pi h}^{x+\pi h}|F(t)|\left|k_{m+1}^{n}(t-x)\right| d t\right)}:=\frac{\varphi(x, \alpha(x, m, n))}{\varphi_{k}(\alpha(x, m, n))}
$$

We prove the uniform estimate $A_{k}(x, m, n) \preceq 1$ for $x \in U_{k}$ where $c>0$ is independent of x, k and m, n. Indeed, since

$$
\frac{\varphi(x, t)}{\varphi_{k}(t)}=\frac{\varphi(x, t)}{\varphi_{k}\left(\varsigma_{k}, t\right)} \leq t^{\frac{A}{\log \left(\frac{1}{\left|x-\varsigma_{k}\right|}\right)}}, \quad x \in U_{k}, \varsigma_{k} \in \Xi^{k}
$$

AKGÜN and YILDIRIR/Turk J Math

we have

$$
A_{k}(x, m, n)=\frac{\varphi(x, \alpha(x, m, n))}{\varphi_{k}(\alpha(x, m, n))} \leq \alpha(x, m, n)^{\frac{A}{\log \left(\frac{1}{\left|x-\varsigma_{k}\right|}\right)}}
$$

Also, $\left|x-\varsigma_{k}\right| \leq l\left(\Xi^{k}\right) \leq j \pi /\left\lfloor n^{1 / 2}\right\rfloor$ and

$$
\begin{gathered}
|\alpha(x, m, n)| \leq n\left(\int_{x-\pi h}^{x+\pi h}|F(t)| d t\right) \preceq n\|F\|_{\varphi} \preceq n, \\
\alpha(x, m, n)^{\frac{A}{\log \left(\frac{1}{\left|x-\varsigma_{k}\right|}\right)}} \leq \alpha(x, m, n)^{\frac{A}{\log \left(\frac{n^{1 / 2}}{6 j}\right)}} \leq(C n)^{\frac{A}{\log \left(\frac{n^{1 / 2}}{6 j}\right)}} \preceq\left(n^{\left.1 / \log \left(\frac{n}{6 j}\right)\right)^{A} \preceq 1 .}\right.
\end{gathered}
$$

Let $\mu_{m, n}=\int_{x-\pi h}^{x+\pi h}\left|k_{m+1}^{n}(t-x)\right| d t=\int_{-\pi h}^{\pi h}\left|k_{m+1}^{n}(t)\right| d t$. Then $\mu_{m, n} \preceq 1$. Without loss of generality we may assume that $\mu_{m, n}>0$.

By Jensen's integral inequality (3),

$$
\begin{aligned}
I_{1} & \lesssim \sum_{k=0}^{2 N-1} \int_{x_{k}}^{x_{k+1}} \varphi_{k}\left(C \frac{1}{\mu_{m, n}} \int_{x-\pi h}^{x+\pi h}|F(t)|\left|k_{m+1}^{n}(t-x)\right| d t\right) d x \\
& \lesssim \sum_{k=0}^{2 N-1} \int_{x_{k}}^{x_{k+1}} \frac{1}{\mu_{m, n}} \int_{x-\pi h}^{x+\pi h} \varphi_{k}(|F(t)|)\left|k_{m+1}^{n}(t-x)\right| d t d x \\
& \lesssim \sum_{k=0}^{2 N-1} \frac{1}{\mu_{m, n}} \int_{-\pi h}^{\pi h}\left|k_{m+1}^{n}(t)\right| \int_{x_{k}}^{x_{k+1}} \varphi_{k}(|F(x+t)|) d x d t \\
& \lesssim \frac{1}{\mu_{m, n}} \int_{-\pi h}^{\pi h}\left|k_{m+1}^{n}(t)\right| \sum_{k=0}^{2 N-1} \int_{x_{k}-t}^{x_{k+1}-t} \varphi_{k}(|F(x)|) d x d t
\end{aligned}
$$

We take as Ξ^{k} the set

$$
\begin{equation*}
\bigcup_{t \in(-\pi h, \pi h)}\left\{x: x+t \in U_{k}\right\} \tag{11}
\end{equation*}
$$

