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1. Introduction
Crossed modules, algebraic models of two types, were first invented by Whitehead [23, 24] in his study
on homotopy groups and have been studied by many mathematicians. Various studies on crossed modules
over groups and groupoids can be found in papers and books such as [7, 8, 21], and those over algebras in
[4, 5, 19, 20, 22] and in [11, 13, 14] in different names. Kassell and Loday [12] studied crossed modules of Lie
algebras and higher dimensional analogues were proposed by Ellis [10] for use in homotopical and homological
algebras. Mosa [18] studied crossed modules of R -algebroids and double algebroids. Pullback and pushout
crossed modules of algebroids can be found in [1] and [2], respectively. Provided that P is a group and K is a
set, the construction of the free P-group on K and the constructions of the free precrossed and crossed modules
on a function ω : K −→ P were handled in [7]. Shammu constructed the free crossed module on a function
f : K −→ A where, with our notations, K is a set and A is an R -algebra for a commutative ring R in [22].

The basic goal of this paper is to construct the free R -algebroid crossed module. For this goal, after giving
some basic data in the second section, we define the category Sets0/Alg(R) whose objects are all functions
ω : K −→ A0 × A0, where K is a set and A is an R -algebroid, and its subcategory Sets0/ (Alg(R)/A) formed
by a fixed R -algebroid A in the third section. Then we construct the free R -agebroid A-module determined
by an object ω : K −→ A0 × A0 of Sets0/ (Alg(R)/A) in the same section. In the fourth section we define the
category Sets/Alg(R) , whose objects are formed by all functions of the form ω : K −→ A where K is a set
and A is an R -algebroid and its subcategory Sets/ (Alg(R)/A) , for a fixed R -algebroid A. Then, in the same
section, we construct the free R -algebroid precrossed A-module determined by an object of Sets/ (Alg(R)/A) .

In Section 5, we introduce the Peiffer ideal for an R -algebroid precrossed module to construct a crossed
module and this procedure gives us the functor (−)

cr from the category of precrossed to the category of crossed
modules of R -algebroids.
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In the last section, we construct the free R -algebroid crossed A-module determined by an object
ω : K −→ A of Sets/ (Alg(R)/A) , from the corresponding precrossed module, using the functor (−)

cr .

2. Preliminaries
R -algebroids were especially studied by Mitchell [15–17] and by Amgott [3]. Mitchell gave a categorical definition
of R -algebroids and obtained some interesting results. Mosa defined crossed modules of R -algebroids and proved
the equivalence of crossed modules of algebroids and special double algebroids with connections in [18]. Alp
constructed the pullback and pushout crossed modules of algebroids in [1] and [2], respectively. In this section,
we give some basic definitions concerning crossed modules of R -algebroids.

Definition 1 [15–17]. Let R be a commutative ring. A category of which each homset has an R -module
structure and of which composition is R -bilinear is called an ‘R -category’. A small R -category is called an
‘R -algebroid’. Moreover, if we omit the axiom of the existence of identities from an R-algebroid structure then
the remaining structure is called a ’pre-R-algebroid’.

A pre-R -algebroid A comes with an object set Ob (A) = A0 , a morphism set Mor (A) , and two functions
s, t : Mor (A) −→ Ob (A) , the source and target functions respectively, such that if sa = x and ta = y then
we say that ‘a is from x to y ’ and write a ∈ A (x, y) where A (x, y) is a homset, the set of all morphisms of A
from x to y . From the definition, A (x, y) is an R -module for all x, y ∈ A0 . Moreover, we say that A is over
A0 .
Definition 2 [15–17]. An R -linear functor between two R -categories is called an ‘R -functor’ and an R -
functor between two R -algebroids is called an ‘R -algebroid morphism’. Moreover, an assignment between two
pre-R-algebroids satisfying all axioms of an R-functor except for the identity preservation axiom is called a
’pre-R-algebroid morphism’.

All R -algebroids and their morphisms form the category Alg(R) .

Remark 3 Throughout this paper, for a (pre-)R -algebroid A , a ∈ A will mean that a is a morphism of A .
Moreover, if a, a′ ∈ A with ta = sa′ then their composition will be denoted by aa′ .

Definition 4 [18]. Let A be a pre-R -algebroid and

I = {I (x, y) ⊆ A (x, y) : x, y ∈ A0}

be a family of R -submodules of A. For all w, x, y, z ∈ A0 , a′ ∈ A (w, x) , a′′ ∈ A (y, z) and a ∈ I (x, y) if
a′a ∈ I (w, y) , and aa′′ ∈ I (x, z) then I is said to be a ‘two-sided ideal’ of A .

