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Abstract: In the present work we prove some direct and inverse theorems for approximation by trigonometric poly-

nomials in Musielak—Orlicz spaces. Furthermore, we get a constructive characterization of the Lipschitz classes in these
spaces.
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1. Introduction
Musielak—Orlicz spaces are similar to Orlicz spaces but are defined by a more general function with two variables

@ (x,t). In these spaces, the norm is given by virtue of the integral

/w(x,|f(x>|>dx,
T

where T := [—m,7]. We know that in an Orlicz space, ¢ would be independent of z,¢ (| f(x)|). The special

cases ¢ (t) = t? and ¢ (z,t) = t?(®) give the Lebesgue spaces LP and the variable exponent Lebesgue spaces
LP@) | respectively. In addition to being a natural generalization that covers results from both variable exponent
and Orlicz spaces, the study of Musielak—Orlicz spaces can be motivated by applications to differential equations
[13, 28], fluid dynamics [15, 23], and image processing [5, 10, 16]. Detailed information on Musielak—Orlicz spaces
can be found in the book by Musielak [26].

Polynomial approximation problems in Musielak—Orlicz spaces have a long history. Orlicz spaces, which
satisfy the translation invariance property, are a particular case of Musielak—Orlicz spaces. In these spaces,
polynomial approximation problems were investigated by several mathematicians in [3, 11, 12, 20-25, 29, 35].
In some weighted Banach function spaces, similar problems were studied in [6, 7, 9, 17, 18, 30, 34, 36, 37]. In
general, Musielak—Orlicz spaces may not attain the translation invariance property, as can be seen in the case
of variable exponent Lebesgue spaces LP(*). Several inequalities of trigonometric polynomial approximation
in LP(*) were obtained in [2, 4, 14, 19, 31, 33]. Note that, under the translation invariance hypothesis on
Musielak—Orlicz space, Musielak obtained some trigonometric approximation inequalities in [27]. The main aim

of this work is to obtain solutions to some central problems of trigonometric approximation in Musielak—Orlicz
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spaces that may not have the translation invariance property. In this work, we prove some direct and inverse

theorems of approximation theory in Musielak—Orlicz spaces.

The rest of the work is organized as follows. In Section 2, we give the definition and some properties
of Musielak—Orlicz spaces. In Section 3, we prove the boundedness of the Steklov operator in Musielak—Orlicz
spaces and define the modulus of smoothness by means of this operator. Section 4 formulates our main results.
In Section 5, we investigate the boundedness of De la Vallée Poussin and Cesaro means of the Fourier series of
the functions in Musielak—Orlicz spaces. Furthermore, we prove the Bernstein inequality and the equivalence
of the modulus of smoothness to the K -functional in these spaces. Section 6 contains the proofs of our main
results.

We will use the following notations: A(z) < B(z) < Jc¢ > 0: A(z) < ¢B(z) and A(z) = B(z) & A(z) <
B(z) N B(z) =% A(z).

2. Preliminaries
A function ¢ : [0,00) — [0,00] is called ®-function (briefly ¢ € ®) if ¢ is convex and left-continuous and

v (0):= lim ¢ (t) =0, 1i_>m v (x) = oc.

t—0+

A ®-function ¢ is said to be an N -function if it is continuous and positive and satisfies

lim 2 ®) =
t—0+ 1 t—oo ¢t

Let @ (T') be the collection of functions ¢ : T' X [0, 00) — [0, 0] such that:

(i) ¢ (x, ) € ® for every x € T;

(i) ¢ (x,u) is in LO(T), the set of measurable functions, for every u > 0.

A function ¢ (,u) € ® (T) is said to satisfy the Ay condition (¢ € Agy) with respect to parameter u if
¢ (x,2u) < Ko (x,u) holds for all x € T, uw > 0, with some constant K > 2.

Subclass ® (N) C @ (T') consists of functions ¢ € ®(T) such that, for every z € T, ¢ (x,-) is an
N -function and ¢ € A,.