Clearly $\Xi^{k} \supset U_{k}$ and $l\left(\Xi^{k}\right) \leq 3 \pi /\left\lfloor n^{1 / 2}\right\rfloor$. Then (10) is satisfied with $j=3$. Since each point $x \in T$ belongs simultaneously to not more than a finite number n_{0} of the sets U_{k}, taking the maximum with respect to all the sets U_{k} containing x we obtain

$$
I_{1} \preceq \frac{1}{\mu_{m, n}} \int_{-\pi h}^{\pi h}\left|k_{m+1}^{n}(t)\right| d t \int_{-\pi}^{\pi} \tilde{\varphi}(x,|F(x)|) d x \preceq \int_{-\pi}^{\pi} \tilde{\varphi}(x,|F(x)|) d x
$$

with $\tilde{\varphi}(x, u):=\max _{i} \varphi_{i}(t)$. Now using

$$
\tilde{\varphi}(x, u) \leq \varphi(x, u), \quad \forall x \in T
$$

we get

$$
\rho_{\varphi}\left(f-V_{m}^{n}(f, \cdot)\right) \preceq \int_{-\pi}^{\pi} \varphi(x,|F(x)|) d x \preceq\|F\|_{\varphi} \preceq 1 .
$$

These give the estimates

$$
\begin{aligned}
\left\|f(\cdot)-V_{n-1}^{n}(f, \cdot)\right\|_{\varphi} & \preceq \frac{1}{n}\left\|f^{\prime}\right\|_{\varphi} \\
\left\|f(\cdot)-V_{n}^{n}(f, \cdot)\right\|_{\varphi} & \preceq \frac{1}{n}\left\|f^{\prime}\right\|_{\varphi}
\end{aligned}
$$

and the result follows.
It is known that for the partial sums of the Fourier series (9) the integral representation

$$
S_{n}(x, f)=\frac{1}{\pi} \int_{T} f(t) D_{n}(x-t) d t
$$

is valid, where $D_{n}(t):=\frac{1}{2}+\sum_{m=1}^{n} \cos m t$ is the Dirichlet kernel.
Consider the sequence $\left\{\sigma_{n}(\cdot, f)\right\}$ of the Cesaro means of the partial sums of the Fourier series (9), that is,

$$
\sigma_{n}(x, f):=\frac{S_{0}(x, f)+S_{1}(x, f)+\cdots+S_{n}(x, f)}{n+1}, \quad n=\{0\} \cup \mathbb{N}
$$

with $\sigma_{0}(x, f)=S_{0}(x, f):=a_{0} / 2$. It is known that

$$
\sigma_{n}(x, f)=\frac{1}{\pi} \int_{T} f(t) K_{n}(x-t) d t
$$

where

$$
K_{n}(t):=\frac{1}{2}+\sum_{m=1}^{n}\left(1-\frac{m}{n+1}\right) \cos m t
$$

is the Fejer kernel of order n. The Fejer kernel satisfies the following conditions [38]:

$$
\begin{equation*}
\int_{T} K_{n}(u) d u \preceq 1, \quad\left|K_{n}(u)\right| \preceq 1, \frac{1}{n^{1 / 2}} \leq u \leq \pi \text { and } \max _{u}\left|K_{n}(u)\right| \preceq n . \tag{12}
\end{equation*}
$$

Taking into account these conditions (12), the following lemma is proved similarly to the previous lemma.

Lemma 10 If $f \in L^{\varphi}$ with $\varphi \in \Phi(N, D L)$, then there exists a constant, independent of n and f, such that the inequality

$$
\left\|\sigma_{n}(x, f)\right\|_{\varphi} \preceq\|f\|_{\varphi}
$$

holds.
Bernstein's inequality in the space L^{φ} is proved in the following lemma.

Lemma 11 If $f \in L^{\varphi}$ with $\varphi \in \Phi(N, D L)$, then for every $T_{n} \in \mathcal{T}_{n}$ the inequality

$$
\begin{equation*}
\left\|T_{n}^{k}\right\|_{\varphi} \preceq n^{k}\left\|T_{n}\right\|_{\varphi}, \quad k \in \mathbb{N} \tag{13}
\end{equation*}
$$

holds with a constant independent of n.

