Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 2863 - 2875
© TÜBİTAK
doi:10.3906/mat-1601-38

Free modules and crossed modules of R-algebroids

Osman AVCIOĞLU ${ }^{1, *}$ (1) , İbrahim İlker AKÇA ${ }^{2}$ (D)
${ }^{1}$ Department of Mathematics, Faculty of Arts and Science, Uşak University, Uşak, Turkey
${ }^{2}$ Department of Mathematics and Computer Sciences, Faculty of Science and Letters, Eskişehir Osmangazi University, Eskişehir, Turkey

Received: 11.01.2016 • Accepted/Published Online: 11.04.2016 \quad Final Version: 27.11 .2018

Abstract: In this paper, first, we construct the free modules and precrossed modules of R-algebroids. Then we introduce the Peiffer ideal of a precrossed module and use it to construct the free crossed module.

Key words: R-category, R-algebroid, crossed modules, free modules

1. Introduction

Crossed modules, algebraic models of two types, were first invented by Whitehead [23, 24] in his study on homotopy groups and have been studied by many mathematicians. Various studies on crossed modules over groups and groupoids can be found in papers and books such as [7, 8, 21] and those over algebras in $[4,5,19,20,22]$ and in $[11,13,14]$ in different names. Kassell and Loday [12] studied crossed modules of Lie algebras and higher dimensional analogues were proposed by Ellis [10] for use in homotopical and homological algebras. Mosa [18] studied crossed modules of R-algebroids and double algebroids. Pullback and pushout crossed modules of algebroids can be found in [1] and [2], respectively. Provided that P is a group and K is a set, the construction of the free P-group on K and the constructions of the free precrossed and crossed modules on a function $\omega: \mathrm{K} \longrightarrow \mathrm{P}$ were handled in [7]. Shammu constructed the free crossed module on a function $f: \mathrm{K} \longrightarrow \mathrm{A}$ where, with our notations, K is a set and A is an R-algebra for a commutative ring R in [22].

The basic goal of this paper is to construct the free R-algebroid crossed module. For this goal, after giving some basic data in the second section, we define the category $\operatorname{Sets}_{0} / \operatorname{Alg}(R)$ whose objects are all functions $\omega: \mathrm{K} \longrightarrow \mathrm{A}_{0} \times \mathrm{A}_{0}$, where K is a set and A is an R-algebroid, and its subcategory $\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})$ formed by a fixed R-algebroid A in the third section. Then we construct the free R-agebroid A-module determined by an object $\omega: \mathrm{K} \longrightarrow \mathrm{A}_{0} \times \mathrm{A}_{0}$ of $\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})$ in the same section. In the fourth section we define the category $\operatorname{Sets} / \mathrm{Alg}(R)$, whose objects are formed by all functions of the form $\omega: \mathrm{K} \longrightarrow \mathrm{A}$ where K is a set and A is an R-algebroid and its subcategory $\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$, for a fixed R-algebroid A. Then, in the same section, we construct the free R-algebroid precrossed A-module determined by an object of $\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$.

In Section 5, we introduce the Peiffer ideal for an R-algebroid precrossed module to construct a crossed module and this procedure gives us the functor $(-)^{\text {cr }}$ from the category of precrossed to the category of crossed modules of R-algebroids.

[^0]In the last section, we construct the free R-algebroid crossed A -module determined by an object $\omega: \mathrm{K} \longrightarrow \mathrm{A}$ of $\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$, from the corresponding precrossed module, using the functor $(-)^{\mathrm{cr}}$.

2. Preliminaries

R-algebroids were especially studied by Mitchell [15-17] and by Amgott [3]. Mitchell gave a categorical definition of R-algebroids and obtained some interesting results. Mosa defined crossed modules of R-algebroids and proved the equivalence of crossed modules of algebroids and special double algebroids with connections in [18]. Alp constructed the pullback and pushout crossed modules of algebroids in [1] and [2], respectively. In this section, we give some basic definitions concerning crossed modules of R-algebroids.

Definition 1 [15-17]. Let R be a commutative ring. A category of which each homset has an R-module structure and of which composition is R-bilinear is called an ' R-category'. A small R-category is called an ' R-algebroid'. Moreover, if we omit the axiom of the existence of identities from an R-algebroid structure then the remaining structure is called a 'pre- R-algebroid'.

A pre- R-algebroid A comes with an object set $O b(\mathrm{~A})=\mathrm{A}_{0}$, a morphism set $\operatorname{Mor}(\mathrm{A})$, and two functions $s, t: \operatorname{Mor}(\mathrm{A}) \longrightarrow O b(\mathrm{~A})$, the source and target functions respectively, such that if $s a=x$ and $t a=y$ then we say that ' a is from x to y ' and write $a \in \mathrm{~A}(x, y)$ where $\mathrm{A}(x, y)$ is a homset, the set of all morphisms of A from x to y. From the definition, A (x, y) is an R-module for all $x, y \in \mathrm{~A}_{0}$. Moreover, we say that A is over A_{0}.
Definition 2 [15-17]. An R-linear functor between two R-categories is called an ' R-functor' and an R functor between two R-algebroids is called an ' R-algebroid morphism'. Moreover, an assignment between two pre- R-algebroids satisfying all axioms of an R-functor except for the identity preservation axiom is called a 'pre- R-algebroid morphism.

All R-algebroids and their morphisms form the category $\mathrm{Alg}(R)$.
Remark 3 Throughout this paper, for a (pre-) R-algebroid $\mathrm{A}, a \in \mathrm{~A}$ will mean that a is a morphism of A . Moreover, if $a, a^{\prime} \in \mathrm{A}$ with $t a=s a^{\prime}$ then their composition will be denoted by $a a^{\prime}$.
Definition 4 [18]. Let A be a pre- R-algebroid and

$$
\mathrm{I}=\left\{\mathrm{I}(x, y) \subseteq \mathrm{A}(x, y): x, y \in \mathrm{~A}_{0}\right\}
$$

be a family of R-submodules of A. For all $w, x, y, z \in \mathrm{~A}_{0}, a^{\prime} \in \mathrm{A}(w, x), a^{\prime \prime} \in \mathrm{A}(y, z)$ and $a \in \mathrm{I}(x, y)$ if $a^{\prime} a \in \mathrm{I}(w, y)$, and $a a^{\prime \prime} \in \mathrm{I}(x, z)$ then I is said to be a 'two-sided ideal' of A .

Definition 5 [18]. Let A be an R-algebroid and M be a pre- R-algebroid with the same object set A_{0}. A family of maps defined for all $x, y, z \in \mathrm{~A}_{0}$ as

$$
\begin{array}{clc}
\mathrm{M}(x, y) \times \mathrm{A}(y, z) & \longrightarrow & \mathrm{M}(x, z) \\
(m, a) & \longmapsto & m^{a}
\end{array}
$$

is called a 'right action' of A on M , if the conditions

$$
\begin{array}{ll}
\text { 1. } \quad\left(m^{a}\right)^{a^{\prime}}=m^{a a^{\prime}} & \text { 4. }\left(m_{1}+m_{2}\right)^{a}=m_{1}^{a}+m_{2}^{a} \\
\text { 2. } & m^{a_{1}+a_{2}}=m^{a_{1}}+m^{a_{2}} \\
\text { 3. } \quad(r \cdot m)^{a}=r \cdot m^{a}=m^{r \cdot a} \\
\text { 3. }\left(m^{\prime} m\right)^{a}=m^{\prime} m^{a} & \text { 6. } m^{t_{t m}}=m
\end{array}
$$

are satisfied for all $r \in R, a, a^{\prime}, a_{1}, a_{2} \in \mathrm{~A}, m, m^{\prime}, m_{1}, m_{2} \in \mathrm{M}$ with compatible sources and targets.

A 'left action' of A on M can be defined in a similar way.
If A has a right and a left action on M and if the condition

$$
\left({ }^{a} m\right)^{a^{\prime}}={ }^{a}\left(m^{a^{\prime}}\right)
$$

is satisfied for all $m \in \mathrm{M}$ and $a, a^{\prime} \in \mathrm{A}$ with $t a=s m, t m=s a^{\prime}$ then A is said to have an 'associative action' on M.