Two functions ¢ and ¢; are said to be equivalent (we shall write ¢ ~ 1) if there is ¢ > 0 such that

1 (z,uf/c) < ¢ (,u) < @1 (x, cu)

for all x and u.
For ¢ € ® (N) we set

00 () = /T o (@, |f (@)]) da.

Musielak—Orlicz space L¥ (or generalized Orlicz space) is the class of Lebesgue measurable functions f: T — R

satisfying the condition

lim 0, (Af) = 0.
The equivalent condition for f € L% (T) to belong to L¥ is that g, (Af) < oo for some A > 0. L? becomes a
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normed space with the Orlicz norm

191y i=sup? [ 1f (@) g ()l do s 0u (o) < 1

T

||f¢:inf{/\>0:@p (ﬁ) Sl},

P (t,v) :=sup(uww—p(tu), v>0, teT

u>0

and with the Luxemburg norm

where

is the complementary function (with respect to variable v) of ¢ in the sense of Young. These two norms are

equivalent:

11, < Dfly < 2051, -
Young’s inequality,

us < o (a,u) + ¥ (2,5), (1)
holds for complementary functions ¢, € ® (N) where u,s >0 and z € T.

From Young’s inequality (1) we have

17y < 20 (F) 41,
191, < 00 (1) i IFl, > 15 and £, = 0, (1) i 7], < 1.
Holder’s inequality
[1r@g@ldz <1171, £l @)
T

holds for complementary functions ¢,1¢ € ® (N). The Jensen integral inequality can be formulated as follows.

If ¢ is an N-function and r (z) is a nonnegative measurable function, then

o (M | t@r@ dx) < W et @nr@a. 3)

Everywhere in this work we will assume that there exists a constant A > 0 such that for all x,y € T with

|z —y| <1/2 we have

A

o (@) oal(rty)

;o ou>1 4)
¢ (y,u) (
there exist some constants c¢;, ¢o > 0 such that

i 1) >

Info(z,1) 2 a (5)
and

/ v (z,1)dr < oo, P (z,1) < e a.e. on 1. (6)
T
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Example 1 Let p : T — [1,00) be in L°(T) such that for all x,y € T with |z —y| < 1/2 we have the

Dini-Lipschitz property,
c
p(@) —p W)l < —F——
e )

[z—y|

with a constant ¢ > 0. Then the following functions belong to ® (T') and satisfy conditions (4), (5), and (6):
(i) ¢ (2,u) = w"™), sup,erp () < oo,
(i1)  (@,1) = w@ log (1 + u),
(iii) ¢ (z,u) = u (log (1 + u))"™ .

A function ¢ € ® (N) is in the class @ (N, DL) if conditions (4), (5), and (6) are fulfilled.

3. Modulus of smoothness
For f € L¥ we define the Steklov operator Aj, by

h/2

(Ahf)(x)::%/f(a:—t)dt, O<h<m zel.
“hy2

The characteristic function kg (1) of a finite interval [a, ] is the function on R defined through

1, u € [a,b],

Flao) (4) = { 0, u¢lab.

The operator A; can be written as a convolution integral [9, p. 33]:
1
(48 (@) = 5= [ Fe (e~ )it
T Jr

where

The kernel R}, satisfies the following conditions [9, p. 33]:

==

/?Rh (w)ydu =<1, Ry (u)] <1, h<u<mw, and max|Ry (u)| <
T u

Lemma 2 If f € L% with ¢ € ®(N,DL), then there exists a constant, independent of n and f, such that
the inequality

IAnfll, ISl
holds for 0 < h < .

Note that [8, p. 156, Lemma 6.1] is like Lemma 2. A necessary and sufficient condition for the translation

operator in Musielak—Orlicz spaces to be continuous is well known. It was established first in [22].
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Proof of Lemma 2 Let N = [J|, x € T, a := (kh — 1) 7, Ug := [2p, Tp11),

FE,:

2N—-1

T\
T\
T\

(x — wh,x + wh)

(—m,x +mwh) U

, when (z — wh,z +7h) C T,

(x —mwh+2m,m)} , when z — wh < —,

{
{(z = wh,7)U (=7, z + 7h —2m)} , when z + 7h > 7.