Proof of Lemma 11 It is sufficient to prove the lemma for $k=1$. Since

$$
T_{n}(x)=S_{n}\left(x, T_{n}\right)=\frac{1}{\pi} \int_{T} T_{n}(u) D_{n}(u-x) d u
$$

by differentiation we obtain

$$
T_{n}^{\prime}(x)=-\frac{1}{\pi} \int_{T} T_{n}(u) D_{n}^{\prime}(u-x) d u=\frac{1}{\pi} \int_{T} T_{n}(u+x) \sum_{m=1}^{n} m \sin m u d u
$$

Taking into account

$$
\int_{T} T_{n}(u+x) \sum_{m=1}^{n-1} m \sin (2 n-m) u d u=0
$$

we get

$$
\begin{aligned}
T_{n}^{\prime}(x) & =\frac{1}{\pi} \int_{T} T_{n}(u+x)\left[\sum_{m=1}^{n} m \sin m u+\sum_{m=1}^{n-1} m \sin (2 n-m) u\right] d u \\
& =\frac{1}{\pi} \int_{T} T_{n}(u+x) 2 n \sin n u\left[\frac{1}{2}+\sum_{m=1}^{n-1} \frac{n-m}{n} \cos m u\right] d u \\
& =\frac{2 n}{\pi} \int_{T} T_{n}(u+x) \sin n u K_{n-1}(u) d u
\end{aligned}
$$

Since K_{n-1} is nonnegative we have

$$
\begin{aligned}
\left|T_{n}^{\prime}(x)\right| & \leq \frac{2 n}{\pi} \int_{T}\left|T_{n}(u+x)\right| K_{n-1}(u) d u \\
& =2 n \sigma_{n-1}\left(x,\left|T_{n}\right|\right)
\end{aligned}
$$

The last inequality and the boundedness of the operator σ_{n} in L^{φ} yield the required inequality.

Lemma 12 If $f \in W_{\varphi}^{2}$ with $\varphi \in \Phi(N, D L)$, then

$$
\Omega_{\varphi}^{k}(\delta, f) \preceq \delta^{2} \Omega_{\varphi}^{k-1}\left(\delta, f^{\prime \prime}\right), \quad k \in \mathbb{N}
$$

with some constant independent of δ.
Proof of Lemma 12 Setting

$$
g(x):=\left(I-A_{h_{2}}\right) \ldots\left(I-A_{h_{k}}\right) f(x)
$$

we get

$$
\left(I-A_{h_{1}}\right) g(x)=\left(I-A_{h_{1}}\right) \ldots\left(I-A_{h_{k}}\right) f(x)
$$

Therefore,

$$
\left(I-A_{h_{1}}\right) \ldots\left(I-A_{h_{k}}\right) f(x)=\frac{1}{2 h_{1}} \int_{-h_{1}}^{h_{1}}[g(x)-g(x+t)] d t=-\frac{1}{8 h_{1}} \int_{0}^{h_{1}} \int_{0}^{t} \int_{-u}^{u} g^{\prime \prime}(x+s) d s d u d t .
$$

Hence,

$$
\begin{aligned}
\left\|\left(I-A_{h_{1}}\right) \ldots\left(I-A_{h_{k}}\right) f\right\|_{\varphi} & \preceq \frac{1}{8 h_{1}} \sup \int_{T}\left|\int_{0}^{h_{1}} \int_{0}^{t} \int_{-u}^{u} g^{\prime \prime}(x+s) d s d u d t\right||v(x)| d x \\
& =\frac{1}{8 h_{1}} \int_{0}^{h_{1}} \int_{0}^{t} 2 u\left\|\frac{1}{2 u} \int_{-u}^{u} g^{\prime \prime}(x+s) d s\right\|_{\varphi} d u d t \\
& \preceq \frac{1}{8 h_{1}} \int_{0}^{h_{1}} \int_{0}^{t} 2 u\left\|g^{\prime \prime}\right\|_{\varphi} d u d t=h_{1}^{2}\left\|g^{\prime \prime}\right\|_{\varphi}
\end{aligned}
$$

where the supremum is taken over all $v \in L^{\psi}(T)$ with $\varrho_{\psi}(v) \leq 1$. Since

$$
g^{\prime \prime}=\left(I-A_{h_{2}}\right) \ldots\left(I-A_{h_{k}}\right) f^{\prime \prime},
$$

we have

$$
\Omega_{\varphi}^{k}(\delta, f) \leq \sup _{0<h_{i} \leq \delta} c h_{1}^{2}\left\|g^{\prime \prime}\right\|_{\varphi}=c \delta^{2} \sup _{0<h_{i} \leq \delta}\left\|\left(I-A_{h_{2}}\right) \ldots\left(I-A_{h_{k}}\right) f^{\prime \prime}\right\|_{\varphi}=c \delta^{2} \Omega_{\varphi}^{k-1}\left(\delta, f^{\prime \prime}\right) .
$$