Definition 6 Let A be an R-algebroid and M be a pre- R-algebroid with the same object set A_{0}. If A has an associative action on M then M is called an ' A -module'. If M is an A -module we usually write (M, A) and call it an ' R-algebroid module' or an ' R-algebroid A-module'. Moreover, for any two R-algebroid modules (M, A) and (N, B) a pair $(f, g):(\mathrm{M}, \mathrm{A}) \longrightarrow(\mathrm{N}, \mathrm{B})$ is called an R-algebroid module morphism if $f: \mathrm{M} \longrightarrow \mathrm{N}$ is a pre- R-algebroid morphism, $g: \mathrm{A} \longrightarrow \mathrm{B}$ is an R-algebroid morphism and the conditions

$$
\begin{aligned}
& \text { 1. } \quad f m \in \mathrm{~N}(g(s m), g(t m)), \\
& \text { 2. } \quad f\left({ }^{a} m\right)={ }^{g a}(f m) \text { and } f\left(m^{a^{\prime}}\right)=(f m)^{g a^{\prime}}
\end{aligned}
$$

are satisfied for all $m \in \mathrm{M}, a, a^{\prime} \in \mathrm{A}$ with $t a=s m, t m=s a^{\prime}$.
Thus, we get a category, denoted by $\operatorname{ModAlg}(R)$, whose objects are all R-algebroid modules and morphisms are all R-algebroid module morphisms. Furthermore, all R-algebroid A-modules with the identity morphism I_{A} on A form a subcategory $\operatorname{Mod} \mathrm{Alg}(R) / \mathrm{A}$ of $\operatorname{ModAlg}(R)$.

Definition 7 [18]. Let A be an R-algebroid and M be a pre- R-algebroid with the same set of objects A_{0} and let A have an associative action on M . A pre- R-algebroid morphism $\mu: \mathrm{M} \longrightarrow \mathrm{A}$ is called an " R-algebroid precrossed module" or an " R-algebroid precrossed A-module" if the condition

$$
\text { CM1) } \mu\left({ }^{a} m\right)=a(\mu m) \text { and } \mu\left(m^{a^{\prime}}\right)=(\mu m) a^{\prime}
$$

is satisfied, and $\mu: \mathrm{M} \longrightarrow \mathrm{A}$ is called an " R-algebroid crossed module" or an " R-algebroid crossed A -module" if a second condition,

$$
\mathrm{CM} 2) m^{\mu m^{\prime}}=m m^{\prime}={ }^{\mu m} m^{\prime}
$$

is satisfied, for all $a, a^{\prime} \in \mathrm{A}$ and $m, m^{\prime} \in \mathrm{M}$ with $t a=s m, t m=s a^{\prime}=s m^{\prime}$. Thus, a crossed module is a precrossed module satisfying CM2.

Let $\mathcal{M}=(\mu: \mathrm{M} \longrightarrow \mathrm{A})$ and $\mathcal{N}=(\eta: \mathrm{N} \longrightarrow \mathrm{B})$ be two (pre)crossed modules of R-algebroids and let $f: \mathrm{M} \longrightarrow \mathrm{N}$ be a pre-R-algebroid morphism and $g: \mathrm{A} \longrightarrow \mathrm{B}$ be an R-algebroid morphism. The pair $(f, g): \mathcal{M} \longrightarrow \mathcal{N}$ is called a (pre)crossed module morphism if the conditions

$$
\begin{aligned}
& \text { 1. } \left.\quad f\left({ }^{a} m\right)={ }^{a}\right)(f m) \text { and } f\left(m^{a^{\prime}}\right)=(f m)^{g a^{\prime}} \\
& \text { 2. } \quad(\eta f)(m)=(g \mu)(m)
\end{aligned}
$$

are satisfied, for all $a, a^{\prime} \in \mathrm{A}$ and $m \in \mathrm{M}$ with $t a=s m, t m=s a^{\prime}$. The meaning of the second condition is that the diagram in Figure 1 is commutative.

AVCIOĞLU and AKÇA/Turk J Math

Figure 1
Note, also, that if $\mu: \mathrm{M} \longrightarrow \mathrm{A}$ is a (pre)crossed module then M is an A-module and a (pre)crossed module morphism is a module morphism satisfying the second condition.

Thus, all R-algebroid precrossed modules and their morphisms form a category denoted by PXAlg (R). Moreover, all R-algebroid precrossed A-modules with the identity morphism on A form a subcategory PXAlg $(R) / \mathrm{A}$ of PXAlg (R). Similarly, all R-algebroid crossed modules form the category $\mathrm{XAlg}(R)$ and all R-algebroid crossed A-modules form the category $\mathrm{XA} \lg (R) / \mathrm{A}$, which is a subcategory of $\mathrm{XA} \lg (R)$. Obviously, XA $\lg (R)$ is a full subcategory of $\mathrm{PXA} \lg (R)$ and $\mathrm{XA} \lg (R) / \mathrm{A}$ is a full subcategory of $\mathrm{PXAlg}(R) / \mathrm{A}$.

Example 8 [18]. If A is an R-algebroid and I is a two-sided ideal of A , then the inclusion morphism

$$
i: \mathrm{I} \longrightarrow \mathrm{~A}
$$

is a crossed module with the action of A on I defined by

$$
{ }^{a} b=a b \quad \text { and } \quad b^{a^{\prime}}=b a^{\prime}
$$

for all $a, a^{\prime} \in \mathrm{A}, b \in \mathrm{I}$ with $t a=s b, t b=s a^{\prime}$.

3. Free R-algebroid modules

Clearly an R-algebroid module (M, A) comes with a function $\xi_{\mathrm{M}}: \operatorname{Mor}(\mathrm{M}) \longrightarrow \mathrm{A}_{0} \times \mathrm{A}_{0}$ defined as $\xi_{\mathrm{M}} m=$ ($s m, t m$) for all $m \in \mathrm{M}$. This motivates us to form a category, $\operatorname{Sets}_{0} / \mathrm{Alg}(R)$, whose objects are all functions $\omega: \mathrm{K} \longrightarrow \mathrm{A}_{0} \times \mathrm{A}_{0}$ defined as $\omega k=\left(\omega_{1} k, \omega_{2} k\right)$, where K is a set and A is an R-algebroid, and whose morphisms are all pairs $\left(f, g_{0} \times g_{0}\right): \omega \longrightarrow \omega^{\prime}$ where if $\omega^{\prime}: \mathrm{K}^{\prime} \longrightarrow \mathrm{B}_{0} \times \mathrm{B}_{0}$ then $f: \mathrm{K} \longrightarrow \mathrm{K}^{\prime}$ is a function, $g: \mathrm{A} \longrightarrow \mathrm{B}$ is an R-algebroid morphism, g_{0} is the restriction of g on A_{0}, and $g_{0} \times g_{0}: \mathrm{A}_{0} \times \mathrm{A}_{0} \longrightarrow \mathrm{~B}_{0} \times \mathrm{B}_{0}$ is defined as $\left(g_{0} \times g_{0}\right)(x, y)=\left(g_{0} x, g_{0} y\right)$ for all $x, y \in \mathrm{~A}_{0}$, making the diagram in Figure 2 commutative.

Figure 2
By fixing the R-algebroid A and taking $g_{0} \times g_{0}$ as $I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}$, the identity function on $\mathrm{A}_{0} \times \mathrm{A}_{0}$, we obtain a subcategory $\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})$ of $\operatorname{Sets}_{0} / \operatorname{Alg}(R)$.

Note that, for each R-algebroid module (M, A), the function ξ_{M} is an object of $\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})$.

Proposition 9 For any object $\omega: \mathrm{K} \longrightarrow \mathrm{A}_{0} \times \mathrm{A}_{0}$ of $\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})$ there exists an R-algebroid A -module $(\mathrm{F}(\omega), \mathrm{A})$ and a morphism $\left(i_{m}, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right): \omega \longrightarrow \xi_{\mathrm{F}(\omega)}$ such that for all R-algebroid A -modules (N, A) and for all morphisms $\left(f, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right): \omega \longrightarrow \xi_{\mathrm{N}}$ there exists a unique A-module morphism $\left(\alpha, I_{\mathrm{A}}\right):(\mathrm{F}(\omega), \mathrm{A}) \longrightarrow(\mathrm{N}, \mathrm{A})$ satisfying $f=\alpha i_{m}$, which means that the diagram in Figure 3 is commutative.

Figure 3
$(\mathrm{F}(\omega), \mathrm{A})$, with the morphism $\left(i_{m}, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right)$, is called the free R-algebroid A -module determined by ω. The free module is unique up to isomorphism.