Then T'= |J Uy, where the length of Uy, is | (Ug) =
k=0

It is necessary to show that

00 ) = [ (2

7/TF(t) Rn(t — x)dtD dr <c

with a constant ¢ > 0 independent of f and h. From the convexity of ¢ we get

. (i/TF(t) é}eh(t—x)dt>
z+7h
0, ([h ) %h(tx)dt) +o, (E[F(t) mh(tx)dt)

2[14—12.

Qp (Ahf)

IA

When x € T and t € E,, then

and using (2), (5), and (6) we get

and therefore

Now

2170

/F (8) R (t — ) dt

x

IA

—

IN

Iy

N—

k=

[Rn(t —2)| S 1,

IA

A

PN

-

A
N—

p(z,c+1)dx <

[1rwla

I Iy =, 2 e+ 1

/ ( / sceh(t—x)dt)dx

/go(:v,l)dxj 1.
T

x+wh
@(xa/ ||%h(t—aﬁ)|dt>

1

0

/ (m L /

z+mh

—7h

|[E(®)| |RR(t — 2)] dt) dx

|Tkt1 — k| = 7/N. Let F(t) = f(t)/2 and ||F]|, <
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We set

or (u) :==inf {p (z,u) 1z € Ek} <inf{y(z,u): z € Uy}
for some larger set ZF O Uy, which will be chosen later with the property
L(E") < jmh (8)

for some 7 > 1. On the other hand,

N-1 Tt x+7mh
ey [ aene <1+ / |F<t>|%h<t—x>|dt> dz,
k=0 YTk r

—nh

where

oy o L LESIFOURE =) a0 (a)
T Pk (1+ffj::|F(t)\I%h(t—w)ldt) T en(a(z,h)

Now we prove the uniform estimate Ay (z,h) < 1 for # € Uy where ¢ > 0 is independent of z,k, and h.

Indeed, since

we get

Also, |z — | <1 (Ek) < jmh and

i< ([ o) < i<
=5, =5 e =3

w—mh

A

a(x,h)m < a(x,h)log(q%) < (Cl> s (g5 )

Let pp = ij:: |Rp,(t — )| dt = ff:h |Rp(t)|dt. Then pj, < 1. Without loss of generality we may assume that

T
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wr > 0. Using Jensen’s integral inequality, we have

Th41 1 z+7mh
/ Yk —/ |E@&)]|Re(t — 2)|dt | de
Tr bh Jz—mh

Thy1 1 x+mh
/ L o (IF@)]) 1R (¢ — )| dida
Tp Hh Jz—mh

=

-1

I

A
]

=2

A
]

N-1 1 h Th41
= S [l [ e o) dod
k=0 Hh J—zh Tr
1 wh N-1 Ik+1—t
< L oy / ok (|F(z)]) drdt.
br J—zh k=0 YTkt

We take as ZF the set (11). Clearly Z% O U, and [ (EF) < 37h. Then (8) is satisfied with j = 3. Since each
point = € T belongs simultaneously to not more than a finite number ng of the sets Uy, taking the maximum

with respect to all the sets Uy containing x we obtain

1 mh T R
L= =7 o) / & (@, |F(2)]) dx
Kh J—zh —T

< / " (@, |F (@) da

with @ (2, u) := max; p; (t). Now using

@ (z,u) < ¢(z,u), Vrel,

we have
0o (f) 5 [ pla F@)Dds <P, =1
This gives
[Arfll, 2Nl
and the result follows. O

We define the kth (k € N) order modulus of smoothness Q’; (,f) by

QF (6, f) == sup |(I—Ap)...(] = An) fll,, ¢>0,
0<h; <o

where I is the identity operator.