Corollary 13 If $f \in W_{\varphi}^{2 k}$ with $\varphi \in \Phi(N, D L)$, then

$$
\begin{equation*}
\Omega_{\varphi}^{k}(\delta, f) \preceq \delta^{2 k}\left\|f^{(2 k)}\right\|_{\varphi}, \quad k=1,2, \ldots \tag{14}
\end{equation*}
$$

with some constant independent of δ.
For an $f \in L^{\varphi}$ and $r \in \mathbb{N}$, Peetre's K-functional is defined as

$$
K\left(f, \delta ; L_{\varphi}, W_{\varphi}^{r}\right):=\inf _{g \in W_{\varphi}^{r}}\left\{\|f-g\|_{\varphi}+\delta^{r}\left\|g^{(r)}(x)\right\|_{\varphi}\right\}
$$

for $\delta>0$.
Theorem 14 If $f \in L^{\varphi}$ with $\varphi \in \Phi(N, D L)$, then we have

$$
\Omega_{\varphi}^{r}(\delta, f) \approx K\left(f, \delta ; L_{\varphi}, W_{\varphi}^{2 r}\right), \quad r \in \mathbb{N}
$$

where the implied constants are independent of $\delta>0$.

Proof of Theorem 14 Let $h \in W_{\varphi}^{2 r}$. From subadditivity of $\Omega_{\varphi}^{r}(\cdot, f)$ and (14) we have

$$
\Omega_{\varphi}^{r}(\delta, f) \preceq\|f-h\|_{\varphi}+\delta^{2 r}\left\|h^{(2 r)}\right\|_{\varphi}
$$

Taking the infimum on h we get $\Omega_{\varphi}^{r}(\delta, f) \preceq K\left(f, \delta ; L_{\varphi}, W_{\varphi}^{2 r}\right)$.
We define an operator L_{δ} on L^{φ} as

$$
\left(L_{\delta} f\right)(x):=3 \delta^{-3} \int_{0}^{\delta} \int_{0}^{u} \int_{-t}^{t} f(x+s) d s d t d u, \quad x \in T .
$$

From [1, p. 15],

$$
\frac{d^{2 r}}{d x^{2 r}}\left(L_{\delta}^{r} f\right)=\frac{c}{\delta^{2 r}}\left(I-A_{\delta}\right)^{r}, \quad r \in \mathbb{N}
$$

Because of estimates

$$
\left\|L_{\delta} f\right\|_{\varphi} \preceq 3 \delta^{-3} \int_{0}^{\delta} \int_{0}^{u} 2 t\left\|A_{t} f\right\|_{\varphi} d t d u \preceq\|f\|_{\varphi}
$$

the operator L_{δ} is bounded in L^{φ}.
Defining another operator \mathcal{L}_{δ}^{r} as

$$
\mathcal{L}_{\delta}^{r}:=I-\left(I-L_{\delta}^{r}\right)^{r}
$$

we obtain

$$
\left\|\frac{d^{2 r}}{d x^{2 r}} \mathcal{L}_{\delta}^{r} f\right\|_{\varphi} \preceq\left\|\frac{d^{2 r}}{d x^{2 r}} L_{\delta}^{r} f\right\|_{\varphi}=\frac{1}{\delta^{2 r}}\left\|\left(I-A_{\delta}\right)^{r} f\right\|_{\varphi} \preceq \frac{1}{\delta^{2 r}} \Omega_{\varphi}^{r}(\delta, f)
$$

Since L_{δ} is bounded in L^{φ} and $I-L_{\delta}^{r}=\left(I-L_{\delta}\right) \sum_{j=0}^{r-1} L_{\delta}^{j}$ we have

$$
\left\|\left(I-L_{\delta}^{r}\right) g\right\|_{\varphi} \preceq\left\|\left(I-L_{\delta}\right) g\right\|_{\varphi} \preceq \delta^{-3} \int_{0}^{\delta} \int_{0}^{u} 2 t\left\|\left(I-A_{t}\right) g\right\|_{\varphi} d t d u \preceq \sup _{0<t \leq \delta}\left\|\left(I-A_{t}\right) g\right\|_{\varphi}
$$

for any $g \in L^{\varphi}$.
Applying this inequality r times in $\left\|f-\mathcal{L}_{\delta}^{r} f\right\|_{\varphi}=\left\|\left(I-L_{\delta}^{r}\right)^{r} f\right\|_{\varphi}$ we obtain