Proof Provided that $n \in \mathbb{N}^{+}, k, k_{1}, \ldots, k_{n} \in \mathrm{~K}$ and $a, a_{1}, \ldots, a_{n}, a^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime} \in \mathrm{A}$, consider all elements of the form $a k a^{\prime}$ under the conditions $t a=\omega_{1} k$ and $s a^{\prime}=\omega_{2} k$, and tying such elements construct all words of the form $a_{1} k_{1} a_{1}^{\prime} a_{2} k_{2} a_{2}^{\prime} \ldots a_{n} k_{n} a_{n}^{\prime}$ under the conditions $t a_{1}^{\prime}=s a_{2}, \ldots, t a_{n-1}^{\prime}=s a_{n}$. For any word $p_{i}=a_{i_{1}} k_{i_{1}} a_{i_{1}}^{\prime} \ldots a_{i_{n}} k_{i_{n}} a_{i_{n}}^{\prime}$ define its source as $s p_{i}=s a_{i_{1}}$ and its target as $t p_{i}=t a_{i_{n}}^{\prime}$, and for all $x, y \in \mathrm{~A}_{0}$ denote the free additive abelian group generated by all words with source x and target y by $\mathrm{G}(\omega)(x, y)$. Obviously, each element of $\mathrm{G}(\omega)(x, y)$ is of the form $\sum_{i} p_{i}$ where p_{i} s are words with source x and target y. Now we consider the normal subgroup $\mathrm{N}(x, y)$ of $\mathrm{G}(\omega)(x, y)$ generated by all elements of forms

$$
\begin{gathered}
a_{1} k_{1} a_{1}^{\prime} \ldots\left(a_{i}+a_{i}^{\prime \prime}\right) k_{i} a_{i}^{\prime} \ldots a_{n} k_{n} a_{n}^{\prime}-a_{1} k_{1} a_{1}^{\prime} \ldots a_{i} k_{i} a_{i}^{\prime} \ldots a_{n} k_{n} a_{n}^{\prime}-a_{1} k_{1} a_{1}^{\prime} \ldots a_{i}^{\prime \prime} k_{i} a_{i}^{\prime} \ldots a_{n} k_{n} a_{n}^{\prime} \\
a_{1} k_{1} a_{1}^{\prime} \ldots a_{i} k_{i}\left(a_{i}^{\prime}+a_{i}^{\prime \prime \prime}\right) \ldots a_{n} k_{n} a_{n}^{\prime}-a_{1} k_{1} a_{1}^{\prime} \ldots a_{i} k_{i} a_{i}^{\prime} \ldots a_{n} k_{n} a_{n}^{\prime}-a_{1} k_{1} a_{1}^{\prime} \ldots a_{i} k_{i} a_{i}^{\prime \prime \prime} \ldots a_{n} k_{n} a_{n}^{\prime} \\
\left(r \cdot a_{1}\right) k_{1} a_{1}^{\prime} \ldots a_{i} k_{i} a_{i}^{\prime} \ldots a_{n} k_{n} a_{n}^{\prime}-a_{1} k_{1} a_{1}^{\prime} \ldots\left(r \cdot a_{i}\right) k_{i} a_{i}^{\prime} \ldots a_{n} k_{n} a_{n}^{\prime} \\
\left(r \cdot a_{1}\right) k_{1} a_{1}^{\prime} \ldots a_{i} k_{i} a_{i}^{\prime} \ldots a_{n} k_{n} a_{n}^{\prime}-a_{1} k_{1} a_{1}^{\prime} \ldots a_{i} k_{i}\left(r \cdot a_{i}^{\prime}\right) \ldots a_{n} k_{n} a_{n}^{\prime}
\end{gathered}
$$

for all $r \in R$. If we divide $\mathrm{G}(\omega)(x, y)$ by $\mathrm{N}(x, y)$ then we get an abelian quotient group $[\mathrm{G}(\omega)(x, y)$] of which elements are cosets of $\mathrm{N}(x, y)$. We denote $[\mathrm{G}(\omega)(x, y)]$ with $\mathrm{F}(\omega)(x, y)$, and the cosets $p_{i}+\mathrm{N}(x, y)$ and $\sum_{i} p_{i}+\mathrm{N}(x, y)$ with $\left[p_{i}\right]$ and $\left[\sum_{i} p_{i}\right]$, respectively, for all $p_{i}, \sum_{i} p_{i} \in \mathrm{G}(\omega)(x, y)$. It is obvious that $\left[\sum_{i} p_{i}\right]=\sum_{i}\left[p_{i}\right]$.

Now we can define an R-action on $\mathrm{F}(\omega)(x, y)$ as $r \cdot\left[p_{i}\right]=\left[\left(r \cdot a_{i_{1}}\right) k_{i_{1}} a_{i_{1}}^{\prime} \ldots a_{i_{n}} k_{i_{n}} a_{i_{n}}^{\prime}\right]$ and $r \cdot\left(\sum_{i}\left[p_{i}\right]\right)=$ $\sum_{i}\left[r \cdot p_{i}\right]$ for all $r \in R$, and with this action the quotient group $\mathrm{F}(\omega)(x, y)$ is clearly an R-module.

Hence, the family $\mathrm{F}(\omega)=\left\{\mathrm{F}(\omega)(x, y): x, y \in \mathrm{~A}_{0}\right\}$ becomes a pre- R-algebroid by the composition defined for all $x, y, z \in \mathrm{~A}_{0}$ as

$$
\begin{aligned}
\mathrm{F}(\omega)(x, y) \times \mathrm{F}(\omega)(y, z) & \longrightarrow \mathrm{F}(\omega)(x, z) \\
\left(\sum_{i}\left[p_{i}\right], \sum_{j}\left[p_{j}\right]\right) & \longmapsto\left(\sum_{i}\left[p_{i}\right]\right)\left(\sum_{j}\left[p_{j}\right]\right)=\sum_{i, j}\left[p_{i} p_{j}\right]=\sum_{i} \sum_{j}\left[p_{i} p_{j}\right]
\end{aligned}
$$

where if $p_{i}=a_{i_{1}} k_{i_{1}} a_{i_{1}}^{\prime} \ldots a_{i_{n}} k_{i_{n}} a_{i_{n}}^{\prime}$ and $p_{j}=a_{j_{1}} k_{j_{1}} a_{j_{1}}^{\prime} \ldots a_{j_{n^{\prime}}} k_{j_{n^{\prime}}} a_{j_{n^{\prime}}}^{\prime}$ then $p_{i} p_{j}=a_{i_{1}} k_{i_{1}} a_{i_{1}}^{\prime} \ldots a_{i_{n}} k_{i_{n}} a_{i_{n}}^{\prime} a_{j_{1}} k_{j_{1}} a_{j_{1}}^{\prime} \ldots$ $a_{j_{n^{\prime}}} k_{j_{n^{\prime}}} a_{j_{n^{\prime}}}^{\prime}$.

Moreover, an associative A-action on $\mathrm{F}(\omega)$ can be defined as ${ }^{a}\left(\sum_{i}\left[p_{i}\right]\right)=\sum_{i}\left[{ }^{a} p_{i}\right]$ and $\left(\sum_{i}\left[p_{i}\right]\right)^{a^{\prime}}=$ $\sum_{i}\left[p_{i}^{a^{\prime}}\right]$ where ${ }^{a} p_{i}=\left(a a_{i_{1}}\right) k_{i_{1}} a_{i_{1}}^{\prime} \ldots a_{i_{n}} k_{i_{n}} a_{i_{n}}^{\prime}$ and $p_{i}^{a^{\prime}}=a_{i_{1}} k_{i_{1}} a_{i_{1}}^{\prime} \ldots a_{i_{n}} k_{i_{n}}\left(a_{i_{n}}^{\prime} a^{\prime}\right)$ under the condition $t a=s p_{i}$, $t p_{i}=s a^{\prime}$, and this action makes $\mathrm{F}(\omega)$ an A-module.