4. Main results

By E,.(f), we denote the best approximation of L¥ by polynomials in 7, i.e.
En(f)tp = T,{Ielf’;’” Hf - TnHQ@ )
where 7T, is the set of trigonometric polynomials of degree < n.
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Let W,, r € N, ¢ € ®(N,DL), be the class of functions f € L¥ such that fr=1 s absolutely

continuous and f(" € L¥. W7, ¢ € ®(N,DL), r € N, becomes a Banach space with the norm || fl|y,. =
[}

1l + 17O,

Our main results are the following.

Theorem 3 For every f € W, ¢ € ®(N,DL), n € N, the inequality

1
il (r)
En(f), = ~=Ex (f )w, reN
holds with some constant depending only on ¢ and r.

Theorem 4 Let f € LY, ¢ € ®(N,DL), n € N. Then we have the following estimate:

(1
En(f)sa = Q(p (n’f> , reN
with some constant depending only on ¢ and r.

Theorem 5 Let ¢ € ®(N,DL). Then for f € LY and n € N

ACHIEE {Eo(f)w+zm2r_lEm(f)w}» rem,

n n2r
m=1

holds with some constant depending only on ¢ and r.

Similar theorems were obtained in Orlicz spaces [3, 12, 18, 24, 25] and in variable exponent Lebesgue
spaces [1, 4, 14, 31, 33].
From Theorems 4 and 5, we get the following Marchaud-type inequality:

Corollary 6 Let f € L¥, p € ®(N,DL), n € N. Then we have

1Qr+1
oy 6.0 <o [ 2l (f)du 5o,
5 u=" u

for r e N.
Theorems 4 and 5 imply also the following estimate:
Corollary 7 Let f € L¥, p € ®(N,DL), and n € N. If
E,(f)ps 2n™% neN

for some a > 0, then, for a given r € N, we have the estimations

0 , > af2;
Q; 6, f) = 52" log% , =2
§2r , < o2
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Hence, if we define the Lipschitz class Lip (o, L¥?) for o > 0 and 7 := |/2]+1, |z] :=max{n € Z:n <z}
as

Lip (o, L?) := {f € LY : Q] (6, f) S 6%, 6> 0},
then, from Theorem 4 and Corollary 7, we get the following constructive characterization of the class Lip (o, L¥) .
Corollary 8 Let f € LY, p € ®(N,DL), n € N, and a > 0. The following assertions are equivalent:
(1) f€Lip(a,L¥), (it) Ep(flre Zn™%, neN

5. Auxiliary estimates

Let

8

fla)-t

f)coskx + by, (f)sinkz) Z Ag (z, f) (9)
k=1

be the Fourier series of f € W and
S (f) = Sn(x, f) = Ap(z,f), n=01,2,....
k=0

be the partial sum of the Fourier series (9). In this case, for f € Wé, we have

/f -(t — x)dt,

i oS ku+7r/2)

k=1

fz) =

where

is the Bernoulli kernel. Since (S, (-, f)) = Su(-, ') we have

@)= Suler ) = = [ FOR(e =),

where

R (1) = Z cos(k‘u—l—ﬂ/Z).

k
k=n+1

We define the De la Vallée Poussin mean of series (9) as

1
=0
for n,m € NU{0}. Then we get
f(z) =V (f.x) /f m+1ZRn+zt_x

2174
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Setting
n 1 S
ki (u) = p—— ; Ryyi(t — ),
we find

F@) = Vitho) = = | POk (- 2)ar

Let n € N. From [32, Lemmas 3, 4, 5] we have, for m=n—1 or m =n,
[ e <1,
T

—1

|k (w)] 1 for (Vn) Sugzw_(\/@—l’

and
max K, (u)] S .

Lemma 9 If f € L¥ with ¢ € ® (N, DL), then there exist some constants, independent of n and f, such that

the inequalities

L
I,

PN

176) = Vs (o,

17O -V, = 70,

hold for any T, € Ty.