$$
\begin{aligned}
\left\|f-\mathcal{L}_{\delta}^{r} f\right\|_{\varphi} & \preceq \sup _{0<t_{1} \leq \delta}\left\|\left(I-A_{t_{1}}\right)\left(I-L_{\delta}^{r}\right)^{r-1} f\right\|_{\varphi} \\
& \preceq \sup _{0<t_{1}, t_{2} \leq \delta}\left\|\left(I-A_{t_{1}}\right)\left(I-A_{t_{2}}\right)\left(I-L_{\delta}^{r}\right)^{r-2} f\right\|_{\varphi} \\
& \preceq \cdots \preceq \sup _{0<t_{i} \leq \delta}\left\|\left(I-A_{t_{1}}\right) \ldots\left(I-A_{t_{r}}\right) f\right\|_{\varphi}=\Omega_{\varphi}^{r}(t, f) .
\end{aligned}
$$

This gives the reverse estimate and completes the proof.

6. Proofs of main results

Proof of Theorem 3 It is enough to prove $E_{n}(f)_{\varphi} \preceq \frac{1}{n} E_{n}\left(f^{\prime}\right)_{\varphi}$. For this we need

$$
\begin{equation*}
E_{j}(f)_{\varphi} \preceq \frac{1}{j}\left\|f^{\prime}\right\|_{\varphi} \tag{15}
\end{equation*}
$$

with $j \in \mathbb{N}$. If $j=2 n$, then

$$
E_{j}(f)_{\varphi}=E_{2 n}(f)_{\varphi} \leq\left\|f(\cdot)-V_{n}^{n}(f, \cdot)\right\|_{\varphi} \preceq \frac{1}{n}\left\|f^{\prime}\right\|_{\varphi} \preceq \frac{1}{j}\left\|f^{\prime}\right\|_{\varphi}
$$

If $j=2 n-1$, then

$$
E_{j}(f)_{\varphi}=E_{2 n-1}(f)_{\varphi} \leq\left\|f(\cdot)-V_{n-1}^{n}(f, \cdot)\right\|_{\varphi} \preceq \frac{1}{n}\left\|f^{\prime}\right\|_{\varphi} \preceq \frac{1}{j}\left\|f^{\prime}\right\|_{\varphi}
$$

We obtained (15). Now suppose that $E_{n}\left(f^{\prime}\right)_{\varphi}=\left\|f^{\prime}-\Theta_{n}\left(f^{\prime}\right)\right\|_{\varphi}$ and

$$
\digamma(x):=\int_{0}^{x} \Theta_{n}\left(f^{\prime}\right)(t) d t
$$

Then $\digamma \in \mathcal{T}_{n}$ and $\digamma^{\prime}(x)=\Theta_{n}\left(f^{\prime}\right)(x)$. Thus,

$$
\begin{aligned}
E_{n}(f)_{\varphi} & =E_{n}(f-\digamma)_{\varphi} \preceq \frac{1}{n}\left\|(f-\digamma)^{\prime}\right\|_{\varphi}=\frac{1}{n}\left\|f^{\prime}-\digamma^{\prime}\right\|_{\varphi} \\
& =\frac{1}{n}\left\|f^{\prime}-\Theta_{n}\left(f^{\prime}\right)\right\|_{\varphi} \preceq \frac{1}{n} E_{n}\left(f^{\prime}\right)_{\varphi}
\end{aligned}
$$

Corollary 15 For every $f \in W_{\varphi}^{r}, \varphi \in \Phi(N, D L), n \in \mathbb{N}$, the inequality

$$
\begin{equation*}
E_{n}(f)_{\varphi} \preceq \frac{1}{n^{r}}\left\|f^{(r)}\right\|_{\varphi}, \quad r \in \mathbb{N} \tag{16}
\end{equation*}
$$

holds with some constant depending only on φ and r.
Proof of Theorem 4 Let $h \in W_{\varphi}^{2 r}$. From (16) and Theorem 14

$$
\begin{aligned}
E_{n}(f)_{\varphi} & =E_{n}(f-h+h)_{\varphi} \leq E_{n}(f-h)_{\varphi}+E_{n}(h)_{\varphi} \\
& \lesssim\|f-h\|_{\varphi}+n^{-2 r}\left\|h^{(2 r)}\right\|_{\varphi} \lesssim \Omega_{\varphi}^{r}\left(\frac{1}{n}, f\right)
\end{aligned}
$$