Define $i_{m}: \mathrm{K} \longrightarrow \mathrm{F}(\omega)$ as $i_{m}(k)=[1 k 1]\left(=\left[1_{\omega_{1} k} k 1_{\omega_{2} k}\right]\right)$ and $\alpha: \mathrm{F}(\omega) \longrightarrow \mathrm{N}$ as $\alpha\left[a k a^{\prime}\right]={ }^{a}(f k)^{a^{\prime}}$, $\alpha\left[p_{i}\right]=\alpha\left[a_{i_{1}} k_{i_{1}} a_{i_{1}}^{\prime}\right] \ldots \alpha\left[a_{i_{n}} k_{i_{n}} a_{i_{n}}^{\prime}\right]$ and $\alpha\left(\sum_{i}\left[p_{i}\right]\right)=\sum_{i} \alpha\left[p_{i}\right]$ for all $\left(f, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right): \omega \longrightarrow \xi_{\mathrm{N}}$. It can easily be shown that $\left(i_{m}, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right)$ is a morphism from ω to $\xi_{\mathrm{F}(\omega)}$ and $\left(\alpha, I_{\mathrm{A}}\right)$ is an A-module morphism from $(\mathrm{F}(\omega), \mathrm{A})$ to ($\mathrm{N}, \mathrm{A)}$) satisfying $f=\alpha i_{m}$. Obviously, α is unique from its definition. Moreover, it can be shown that $(\mathrm{F}(\omega), \mathrm{A})$ with the morphism $\left(i_{m}, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right)$ is unique up to isomorphism.

The construction of the free module gives a functor F from $\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})$ to $\operatorname{ModAlg}(R) / \mathrm{A}$ defined as $F(\omega)=(\mathrm{F}(\omega), \mathrm{A})$ on objects and as $F\left(f, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right)=\left(F f, I_{\mathrm{A}}\right)$ on morphisms such that $F f\left(\left[a k a^{\prime}\right]\right)=$ $\left[a(f k) a^{\prime}\right]$ on generators.

Proposition 10 The functor F is the left adjoint of the forgetful functor $U: \operatorname{ModAlg}(R) / \mathrm{A} \longrightarrow \operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})$, which is defined as $U(\mathrm{~N}, \mathrm{~A})=\xi_{\mathrm{N}}$ for each R-algebroid module (N, A) and is defined as $U\left(g, I_{\mathrm{A}}\right)=\left(U g, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right)$ on morphisms such that $(U g)(n)=g n$ for all $n \in \mathrm{~N}$.

Proof We must find a natural equivalence

$$
\Phi: \quad(\operatorname{Mod} \operatorname{Alg}(R) / \mathrm{A})(F(-),(-)) \cong\left(\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})\right)(-, U(-))
$$

which is required to give a map

$$
\begin{aligned}
\Phi: O b\left(\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})\right) \times O b(\operatorname{ModAlg}(R) / \mathrm{A}) & \longrightarrow \text { Sets } \\
\left(\omega: \mathrm{K} \longrightarrow \mathrm{~A}_{0} \times \mathrm{A}_{0},(\mathrm{~N}, \mathrm{~A})\right) & \longmapsto \Phi(\omega,(\mathrm{N}, \mathrm{~A}))
\end{aligned}
$$

such that $\Phi(\omega,(\mathrm{N}, \mathrm{A}))$ is a bijection from $(\operatorname{ModAlg}(R) / \mathrm{A})(F(\omega),(\mathrm{N}, \mathrm{A}))$ to $\left(\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})\right)(\omega, U(\mathrm{~N}, \mathrm{~A})$ $\left.=\xi_{\mathrm{N}}\right)$ and is natural in both ω and (N, A) for all $\omega \in O b\left(\operatorname{Sets}_{0} /(\operatorname{Alg}(R) / \mathrm{A})\right)$ and $(\mathrm{N}, \mathrm{A}) \in O b(\operatorname{ModAlg}(R) / \mathrm{A})$.

We abbreviate $\Phi(\omega,(\mathrm{N}, \mathrm{A}))$ as $\Phi(\omega, \mathrm{A})$ and define $\Phi(\omega, \mathrm{N})$ as $\Phi(\omega, \mathrm{N})\left(f, I_{\mathrm{A}}\right)=\left(\Phi(\omega, \mathrm{N})(f), I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right)$ such that

$$
\begin{array}{llll}
\Phi(\omega, \mathrm{N})(f): & \mathrm{K} & \longrightarrow \mathrm{~N} \\
& k & \longmapsto \Phi(\omega, \mathrm{~N})(f)(k)=f[1 k 1]
\end{array}
$$

for all $\left(f, I_{\mathrm{A}}\right) \in(\operatorname{ModAlg}(R) / \mathrm{A})((\mathrm{F}(\omega), \mathrm{A}),(\mathrm{N}, \mathrm{A}))$ where $\omega: K \rightarrow \mathrm{~A}_{0} \times \mathrm{A}_{0}$. Clearly, $\Phi(\omega, \mathrm{N})$ is well defined and 1-1. It is also onto since each morphism

$$
\left(h, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right):\left(\omega: \mathrm{K} \longrightarrow \mathrm{~A}_{0} \times \mathrm{A}_{0}\right) \longrightarrow\left(\xi_{\mathrm{N}}: \mathrm{N} \longrightarrow \mathrm{~A}_{0} \times \mathrm{A}_{0}\right)
$$

is the image of the morphism $\left(f, I_{\mathrm{A}}\right)$ under $\Phi(\omega, \mathrm{N})$, where $f: \mathrm{F}(\omega) \longrightarrow \mathrm{N}$ is defined as $f\left[a k a^{\prime}\right]={ }^{a}(h k)^{a^{\prime}}$ on generators.

Moreover, provided that $(-)^{\bullet}$ is a composition with $(-)$ from right, for all $\left(g, I_{\mathrm{A}_{0} \times \mathrm{A}_{0}}\right): \omega \longrightarrow \omega^{\prime}$, $\left(f, I_{\mathrm{A}}\right):\left(\left(\mathrm{F}\left(\omega^{\prime}\right), \mathrm{A}\right) \longrightarrow(\mathrm{N}, \mathrm{A})\right)$ and $k \in \mathrm{~K}$

$$
\begin{aligned}
\left(\Phi(\omega, \mathrm{N})(F g)^{\bullet}\right)(f)(k) & =\left(\Phi(\omega, \mathrm{N})(F g)^{\bullet}(f)\right)(k)=(\Phi(\omega, \mathrm{N})(f(F g)))(k) \\
& =(f(F g))[1 k 1]=f[1(g k) 1] \\
& =\left(\Phi\left(\omega^{\prime}, \mathrm{N}\right)(f)\right)(g k)=\left(\left(\Phi\left(\omega^{\prime}, \mathrm{N}\right)(f)\right) g\right)(k) \\
& =\left(g^{\bullet}\left(\Phi\left(\omega^{\prime}, \mathrm{N}\right)(f)\right)\right)(k)=\left(g^{\bullet} \Phi\left(\omega^{\prime}, \mathrm{N}\right)\right)(f)(k),
\end{aligned}
$$

i.e. the diagram in Figure 4 is commutative and $\Phi(\omega, \mathrm{N})$ is natural in ω.

Figure 4

A similar calculation shows that the diagram in Figure 5 is commutative for each $\left(g, I_{\mathrm{A}}\right) \in(\operatorname{ModAlg}(R) / \mathrm{A})((\mathrm{N}, \mathrm{A})$, $\left.\left(\mathrm{N}^{\prime}, \mathrm{A}\right)\right)$, where $(-)$. is composition with $(-)$ from left, and $\Phi(\omega, \mathrm{N})$ is natural in (N, A).

Figure 5

4. Free R-algebroid precrossed modules

The fact that if $\eta: \mathrm{N} \longrightarrow \mathrm{A}$ is a (pre)crossed module then there is a restricted function $\eta_{m}: \operatorname{Mor}(\mathrm{N}) \longrightarrow \mathrm{A}$ as $\eta_{m}(n)=\eta n$ motivates us to form a category $\operatorname{Sets} / \mathrm{Alg}(R)$ whose objects are all functions $\omega: \mathrm{K} \longrightarrow \mathrm{A}$ where K is a set and A is an R-algebroid such that ωk is a morphism of A for all $k \in \mathrm{~K}$ and whose morphisms are all pairs $(f, g): \omega \longrightarrow \omega^{\prime}$ where if $\omega^{\prime}: \mathrm{K}^{\prime} \longrightarrow \mathrm{B}$ then $f: \mathrm{K} \longrightarrow \mathrm{K}^{\prime}$ is a function and $g: \mathrm{A} \longrightarrow \mathrm{B}$ is an R-algebroid morphism making the diagram in Figure 6 commutative.