Proof of Lemma 9 Let the set E, be defined as in (7) with h = 1/|n'/2|. Assume that F (t) = f'(t)/(m+1)
and ||F]|, < 1. We need to show that

%/TF(t) Zzﬂ(t—m)dtD dr <1

o= Va(EN = [ ¢ (o
T
with ¢ > 0 independent of f and n. Then convexity of ¢ implies

po(F V(1) = 0o (3 [ FORL( )it

™
x+mh
< 2o |§ [ [ FORGE- o
rz—mh E.
z+mh
< p F@ORlt=a)dt | +p, ([ F© k(- o
rz—7h E.
= 11+ Is.
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If xeT and t € E,, then
‘kﬁﬂrl(t_x” j 1)

and using Holder’s inequality (2), (5), and (6), we obtain

/F(t) ki (8 = x)dt] < /IF(t)Idt = AE N I, =1Ll =1
T

@

and hence
L o< (S/ )Rt | = [ |a| [Pk o) | o
< /(p(ac,c—i—l)dxj/(p(x,l)dle.
T T
Now
x+mh
L=< /¢<x,/ |F(t)|k:;+1(t—x)|dt> da
T x—mh
2N—-1 Tht1 x+mh
< Z/ o x,1—|—/ F(8)] K0y (¢ — )| di | da.
k=0 YTk rz—mh
We set

ok (u) == inf{ (z,u) : x € Ek} <inf{p(x,u):x € Uy}
for some larger set ZF > Uy, which will be chosen later with the property
L(ED) <gm/1n'?]
for some 7 > 1. On the other hand,
2N -1

Tht1 x+7mh
k=0 7%k e=mh

—T

where
o (2 14+ [TV IEO K= D)]d) o aa,m,n))

Ag (x,m,n) =

z—mh

(10)

We prove the uniform estimate Ay (z,m,n) < 1 for x € Uy where ¢ > 0 is independent of z,k and m,n.

Indeed, since
A

o (z,1) _ o (z,1) < tlog(m>7 w € Uy, cp € Ek,
or(t) ok (sk,t)
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we have
A

o (x,a(x,m,n))

O‘Z‘mn@
i (o (x,m,n)) <a(z,mn) [ .

Ak (x,m,n) =

Also, |z — | <1(EF) < jn/[n'/?] and

x+mh
o (2, m, )| < (/ |F<t>|dt> <n||F|, <n

—mh

A A A
1 i/? PYE

a(x’m’n) Og<m) S a(z7m,n)lug( 6 ) S (C’n)log( 6j ) j <n1/10g(6lj"))A < 1.

1+ﬂh
xﬂ'h

Let pmn = |kr i (t — )| dt = ‘kmﬂ t)|dt. Then fim, = 1. Without loss of generality we may
assume that i, , > 0.

By Jensen’s integral inequality (3),

AN=1 Ly, ) x+7rh
k=0 YTk Hmn Jz—zh
2N g 1 z+mh
s Y [ e lP@) k(e — o) deds
k=0 Tk Nm,n x—1h
2N—1 .
DY / L )|/ on (|F(z +t)]) dedt
k=0 Hm,n J—zh o
IN—1 g .
1 kr1—
S / kg (t Z / (2)]) dadt.

We take as =F the set
U f{z:z+teti}. (11)
te(—mh,wh)

Clearly =% O Uy, and [ (E¥) < 37/|n!/2]. Then (10) is satisfied with j = 3. Since each point = € T belongs

simultaneously to not more than a finite number ng of the sets Uy, taking the maximum with respect to all

the sets Uy containing = we obtain

L=< / K@l [ r@har = [ plFa)ds

Mm,n —7h —T -

with ¢ (z,u) := max; p; (t). Now using
¢(z,u) <p(z,u), Veel,

we get

s

o (f = V(L) j/ o (@, |F(@)]) do < |[F]l, < 1

—Tr
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These give the estimates

n 1 !
Hf()_vn—l(fa)Hsa = EHf Hw?
1
PO =V, = 1,
and the result follows. O

It is known that for the partial sums of the Fourier series (9) the integral representation