Proof of Theorem 5 Let $f \in L^{\varphi}, \delta:=1 / n$ and let $T_{n} \in \mathcal{T}_{n}$ be the best approximating polynomial to f. We have

$$
\Omega_{\varphi}^{k}(\delta, f) \leq \Omega_{\varphi}^{k}\left(\delta, f-T_{2^{j+1}}\right)+\Omega_{\varphi}^{k}\left(\delta, T_{2^{j+1}}\right), \quad j \in \mathbb{N}
$$

and

$$
\Omega_{\varphi}^{k}\left(\delta, f-T_{2^{j+1}}\right) \preceq\left\|f-T_{2^{j+1}}\right\|_{\varphi}=E_{2^{j+1}}(f)_{\varphi}
$$

Using (13) and (14) and considering that the sequence of the best approximations is decreasing, we obtain

$$
\begin{aligned}
\Omega_{\varphi}^{k}\left(\delta, T_{2^{j+1}}\right) & \preceq \delta^{2 k}\left\|T_{2^{j+1}}^{(2 k)}\right\|_{\varphi} \\
& \preceq \delta^{2 k}\left\{\left\|T_{1}^{(2 k)}-T_{0}^{(2 k)}\right\|_{\varphi}+\sum_{i=0}^{j}\left\|T_{2^{i+1}}^{(2 k)}-T_{2^{i}}^{(2 k)}\right\|_{\varphi}\right\} \\
& \preceq \delta^{2 k}\left\{\left\|T_{1}-T_{0}\right\|_{\varphi}+\sum_{i=0}^{j} 2^{2(i+1) 2 k}\left\|T_{2^{i+1}}-T_{2^{i}}\right\|_{\varphi}\right\} \\
& \preceq \delta^{2 k}\left\{E_{0}(f)_{\varphi}+2^{2 k} E_{1}(f)_{\varphi}+\sum_{i=1}^{j} 2^{2(i+1) 2 k} E_{2^{i}}(f)_{\varphi}\right\} \\
& \preceq \delta^{2 k}\left\{E_{0}(f)_{\varphi}+\sum_{m=1}^{2^{j}} m^{2 k-1} E_{m}(f)_{\varphi}\right\}
\end{aligned}
$$

Selecting j such that $2^{j} \leq n \leq 2^{j+1}$ we have

$$
E_{2^{j+1}}(f)_{\varphi} \leq \frac{2^{4 k}}{n^{2 k}} \sum_{m=2^{j-1}+1}^{2^{j}} m^{2 k-1} E_{m}(f)_{\varphi}
$$

References

[1] Akgün R. Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent. Ukr Math J 2011; 63: 1-26.
[2] Akgün R. Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth. Georgian Math J 2011; 18: 203-235.
[3] Akgün R. Inequalities for one sided approximation in Orlicz spaces. Hacet J Math Stat 2011; 40: 231-240.
[4] Akgün R, Kokilashvili V. Refined estimates of trigonometric approximation for functions with generalized derivatives in weighted variable exponent Lebesgue spaces. Georgian Math J 2012; 19: 611-626.
[5] Alaouia MK, Nabilab T, Altanjia M. On some new non-linear diffusionmodels for the image filtering. Appl Anal 2014; 93: 269-280.
[6] Akgün R, Yıldırır YE. Jackson-Stechkin type inequality in weighted Lorentz spaces. Math Inequal Appl 2015; 18: 1283-1293.
[7] Benkirane A, Douieb J, Ould Mohamedhen Val M. An approximation theorem in Musielak-Orlicz-Sobolev spaces. Comment Math 2011; 51: 109-120.
[8] Bennet C, Sharpley R. Interpolation of Operators. Boston, MA, USA: Academic Press, 1968.
[9] Butzer PL, Nessel RJ. Fourier Analysis and Approximation, Volume 1. Basel, Switzerland: Birkhauser Verlag, 1971.
[10] Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math 2006; 66: 1383-1406.