Figure 6
By fixing the R-algebroid A and taking g as I_{A}, we obtain a subcategory $\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$ of $\operatorname{Sets} / \operatorname{Alg}(R)$.

Note that, for each precrossed or crossed A-module $\mathcal{N}=(\eta: \mathrm{N} \longrightarrow \mathrm{A})$, the function $\eta_{m}: \operatorname{Mor}(\mathrm{N}) \longrightarrow \mathrm{A}$ is an object of $\operatorname{Sets} / \mathrm{Alg}(R)$.

Proposition 11 For any object $\omega: \mathrm{K} \longrightarrow \mathrm{A}$ of $\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$ there exists an R-algebroid precrossed A-module $F_{P}(\omega)=\left(\omega_{P}: \mathrm{F}_{P}(\omega) \longrightarrow \mathrm{A}\right)$ and a morphism $\left(i_{p}, I_{\mathrm{A}}\right): \omega \longrightarrow \omega_{P m}$ such that for all R-algebroid precrossed A -modules $\mathcal{N}=(\eta: \mathrm{N} \longrightarrow \mathrm{A})$ and for all morphisms $\left(f, I_{\mathrm{A}}\right): \omega \longrightarrow \eta_{m}$ there exists a unique precrossed A-module morphism $\left(\alpha, I_{\mathrm{A}}\right): F_{P}(\omega) \longrightarrow \mathcal{N}$ satisfying $f=\alpha i_{p}$, which means the diagram in Figure 7 is commutative.

Figure 7
$F_{P}(\omega)$, with the morphism $\left(i_{p}, I_{\mathrm{A}}\right)$, is called the free R-algebroid precrossed A-module determined by ω. The free precrossed module is unique up to isomorphism.

Proof ω determines a function $\omega_{\mathrm{A}_{0}}: \mathrm{K} \longrightarrow \mathrm{A}_{0} \times \mathrm{A}_{0}$ as $\omega_{\mathrm{A}_{0}}(k)=(s(\omega k), t(\omega k))$ and from the previous section there exists a free R-algebroid A-module $F\left(\omega_{\mathrm{A}_{0}}\right)$ determined by $\omega_{\mathrm{A}_{0}}$, with an A-action defined as $a^{\prime \prime}\left[a k a^{\prime}\right]=\left[\left(a^{\prime \prime} a\right) k a^{\prime}\right]$ and $\left[a k a^{\prime}\right]^{a^{\prime \prime \prime}}=\left[a k\left(a^{\prime} a^{\prime \prime \prime}\right)\right]$ on generators with $t a^{\prime \prime}=s a$ and $t a^{\prime}=s a^{\prime \prime \prime}$. Now, taking $\mathrm{F}_{P}(\omega)=\mathrm{F}\left(\omega_{\mathrm{A}_{0}}\right)$, define $\omega_{P}: \mathrm{F}_{P}(\omega) \longrightarrow \mathrm{A}$ as $\omega_{P}\left[a k a^{\prime}\right]=a(\omega k) a^{\prime}$ on generators and $i_{p}: \mathrm{K} \longrightarrow \mathrm{F}_{P}(\omega)$ as $i_{p} k=[1 k 1]$ for all $k \in \mathrm{~K}$. It can easily be checked that, by these definitions, $F_{P}(\omega)=\left(\omega_{P}: \mathrm{F}_{P}(\omega) \longrightarrow \mathrm{A}\right)$ is a precrossed module and $\left(i_{p}, I_{\mathrm{A}}\right)$ is a morphism from ω to $\omega_{P m}$.

Defining $\alpha: \mathrm{F}_{P}(\omega) \longrightarrow \mathrm{N}$ as $\alpha\left[a k a^{\prime}\right]={ }^{a}(f k)^{a^{\prime}}$ on generators, since the rest are detail, completes the proof.

As in the case of free modules, the construction of free precrossed module gives a functor F_{P} : Sets $/(\operatorname{Alg}(R) / \mathrm{A}) \longrightarrow \mathrm{PXAlg}(R) / \mathrm{A}$ defined as $F_{P}(\omega)=\left(\omega_{P}: \mathrm{F}_{P}(\omega) \longrightarrow \mathrm{A}\right)$ on objects and as $F_{P}\left(f, I_{\mathrm{A}}\right)=$ $\left(F_{P} f, I_{\mathrm{A}}\right)$ on morphisms such that $F_{P} f\left[a k a^{\prime}\right]=\left[a(f k) a^{\prime}\right]$ on generators.

Proposition 12 The functor F_{P} is the left adjoint of the forgetful functor $U: \operatorname{PXAlg}(R) / \mathrm{A} \longrightarrow \operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$, which for a precrossed module $\mathcal{N}=(\eta: \mathrm{N} \longrightarrow \mathrm{A})$ gives the function η_{m} and for a precrossed A-module mor$\operatorname{phism}\left(f, I_{\mathrm{A}}\right): \mathcal{N} \longrightarrow \mathcal{N}^{\prime}$ gives the morphism $U\left(f, I_{\mathrm{A}}\right)=\left(U f, I_{\mathrm{A}}\right): \eta_{m} \longrightarrow \eta_{m}^{\prime}$ such that $U f(n)=$ fn for all $n \in \mathrm{~N}$.

Proof We omit the proof, since the constructions are almost the same as those in the proof of Proposition 10.

5. Peiffer ideal of a precrossed module

Since our aim in the next section is to obtain the free R-algebroid crossed modules, in this section we construct the Peiffer ideal for a precrossed module of R-algebroids to get a crossed module. The term 'Peiffer element' was first used by Brown and Huebschmann [9], and Baus and Conduché [6] gave a substantial theory of Peiffer commutator calculus. Brown et al. used the Peiffer subgroup to obtain crossed modules of groups in [7] and Shammu used Peiffer commutators to get crossed modules of algebras in [22].

Definition 13 Let $\mathcal{M}=(\mu: \mathrm{M} \longrightarrow \mathrm{A})$ be a precrossed module of R-algebroids and let m, m^{\prime} be two morphisms of M satisfying the condition $t m=s m^{\prime}$. The Peiffer commutators of m and m^{\prime} are defined as $\llbracket m, m^{\prime} \rrbracket_{1}=m^{\mu m^{\prime}}-m m^{\prime}$ and $\llbracket m, m^{\prime} \rrbracket_{2}={ }^{\mu m} m^{\prime}-m m^{\prime}$.

If \mathcal{M} is a crossed module then both of these commutators are zero. Conversely, a precrossed module in which all of these commutators are zero is a crossed module.

For all $x, y \in \mathrm{~A}_{0}$, we denote the subgroup of $\mathrm{M}(x, y)$ generated by $\llbracket \mathrm{M}, \mathrm{M} \rrbracket_{\mathrm{g}}(x, y)=\left\{\llbracket m, m^{\prime} \rrbracket_{1}, \llbracket m, m^{\prime} \rrbracket_{2}\right.$: $\left.m, m^{\prime} \in \mathrm{M}, x=s m, t m^{\prime}=y\right\}$, the set of all Peiffer commutators of $\mathrm{M}(x, y)$, by $\llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y)$. Since $\mathrm{M}(x, y)$ is abelian, $\llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y)$ is also abelian. By a direct calculation, it can be shown that $r \cdot \llbracket m, m^{\prime} \rrbracket_{1}=\llbracket r \cdot m, m^{\prime} \rrbracket_{1}=$ $\llbracket m, r \cdot m^{\prime} \rrbracket_{1}$ and $r \cdot \llbracket m, m^{\prime} \rrbracket_{2}=\llbracket r \cdot m, m^{\prime} \rrbracket_{2}=\llbracket m, r \cdot m^{\prime} \rrbracket_{2}$ for all $\llbracket m, m^{\prime} \rrbracket_{1}, \llbracket m, m^{\prime} \rrbracket_{2} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y)$ and for all $r \in R$, which means $\llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y)$ is closed under the action of R, and this results in that $\llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y)$ is an R-module, an R-submodule of $\mathrm{M}(x, y)$.

Proposition 14 (i) The family $\llbracket \mathrm{M}, \mathrm{M} \rrbracket=\left\{\llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y): x, y \in \mathrm{~A}_{0}\right\}$ is a two sided ideal of M .
(ii) $\llbracket \mathrm{M}, \mathrm{M} \rrbracket$ is closed under the action of A .