Definition 5 [18]. Let A be an R-algebroid and M be a pre-R -algebroid with the same object set A0 . A family
of maps defined for all x, y, z ∈ A0 as

M (x, y)× A (y, z) −→ M (x, z)
(m, a) 7−→ ma

is called a ‘right action’ of A on M, if the conditions
1. (ma)

a′
= maa′

4. (m1 +m2)
a
= ma

1 +ma
2

2. ma1+a2 = ma1 +ma2 5. (r ·m)
a
= r ·ma = mr·a

3. (m′m)
a
= m′ma 6. m1tm = m

are satisfied for all r ∈ R, a, a′, a1, a2 ∈ A , m,m′,m1,m2 ∈ M with compatible sources and targets.
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A ‘left action’ of A on M can be defined in a similar way .
If A has a right and a left action on M and if the condition

(am)
a′

= a
(
ma′

)
is satisfied for all m ∈ M and a, a′ ∈ A with ta = sm, tm = sa′ then A is said to have an ‘associative action’
on M .

Definition 6 Let A be an R -algebroid and M be a pre-R -algebroid with the same object set A0 . If A has
an associative action on M then M is called an ‘A-module’. If M is an A-module we usually write (M,A)

and call it an ‘R -algebroid module’ or an ‘R -algebroid A-module’. Moreover, for any two R -algebroid modules
(M,A) and (N,B) a pair (f, g) : (M,A) −→ (N,B) is called an R -algebroid module morphism if f : M −→ N
is a pre-R -algebroid morphism, g : A −→ B is an R -algebroid morphism and the conditions

1. fm ∈ N (g (sm) , g (tm)) ,
2. f (am) = ga (fm) and f

(
ma′

)
= (fm)

ga′

are satisfied for all m ∈ M , a, a′ ∈ A with ta = sm , tm = sa′ .

Thus, we get a category, denoted by ModAlg (R) , whose objects are all R -algebroid modules and
morphisms are all R -algebroid module morphisms. Furthermore, all R -algebroid A-modules with the identity
morphism IA on A form a subcategory ModAlg(R) /A of ModAlg(R) .

Definition 7 [18]. Let A be an R -algebroid and M be a pre-R -algebroid with the same set of objects A0 and
let A have an associative action on M . A pre-R -algebroid morphism µ : M −→ A is called an “R -algebroid
precrossed module” or an “R -algebroid precrossed A-module” if the condition

CM1) µ (am) = a (µm) and µ
(
ma′

)
= (µm) a′

is satisfied, and µ : M −→ A is called an “R -algebroid crossed module” or an “R -algebroid crossed A-module”
if a second condition,

CM2) mµm′
= mm′ = µmm′,

is satisfied, for all a, a′ ∈ A and m,m′ ∈ M with ta = sm, tm = sa′ = sm′ . Thus, a crossed module is a
precrossed module satisfying CM2.

Let M = (µ : M −→ A) and N = (η : N −→ B) be two (pre)crossed modules of R -algebroids and
let f : M −→ N be a pre-R-algebroid morphism and g : A −→ B be an R -algebroid morphism. The pair
(f, g) : M −→ N is called a (pre)crossed module morphism if the conditions

1. f (am) = ga (fm) and f
(
ma′

)
= (fm)

ga′

2. (ηf) (m) = (gµ) (m)

are satisfied, for all a, a′ ∈ A and m ∈ M with ta = sm, tm = sa′ . The meaning of the second condition is that
the diagram in Figure 1 is commutative.

2865



AVCIOĞLU and AKÇA/Turk J Math

M f //

µ

��

N

η

��
A

g
// B

Figure 1

Note, also, that if µ : M −→ A is a (pre)crossed module then M is an A-module and a (pre)crossed module
morphism is a module morphism satisfying the second condition.

Thus, all R -algebroid precrossed modules and their morphisms form a category denoted by PXAlg(R) .
Moreover, all R -algebroid precrossed A-modules with the identity morphism on A form a subcategory
PXAlg(R) /A of PXAlg(R) . Similarly, all R -algebroid crossed modules form the category XAlg(R) and
all R -algebroid crossed A-modules form the category XAlg(R) /A, which is a subcategory of XAlg(R) . Ob-
viously, XAlg(R) is a full subcategory of PXAlg(R) and XAlg(R) /A is a full subcategory of PXAlg(R) /A.