Sp(z, f) = %/f(t)Dn (z —t) dt

is valid, where D, (t) :== 3 + Y. _; cosmt is the Dirichlet kernel.
Consider the sequence {oy, (, f)} of the Cesaro means of the partial sums of the Fourier series (9), that
is,
So(z, f) +Si(x, f)+-- -+ Sn(x, f)
n+1

on (x, f) == , n={0}UN,

with og (z, f) = So(x, f) := ap/2. It is known that

oo f) =+ [FO Ko (o= 00,

T

where

Kn(t)::%—i-z

m=1

m
(1— >cosmt
n+1

is the Fejer kernel of order n. The Fejer kernel satisfies the following conditions [38]:
1
/ K, (u)du=<1, |K,(u)|=<1, —73 Su<m and max | K, (u)| < n. (12)
T n u

Taking into account these conditions (12), the following lemma is proved similarly to the previous lemma.

Lemma 10 If f € L? with p € ® (N, DL), then there exists a constant, independent of n and f, such that
the inequality
llon (2, H)ll, = 11f1l,

holds.

Bernstein’s inequality in the space L% is proved in the following lemma.
Lemma 11 If f € L% with ¢ € ®(N,DL), then for every T,, € T,, the inequality
IT5]l, 20" ITll,, k€N (13)

holds with a constant independent of n.
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Proof of Lemma 11 It is sufficient to prove the lemma for £ = 1. Since

To(z) = Sp(z,Ty,) = %/Tn (u) Dy, (v — z) du,
T

by differentiation we obtain

T!(z) = —%/Tn (w) D} (u—z)du = %/Tn (u+x) stinmudu.

T T m=1

Taking into account
n—1

/Tn (u+x) stin(Qn—m)udu: 0,
T

m=1

we get

T!(z) = l/Tn (u+ )

T

n n—1
stinmu+ stin(?n —m) u] du

m=1 m=1

n—1
1 _
5 + mg,ln nm cosmu} du

3

3=

/Tn (u+ x) 2nsinnu
T

[\

= —n/Tn (u+ ) sinnuk,,_1 (u) du.
T
T

Since K,_1 is nonnegative we have

T, ()]

IN

2?”/ |T (u+ )| Kp—1 (u) du
T

= 2non-1(z,|Th]).-

The last inequality and the boundedness of the operator o, in L¥ yield the required inequality.

Lemma 12 If f € W2 with ¢ € ®(N,DL), then
k 20yk—1
Q5 (0, f) 20°Q7 (6, "), keN

with some constant independent of 9.

Proof of Lemma 12 Setting
g (@)= = Ap,) ... (I = An,) f(2)

we get

(I = An) g(2) = (I = Apy) oo (I = Apy) f(2).
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Therefore,
hl u
1
(I—Ahl)-n(I—Ahk)f(l‘):m/ [9(z) — g(z+t)]dt = Shl/// (x + s)dsdudt.
—h
Hence,
hi t u
I —Ap,)...(I—An,) fll, = —sup/ /// x + s)dsdudt| |v(z)| dx
@ 8hi
0 —u
= 8h1// / (x + s)ds|| dudt
©
hi t

PN

1 " 1.2 "
g [ [2ul9"1, dude =13 1971,
00

where the supremum is taken over all v € L¥(T') with gy (v) < 1. Since

= —Ap,)...(I —Ap,) f",
we have

QF(6,f) < sup chi lg"|l, = 0 sup (I = Ap,) ... (I = Apy) £, = B2 QL (6, ).

0<h; <6 0<h; <o
O
Corollary 13 If f € Wf,k with ¢ € ® (N,DL), then
k 2k || £(2k _
O (5, ) <6 Hf( >H¢, k=12, .. (14)

with some constant independent of 6.