Proof For all $w, x, y, z \in \mathrm{~A}_{0}, \llbracket m, m^{\prime} \rrbracket_{1}, \llbracket m, m^{\prime} \rrbracket_{2} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y), m^{\prime \prime} \in \mathrm{M}(w, x), m^{\prime \prime \prime} \in \mathrm{M}(y, z), a \in \mathrm{~A}(w, x)$, and $a^{\prime} \in \mathrm{A}(y, z)$, a direct calculation gives that

$$
\begin{align*}
m^{\prime \prime} \llbracket m, m^{\prime} \rrbracket_{1} & =\llbracket m^{\prime \prime} m, m^{\prime} \rrbracket_{1} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(w, y) \tag{i}\\
\llbracket m, m^{\prime} \rrbracket_{1} m^{\prime \prime \prime} & =\llbracket m, m^{\prime} m^{\prime \prime \prime} \rrbracket_{1}-\llbracket m^{\mu m^{\prime}}, m^{\prime \prime \prime} \rrbracket_{1} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, z) \\
m^{\prime \prime} \llbracket m, m^{\prime} \rrbracket_{2} & =\llbracket m^{\prime \prime} m, m^{\prime} \rrbracket_{2}-\llbracket m^{\prime \prime},{ }^{\mu m} m^{\prime} \rrbracket_{2} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(w, y) \\
\llbracket m, m^{\prime} \rrbracket_{2} m^{\prime \prime \prime} & =\llbracket m, m^{\prime} m^{\prime \prime \prime} \rrbracket_{2} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, z) \\
{ }^{a} \llbracket m, m^{\prime} \rrbracket_{1} & =\llbracket{ }^{a} m, m^{\prime} \rrbracket_{1} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(w, y) \\
\llbracket m, m^{\prime} \rrbracket_{1}^{a^{\prime}} & =\llbracket m,\left(m^{\prime}\right)^{a^{\prime}} \rrbracket_{1} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, z) \\
{ }^{a} \llbracket m, m^{\prime} \rrbracket_{2} & =\llbracket{ }^{a} m, m^{\prime} \rrbracket_{2} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(w, y) \\
\llbracket m, m^{\prime} \rrbracket_{2}^{a^{\prime}} & =\llbracket m,\left(m^{\prime}\right)^{a^{\prime}} \rrbracket_{2} \in \llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, z) .
\end{align*}
$$

The ideal $\llbracket \mathrm{M}, \mathrm{M} \rrbracket$ is called the 'Peiffer' ideal of M .
Now construct the family

$$
\frac{\mathrm{M}}{\llbracket \mathrm{M}, \mathrm{M} \rrbracket}=\left\{\frac{\mathrm{M}}{\llbracket \mathrm{M}, \mathrm{M} \rrbracket}(x, y)=\frac{\mathrm{M}(x, y)}{\llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y)}: x, y \in \mathrm{~A}_{0}\right\}
$$

of quotient R-modules. Clearly, $\frac{\mathrm{M}}{\llbracket \mathrm{M}, \mathrm{M} \rrbracket}$ is a pre- R-algebroid which is an A-module thanks to the addition, multiplication, R-action and associative A-action induced by those defined on M.

We write M^{cr} instead of $\frac{\mathrm{M}}{\llbracket \mathrm{M}, \mathrm{M} \rrbracket}$ and \bar{m} instead of $m+\llbracket \mathrm{M}, \mathrm{M} \rrbracket(x, y)$ for all $m \in \mathrm{M}(x, y)$, to abbreviate. μ induces a map

$$
\begin{aligned}
\mu^{\mathrm{cr}}: & \mathrm{M}^{\mathrm{cr}} \\
\bar{m} & \longrightarrow \mathrm{~A} \\
& \longmapsto \mu^{\mathrm{cr}} \bar{m}=\mu m
\end{aligned}
$$

since μ maps $\llbracket \mathrm{M}, \mathrm{M} \rrbracket$ to $0_{\mathrm{A}}=\left\{0_{\mathrm{A}(x, y)}: x, y \in \mathrm{~A}_{0}\right\}$, where $0_{\mathrm{A}(x, y)}$ is the additive identity of $\mathrm{A}(x, y)$.
Proposition $15(i)$ If $\mathcal{M}=(\mu: \mathrm{M} \longrightarrow \mathrm{A})$ is a precrossed module of R-algebroids, then $\mathcal{M}^{\mathrm{cr}}=\left(\mu^{\mathrm{cr}}: \mathrm{M}^{\mathrm{cr}} \longrightarrow\right.$ A) is a crossed module.
(ii) Provided that $\phi: \mathrm{M} \longrightarrow \mathrm{M}^{\mathrm{cr}}$ is the quotient morphism, for all crossed A -modules $\mathcal{N}=(\eta: \mathrm{N} \longrightarrow \mathrm{A})$ and for all precrossed A -module morphisms $\left(\alpha, I_{\mathrm{A}}\right): \mathcal{M} \longrightarrow \mathcal{N}$, there exists a unique crossed A-module morphism $\left(\alpha^{\prime}, I_{\mathrm{A}}\right): \mathcal{M}^{\text {cr }} \longrightarrow \mathcal{N}$ satisfying $\alpha=\alpha^{\prime} \phi$.

Proof (i) It can easily be shown that $\mu^{\text {cr }}$ is a pre- R-algebroid morphism. We show that it satisfies the crossed module conditions: For all $m, m^{\prime} \in \mathrm{M}$ and for all $a, a^{\prime} \in \mathrm{A}$ with $t a=s m, t m=s m^{\prime}=s a^{\prime}$

$$
\mathrm{CM} 1) \quad \mu^{\mathrm{cr}}\left({ }^{a} \bar{m}\right)=\mu^{\mathrm{cr}}(\bar{a} m)=\mu\left({ }^{a} m\right)=a(\mu m)=a\left(\mu^{\mathrm{cr}} \bar{m}\right)
$$

and similarly $\mu^{\mathrm{cr}}\left(\bar{m}^{a^{\prime}}\right)=\left(\mu^{\mathrm{cr}} \bar{m}\right) a^{\prime}$,

$$
\mathrm{CM} 2) \quad \begin{aligned}
\bar{m}^{\mu \mathrm{cr}} \overline{m^{\prime}} & =\bar{m}^{\mu m^{\prime}}=\overline{m^{\mu m^{\prime}}}=m^{\mu m^{\prime}}+\llbracket \mathrm{M}, \mathrm{M} \rrbracket\left(s m, t m^{\prime}\right) \\
& =m^{\mu m^{\prime}}+\left(-\llbracket m, m^{\prime} \rrbracket 1+\llbracket \mathrm{M}, \mathrm{M} \rrbracket\left(s m, t m^{\prime}\right)\right) \\
& =m^{\mu m^{\prime}}+\left(-\left(m^{\mu m^{\prime}}-m m^{\prime}\right)+\llbracket \mathrm{M}, \mathrm{M} \rrbracket\left(s m, t m^{\prime}\right)\right) \\
& =m m^{\prime}+\llbracket \mathrm{M}, \mathrm{M} \rrbracket\left(s m, t m^{\prime}\right)=\overline{m m^{\prime}}=\bar{m} \overline{m^{\prime}}
\end{aligned}
$$

and similarly ${ }^{\mu^{\mathrm{cr}} \bar{m}} \overline{m^{\prime}}=\bar{m} \overline{m^{\prime}}$.
(ii) Define $\alpha^{\prime}: \mathrm{M}^{\text {cr }} \longrightarrow \mathrm{N}$ as $\alpha^{\prime} \bar{m}=\alpha m$. Obviously, $\left(\alpha^{\prime}, I_{\mathrm{A}}\right)$ is a crossed A-module morphism and for all $m \in \mathrm{M}$

$$
\left(\alpha^{\prime} \phi\right)(m)=\alpha^{\prime}(\phi m)=\alpha^{\prime} \bar{m}=\alpha m .
$$

The uniqueness of α^{\prime} comes from its definition.
Thus, we get a functor $(-)^{\text {cr }}: \operatorname{PXAlg}(R) \longrightarrow$ XAlg (R), which gives a crossed module $\mathcal{M}^{\text {cr }}$ for any precrossed module \mathcal{M} and is defined as $(f, g)^{\text {cr }}=\left(f^{c r}, g\right)$ on morphisms where if $(f, g): \mathcal{M} \longrightarrow \mathcal{M}^{\prime}$ then $\left(f^{\mathrm{cr}}, g\right): \mathcal{M}^{\mathrm{cr}} \longrightarrow \mathcal{M}^{\prime \mathrm{cr}}$ such that $f^{\mathrm{cr}} \bar{m}=\overline{f m}$ for all $m \in \mathrm{M}$.
Proposition 16 The functor $(-)^{\mathrm{cr}}: \mathrm{PXAlg}(R) \longrightarrow \mathrm{XAlg}(R)$ is the left adjoint of the inclusion functor $I_{n}:$ XAlg $(R) \longrightarrow$ PXAlg (R).