AKGÜN and YILDIRIR/Turk J Math

[11] Cohen E. On the degree of approximation of a function by the partial sums of its Fourier series. T Am Math Soc 1978; 235: 35-74.
[12] Garidi W. On approximation by polynomials in Orlicz spaces. Approx Theor Appl 1991; 7: 97-110.
[13] Giannetti F, Passarelli di Napoli A. Regularity results for a new class of functionals with nonstandard growth conditions. J Differ Equations 2013; 254: 1280-1305.
[14] Guven A, Israfilov DM, Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$. J Math Inequal 2010; 4: 285-299.
[15] Gwiazda AS. Nonlinear parabolic problems in Musielak-Orlicz spaces. Nonlinear Anal 2014; 98: 48-65.
[16] Harjulehto P, Hästö P, Latvala V, Toivanen O. Critical variable exponent functionals in image restoration. Appl Math Lett 2013; 26: 56-60.
[17] Hudzik H. On generalized Orlicz-Sobolev space. Funct Approximateo Comment Math 1976; 4: 37-51.
[18] Israfilov DM, Guven A. Approximation by trigonometric polynomials in weighted Orlicz spaces. Stud Math 2006; 174: 147-168.
[19] Israfilov DM, Kokilashvili V, Samko S. Approximation in weighted Lebesgue and Smirnov spaces with variable exponents. Proc A Razmadze Math Inst 2007; 143: 25-35.
[20] Jafarov SZ. Approximation by polynomials and rational functions in Orlicz spaces. J Comput Anal Appl 2011; 5: 953962.
[21] Jafarov SZ, Mamedkhanov JI. On approximation by trigonometric polynomials in Orlicz spaces. Georgian Math J 2012; 4: 687695.
[22] Kaminska A. On the translation in the Orlicz-Musielak sequence spaces. Comment Math Prace Mat 1984; 24: 77-84.
[23] Kaminska AW. Existence result for the motion of several rigid bodies in an incompressible non-Newtonian fluid with growth conditions in Orlicz spaces. Nonlinearity 2014; 27: 685-716.
[24] Kokilashvili VM. An inverse theorem of the constructive theory of functions in Orlicz spaces. Soob Akad Nauk Gruzin SSR 1965; 37: 263-270 (in Russian).
[25] Kokilashvili VM. On approximations of periodic functions in Orlicz spaces. Bull Acad Polon Sci Sér Sci Math Astronom Phys 1966; 14: 77-80.
[26] Musielak J. Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics. Berlin, Germany: Springer, 1983.
[27] Musielak J. Approximation in modular function spaces. Dedicated to Roman Taberski on the occasion of his 70th birthday. Funct Approximateo Comment Mat 1997; 25: 45-57.
[28] Ok J. Gradient estimates for elliptic equations with $L^{p(\cdot)} \log L$ growth. Calc Var Partial Dif 2016; 55: 1-30.
[29] Ramazanov AR. On approximation by polynomials and rational functions in Orlicz spaces. Anal Math 1984; 10: 117-132.
[30] Samko S. Denseness of $C_{0}^{\infty}\left(R^{N}\right)$ in the generalized Sobolev spaces $W^{M, P(X)}\left(R^{N}\right)$. In: Gilbert RP, editor. Direct and Inverse Problems of Mathematical Physics. Dordrecht, the Netherlands: Springer, 2000, pp. 333-342.
[31] Sharapudinov II. Some problems in approximation theory in the spaces $L^{p(x)}(E)$. Anal Math 2007; 33: 135-153 (in Russian).
[32] Sharapudinov II. Approximation of smooth functions in $L_{2 \pi}^{p(x)}$ by Vallee-Poussin means. Izv Saratov Univ Mat Mekh Inform 2013; 13: 45-49.
[33] Sharapudinov II. Approximation of functions in $L_{2 \pi}^{p(x)}$ by trigonometric polynomials. Izv Ross Akad Nauk Ser Mat 2013; 77: 197-224 (in Russian).
[34] Taberski R. Differences, moduli and derivatives of fractional orders. Comment Math Prace Mat 1977; 19: 389-400.
[35] Tsyganok II. A generalization of a theorem of Jackson. Mat Sb 1966; 71: 257-260 (in Russian).

AKGÜN and YILDIRIR/Turk J Math
[36] Yildirir YE. Approximation of periodic functions in weighted Orlicz spaces. Glas Mat 2012; 47: 401-413.
[37] Yildirir YE, Israfilov DM. The properties of convolution type transforms in weighted Orlicz spaces. Glas Mat 2010; 45: 461-474.
[38] Zygmund A. Trigonometric Series. Cambridge, UK: Cambridge University Press, 1968.

[^0]: *Correspondence: yildirir@balikesir.edu.tr
 2010 AMS Mathematics Subject Classification: 41A25, 41A27, 42A10