For an f € LY and r € N, Peetre’s K -functional is defined as

K (£ 20 w3) o= ing {If =l +

(r)<x)Hv}

for § > 0.
Theorem 14 If f € L? with ¢ € ®(N,DL), then we have
L0, f) = K (f,0;L,, W), reN

where the implied constants are independent of d > 0.
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Proof of Theorem 14 Let h € W2". From subadditivity of Q7 (-, f) and (14) we have

QL (0, F) = = hll, + 8

B2
]

Taking the infimum on h we get Qf, (4, f) = K (f,6; Ly, er).

We define an operator Ls on L¥ as

u

5 t
(Lsf) (x) :==36" 3///]" + s)dsdtdu, xz€T.
0 0 ¢

From [1, p. 15],

d2r
dx27'

( f) (527 (I A(s) ) reN.

Because of estimates

6 u
ILafll, =35 [ [ 2t Aif), deau = |51,
0 0

the operator L;s is bounded in L¥.

Defining another operator L£§ as

si=1—(I—L§)",

we obtain

1

d2r
H = 5o 1= 45)" fll, = 5%97“ 6, f).

d 2r (5f

d2r
Hd 2r (5f

@

Since Ls is bounded in L¥ and I — L§ = (I — Ls) Z;;é Lf; we have

(I = L3) gll, = II(T = Ls) gll, = 5’3//2t||(1 — Ay) gll, didu < S 11 = Aqs) gl

for any g € L¥.
Applying this inequality r times in ||f — L5 f[|, = [[(I — Lj)" f||, we obtain

If=cifl, = sup |[(1=An) (=15 |
0<t1<0 ®

< sup H(I —Ay) (I = Ay,) (I~ Lg)FQfH

0<ty,t2<d ©
= o= sup [(T-Ay) (I =A) fll, =9, @, f).
0<t1,§5
This gives the reverse estimate and completes the proof. O
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6. Proofs of main results

Proof of Theorem 3 It is enough to prove E, (f), =< i1E, (f"), - For this we need

with j € N. If j = 2n, then
B} (g = Ban (£ < 15O = V2 (5, < - 15, = % 171,
If j = 2n — 1, then
B (1) = Bana (D < 1O = Vi (5, = = 11, < % 171,

We obtained (15). Now suppose that E, (f'), = [[f" — ©.(f')||, and

Then F € T, and F' (z) = ©,(f") (z). Thus,

- 1 A
En(f)y = Ealf=F)y =2 |I(F=F)[l, =~ Ilf = Fll,
= I - 0u)l, % B ()
- n n w — n n o] M
O
Corollary 15 For every f € W, ¢ € ®(N,DL), n € N, the inequality
E. (f), = Lo reN (16)
n P — nT Lp’ )
holds with some constant depending only on ¢ and r.
Proof of Theorem 4 Let h € WZ2". From (16) and Theorem 14
En(f)cp = En(f —h+ h)go < En(f - h)tp + En(h)tp
S Uf = bl + 0 b sor (=g
~ @ n v ~ %] n7 *
O

Proof of Theorem 5 Let f € L¥, § := 1/n and let T}, € T,, be the best approximating polynomial to f. We

have
Q’;((saf)SQZ((S’ffTQJ'*l)+Q’;(57T2j+1)a jGN
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OF (8, f = Tysrn) 2| f = Tassr ||, = B (f)e-

Using (13) and (14) and considering that the sequence of the best approximations is decreasing, we obtain

Q]; ((5, T2j+1) < 52]@ HT;EE% .
J
< o - ey - )
v = ¢
=0
j .
< & {||T1 = Toll, + Z22(Z+1)2k [ Toi+r — T w}
i=0
j .
< % {Eo(f)@ + 2% By (f)y + Z22<l+1>2kE2i(f)w}
i=1
27
= 52 EO(f)so + Zm%ilEm(f)tp
m=1
Selecting j such that 27 < n < 2/t we have
ot 2k—1
Egi1(f)y < ok Z M= B (f) -
m=27-141
O
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