Proof For all $\mathcal{M} \in O b(\operatorname{PXAlg}(R)), \mathcal{N} \in O b(X A l g(R))$ and crossed module morphisms $g=\left(g_{1}, g_{2}\right)$: $\mathcal{M}^{\text {cr }} \longrightarrow \mathcal{N}$ the pair $h=\left(h_{1}, g_{2}\right): \mathcal{M} \longrightarrow \mathcal{N}$ with $h_{1} m=g_{1} \bar{m}$ for all $m \in \mathrm{M}$ is clearly a precrossed module morphism. Then the map $\Phi(\mathcal{M}, \mathcal{N})$ defined as

$$
\begin{aligned}
\Phi(\mathcal{M}, \mathcal{N}): \quad \mathrm{XAlg}(R)\left(\mathcal{M}^{\text {cr }}, \mathcal{N}\right) & \longrightarrow \operatorname{PXAlg}(R)(\mathcal{M}, \mathcal{N}) \\
g=\left(g_{1}, g_{2}\right) & \longmapsto \Phi(\mathcal{M}, \mathcal{N})(g)=h=\left(h_{1}, g_{2}\right)
\end{aligned}
$$

can be shown to be a bijection, which is natural in both \mathcal{M} and \mathcal{N}, and this completes the proof.

6. Free R-algebroid crossed modules

Proposition 17 For any object $\omega: \mathrm{K} \longrightarrow \mathrm{A}$ of $\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$ there exists an R-algebroid crossed A module $F_{X}(\omega)=\left(\omega_{X}: \mathrm{F}_{X}(\omega) \longrightarrow \mathrm{A}\right)$ and a morphism $\left(i_{c}, I_{\mathrm{A}}\right): \omega \longrightarrow \omega_{X_{m}}$ such that for all R-algebroid crossed A-modules $\mathcal{N}=(\eta: \mathrm{N} \longrightarrow \mathrm{A})$ and for all morphisms $\left(f, I_{\mathrm{A}}\right): \omega \longrightarrow \eta_{m}$ there exists a unique crossed A-module morphism $\left(\alpha, I_{\mathrm{A}}\right): F_{X}(\omega) \longrightarrow \mathcal{N}$ such that $f=\alpha i_{c}$, i.e. the diagram in Figure 8 is commutative.

Figure 8
$F_{X}(\omega)$, with the morphism $\left(i_{c}, I_{\mathrm{A}}\right)$, is called the free R-algebroid crossed A-module determined by ω. The free crossed module is unique up to isomorphism.

Proof In the fourth section we got the free R-algebroid precrossed A-module $F_{P}(\omega)=\left(\omega_{P}: \mathrm{F}_{P}(\omega) \longrightarrow \mathrm{A}\right)$ determined by ω, with the morphism $\left(i_{p}, I_{\mathrm{A}}\right): \omega \longrightarrow \omega_{P m}$.

Then, taking $F_{X}(\omega)=\left(F_{P}(\omega)\right)^{\mathrm{cr}}$, where $\omega_{X}=\omega_{P}^{\mathrm{cr}}$, and then defining $i_{c}: \mathrm{K} \longrightarrow \mathrm{F}_{X}(\omega)$ as $i_{c} k=\overline{[1 k 1]}$ for all $k \in \mathrm{~K}$ and $\alpha: \mathrm{F}_{X}(\omega) \longrightarrow \mathrm{N}$ as $\alpha \overline{\left[a k a^{\prime}\right]}={ }^{a}(f k)^{a^{\prime}}$ on generators completes the proof.

Composing the free precrossed module functor F_{P} and the functor $(-)^{\text {cr }}$ we get a functor F_{X} : Sets $/(\operatorname{Alg}(R) / \mathrm{A}) \longrightarrow \mathrm{XAlg}(R) / \mathrm{A}$ defined as $F_{X}(\omega)=\left(\omega_{X}: \mathrm{F}_{X}(\omega) \longrightarrow \mathrm{A}\right)$ on objects and as $F_{X}\left(f, I_{\mathrm{A}}\right)=$ $\left(F_{X} f, I_{\mathrm{A}}\right)$ on morphisms where $\left(F_{X} f\right) \overline{\left[a k a^{\prime}\right]}=\overline{\left[a(f k) a^{\prime}\right]}$ on generators.

Proposition 18 If $\omega: \mathrm{K} \longrightarrow \mathrm{A}$ and $\left(g, I_{\mathrm{A}}\right): \omega \longrightarrow \omega^{\prime}$ in $\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$ then $\omega_{X g}^{\prime}:\left(F_{X} g\right)\left(\mathrm{F}_{X}(\omega)\right) \rightarrow \mathrm{A}$ where $\omega_{X_{g}}^{\prime}$ is the restriction of ω_{X}^{\prime} on $\left(F_{X} g\right)\left(\mathrm{F}_{X}(\omega)\right)$, with $i_{g}: g(\mathrm{~K}) \longrightarrow\left(F_{x} g\right)\left(\mathrm{F}_{x}(\omega)\right)$ defined as $i_{g}(g k)=$ $\overline{[1 g k 1]}$, is the free R-algebroid crossed A-module determined by $\omega_{g}^{\prime}: g(\mathrm{~K}) \longrightarrow \mathrm{A}$ where ω_{g}^{\prime} is the restriction of ω^{\prime} on $g(\mathrm{~K})$.

Proof For any R-algebroid crossed A-module $\mathcal{N}=(\eta: N \longrightarrow \mathrm{~A})$ and for any morphism $\left(f, I_{\mathrm{A}}\right): \omega_{g}^{\prime} \longrightarrow \mathcal{N}$ the map $\alpha_{g}:\left(F_{X} g\right)\left(\mathrm{F}_{X}(\omega)\right) \longrightarrow \mathrm{N}$ defined as $\alpha_{g} \overline{\left[a(g k) a^{\prime}\right]}={ }^{a}(f g k)^{a^{\prime}}$ on generators clearly forms a unique crossed module morphism with I_{A} and makes the universal diagram commutative, completing the proof.

Proposition 19 As in the case of free precrossed modules, the functor F_{X} is the left adjoint of the forgetful functor $U: \mathrm{XAlg}(R) / \mathrm{A} \longrightarrow$ Sets $/(\operatorname{Alg}(R) / \mathrm{A})$, which for a crossed module $\mathcal{N}=(\eta: \mathrm{N} \longrightarrow \mathrm{A})$ gives the
function η_{m} and for a crossed A -module morphism $\left(f, I_{\mathrm{A}}\right): \mathcal{N} \longrightarrow \mathcal{N}^{\prime}$ gives the morphism $U\left(f, I_{\mathrm{A}}\right)=\left(U f, I_{\mathrm{A}}\right)$: $\eta_{m} \longrightarrow \eta_{m}^{\prime}$ such that $(U f)(n)=$ fn for all $n \in \mathrm{~N}$.

Proof For all $\mathcal{N} \in O b(\operatorname{XAlg}(R) / \mathrm{A})$ and $\omega \in \operatorname{Ob}(\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A}))$ we have bijections $(\operatorname{XAlg}(R) / \mathrm{A})\left(F_{X}(\omega), \mathcal{N}\right) \cong$ $(\operatorname{PXAlg}(R) / \mathrm{A})\left(F_{P}(\omega), \mathcal{N}\right)$ from Proposition 16 and $(\operatorname{PXAlg}(R) / \mathrm{A})\left(F_{P}(\omega), \mathcal{N}\right) \cong(\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A}))\left(\omega, \eta_{m}\right)$ from Proposition 12, and their composition gives the needed isomorphism which is natural in \mathcal{N} and ω.

Proposition 20 i) There exists a natural transformation

$$
\delta=\left\{\left(\delta_{\omega}, I_{\mathrm{A}}\right): \omega \in \operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})\right\}: I_{\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})} \Longrightarrow U F_{X}
$$

where $\left(\delta_{\omega}, I_{\mathrm{A}}\right): \omega \longrightarrow\left(U F_{X}\right)(\omega)$ is a morphism for all $\omega \in \operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$ and $I_{\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})}$ is the identity functor on $\operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A})$.
ii) For each $\omega \in \operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A}), \mathcal{N} \in \mathrm{XAlg}(R) / \mathrm{A}$ and morphism $\left(g, I_{\mathrm{A}}\right): \omega \longrightarrow U(\mathcal{N})=\eta_{m}$ there exists a unique crossed A-module morphism $\left(f, I_{\mathrm{A}}\right): F_{X}(\omega) \longrightarrow \mathcal{N}$ such that $g=(U f) \delta_{\omega}$.

Proof i) If $\omega: \mathrm{K} \longrightarrow \mathrm{A}$, defining $\delta_{\omega} k=\overline{[1 k 1]}$ for all $k \in \mathrm{~K}$ completes the proof since the rest are clear.
ii) Define $f \overline{\left[a k a^{\prime}\right]}={ }^{a}(g k)^{a^{\prime}}$ on generators. Then obviously $\left(f, I_{\mathrm{A}}\right)$ is a crossed A-module morphism and $g k=f \overline{[1 k 1]}=(U f) \overline{[1 k 1]}=(U f) \delta_{\omega} k$ for all $k \in \mathrm{~K}$. Moreover, $(U f) \delta_{\omega}=\left(U f^{\prime}\right) \delta_{\omega}$ implies $g k=f \overline{[1 k 1]}=$ $f^{\prime} \overline{[1 k 1]}$ and $f \overline{\left[a k a^{\prime}\right]}=f^{\prime} \overline{\left[a k a^{\prime}\right]}$ for all $k \in \mathrm{~K}$ and for all generators $\overline{\left[a k a^{\prime}\right]} \in F_{X}(\omega)$ and this ensures the uniqueness of f for fixed g.

Proposition 21 i) There exists a natural transformation

$$
\theta=\left\{\left(\theta_{\mathcal{N}}, I_{\mathrm{A}}\right): \mathcal{N} \in \mathrm{XAlg}(R) / \mathrm{A}\right\}: F_{X} U \Longrightarrow I_{\mathrm{XAlg}(R) / \mathrm{A}}
$$

where $\left(\theta_{\mathcal{N}}, I_{\mathrm{A}}\right):\left(F_{X} U\right)(\mathcal{N}) \longrightarrow \mathcal{N}$ is a crossed A -module morphism for all $\mathcal{N} \in \mathrm{XAlg}(R) / \mathrm{A}$ and $I_{\mathrm{XAlg}(R) / \mathrm{A}}$ is the identity functor on $\operatorname{XAlg}(R) / \mathrm{A}$.
ii) For all $\omega \in \operatorname{Sets} /(\operatorname{Alg}(R) / \mathrm{A}), \mathcal{N} \in \mathrm{XAlg}(R) / \mathrm{A}$ and crossed $\mathrm{A}-$ module morphism $\left(f, I_{\mathrm{A}}\right): F_{X}(\omega) \longrightarrow$ \mathcal{N} there exists a unique morphism $\left(g, I_{\mathrm{A}}\right): \omega \longrightarrow U(\mathcal{N})=\eta_{m}$ such that $f=\theta_{\mathcal{N}}\left(F_{x} g\right)$.

Proof i) For each $\mathcal{N}=(\eta: \mathrm{N} \longrightarrow \mathrm{A})$, defining $\theta_{\mathcal{N}}\left(\overline{\left[a n a^{\prime}\right]}\right)={ }^{a} n^{a^{\prime}}$ on generators completes the proof since the rest are clear.
ii) Define $g k=f \overline{[1 k 1]}$. Then

$$
f \overline{\left.f a k a^{\prime}\right]}={ }^{a}(f \overline{[1 k 1]})^{a^{\prime}}={ }^{a}(g k)^{a^{\prime}}=\theta_{\mathcal{N}} \overline{\left[a(g k) a^{\prime}\right]}=\theta_{\mathcal{N}}\left(F_{X} g\right) \overline{\left[a k a^{\prime}\right]}
$$

for all generators $\overline{\left[a k a^{\prime}\right]} \in F_{X}(\omega)$. Moreover, g is unique since if $\left(g^{\prime}, I_{\mathrm{A}}\right): \omega \longrightarrow U(\mathcal{N})$ is another morphism with $f=\theta_{\mathcal{N}}\left(F_{X} g^{\prime}\right)$ then

$$
g k=f \overline{[1 k 1]}=\left(\theta_{\mathcal{N}}\left(F_{X} g^{\prime}\right)\right)(\overline{[1 k 1]})=\theta_{\mathcal{N}}\left(\overline{\left[1 g^{\prime} k 1\right]}\right)={ }^{1}\left(g^{\prime} k\right)^{1}=g^{\prime} k
$$

for all $k \in \mathrm{~K}$.

AVCIOĞLU and AKÇA/Turk J Math

References

[1] Alp M. Pullback crossed modules of algebroids. Iran J Sci Tech; 2008; 32: 1-5.
[2] Alp M. Pushout crossed modules of algebroids. Iran J Sci Tech; 2008; 32: 175-181.
[3] Amgott SM. Separable categories. J Pure Appl Algebra 1986; 40: 1-14.
[4] Arvasi Z. Crossed modules of algebras. Mathematical and Computational Applications 2004; 9: 173-182.
[5] Arvasi Z, Porter T. Simplicial and crossed resolutions of commutative algebras. J Algebra 1996; 181: 426-448.
[6] Baues HJ, Conduché D. The central series for Peiffer commutators in groups with operators. J Algebra 1990; 133: 1-34.
[7] Brown R, Higgins PJ, Sivera R. Nonabelian Algebraic Topology. Helsinki, Finland: European Mathematical Society, EMS Tracts in Mathematics Vol. 15, 2011.
[8] Brown R. Homotopies and automorphisms of crossed modules of groupoids. Appl Categor Struct 2003; 11: 185-206.
[9] Brown R, Huebschmann J. Identities among relations. Low-dimensional topology, Bangor, 1979. Lond Math S 1982; 48: 153-202.
[10] Ellis GJ. Higher dimensional crossed modules of algebras. J Pure Appl Algebra 1988; 52: 277-282.
[11] Gerstenhaber M. On the deformation of rings and algebras: II. Ann Math 1966; 84: 1-19.
[12] Kassell C, Loday JL. Extensions centrale d'algèbres de Lie. Ann Inst Fourier 1982; 32: 119-142 (in French).
[13] Lichtenbaum S, Schlessinger M. The cotangent complex of a morphism. T Am Math Soc 1967; 128: 41-70.
[14] Lue AST. Non-abelian cohomology of associative algebras. Q J Math 1968; 19: 159-180.
[15] Mitchell B. Rings with several objects. Adv Math 1972; 8: 1-161.
[16] Mitchell B. Some applications of module theory to functor categories. B Am Math Soc 1978; 84: 867-885.
[17] Mitchell B. Separable Algebroids. Providence, RI, USA: AMS, 1985.
[18] Mosa GH. Higher dimensional algebroids and crossed complexes. PhD, University of Wales, Cardiff, UK, 1986.
[19] Porter T. Homology of commutative algebras and an invariant of Simis and Vasconcelos. J Algebra 1986; 99: 458-465.
[20] Porter T. Some categorical results in the theory of crossed modules in commutative algebras. J Algebra 1987; 109: 415-429.
[21] Porter T. The Crossed Menagerie: An introduction to crossed gadgetry and cohomology in algebra and topology. 17 April 2018. https://ncatlab.org/nlab/files/menagerie12a.pdf.
[22] Shammu NM. Algebraic and categorical structure of categories of crossed modules of algebras. PhD, University of Wales, Cardiff, UK, 1992.
[23] Whitehead JHC. On adding relations to homotopy groups. Ann Math 1941; 42: 409-428.
[24] Whitehead JHC. Note on a previous paper entitled "On adding relations to homotopy groups.". Ann Math 1946; 47: 806-810.

[^0]: *Correspondence: osman.avcioglu@usak.edu.tr
 2010 AMS Mathematics Subject Classification: 17A50, 18A40, 18D35, 18E05