Example 8 [18]. If A is an R -algebroid and I is a two-sided ideal of A , then the inclusion morphism

i : I −→ A

is a crossed module with the action of A on I defined by

ab = ab and ba
′
= ba′

for all a, a′ ∈ A , b ∈ I with ta = sb , tb = sa′ .

3. Free R-algebroid modules

Clearly an R -algebroid module (M,A) comes with a function ξM : Mor (M) −→ A0 × A0 defined as ξMm =

(sm, tm) for all m ∈ M. This motivates us to form a category, Sets0/Alg(R), whose objects are all functions
ω : K −→ A0×A0 defined as ωk = (ω1k, ω2k) , where K is a set and A is an R -algebroid, and whose morphisms
are all pairs (f, g0 × g0) : ω −→ ω′ where if ω′ : K′−→ B0 × B0 then f : K −→ K′ is a function, g : A −→ B
is an R -algebroid morphism, g0 is the restriction of g on A0 , and g0 × g0 : A0 × A0 −→ B0 × B0 is defined as
(g0 × g0) (x, y) = (g0x, g0y) for all x, y ∈ A0 , making the diagram in Figure 2 commutative.

K f //

ω

��

K′

ω′

��
A0 × A0 g0×g0

// B0 × B0

Figure 2

By fixing the R -algebroid A and taking g0 × g0 as IA0×A0
, the identity function on A0 × A0 , we obtain a

subcategory Sets0/(Alg(R)/A) of Sets0/Alg(R).
Note that, for each R -algebroid module (M,A) , the function ξM is an object of Sets0/ (Alg(R)/A) .
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Proposition 9 For any object ω : K −→ A0 ×A0 of Sets0/ (Alg(R)/A) there exists an R -algebroid A-module
(F (ω) ,A) and a morphism (im, IA0×A0

) : ω −→ ξF(ω)
such that for all R -algebroid A-modules (N,A) and for

all morphisms (f, IA0×A0
) : ω −→ ξN there exists a unique A-module morphism (α, IA) : (F (ω) ,A) −→ (N,A)

satisfying f = αim , which means that the diagram in Figure 3 is commutative.

K im //

f

!!B
BB

BB
BB

BB
BB

BB
BB

BB
B F (ω)

α∃!

��
N

Figure 3

(F (ω) ,A) , with the morphism (im, IA0×A0
) , is called the free R -algebroid A-module determined by ω . The

free module is unique up to isomorphism.

Proof Provided that n ∈ N+ , k, k1, ..., kn ∈ K and a, a1, ..., an, a
′, a′1, ..., a

′
n ∈ A, consider all elements

of the form aka′ under the conditions ta = ω1k and sa′ = ω2k , and tying such elements construct all
words of the form a1k1a

′
1a2k2a

′
2...ankna

′
n under the conditions ta′1 = sa2, ..., ta

′
n−1 = san . For any word

pi = ai1ki1a
′
i1
...ainkina

′
in

define its source as spi = sai1 and its target as tpi = ta′in , and for all x, y ∈ A0

denote the free additive abelian group generated by all words with source x and target y by G (ω) (x, y) .
Obviously, each element of G (ω) (x, y) is of the form

∑
i

pi where pi s are words with source x and target y .

Now we consider the normal subgroup N (x, y) of G (ω) (x, y) generated by all elements of forms

a1k1a
′
1... (ai + a′′i ) kia

′
i...ankna

′
n − a1k1a

′
1...aikia

′
i...ankna

′
n − a1k1a

′
1...a

′′
i kia

′
i...ankna

′
n

a1k1a
′
1...aiki (a

′
i + a′′′i ) ...ankna

′
n − a1k1a

′
1...aikia

′
i...ankna

′
n − a1k1a

′
1...aikia

′′′
i ...ankna

′
n

(r · a1) k1a′1...aikia′i...ankna′n − a1k1a
′
1... (r · ai) kia′i...ankna′n

(r · a1) k1a′1...aikia′i...ankna′n − a1k1a
′
1...aiki (r · a′i) ...ankna′n

for all r ∈ R . If we divide G (ω) (x, y) by N (x, y) then we get an abelian quotient group [G (ω) (x, y)] of
which elements are cosets of N (x, y) . We denote [G (ω) (x, y)] with F (ω) (x, y) , and the cosets pi + N (x, y)

and
∑
i

pi + N (x, y) with [pi] and
[∑

i

pi

]
, respectively, for all pi,

∑
i

pi ∈ G (ω) (x, y) . It is obvious that[∑
i

pi

]
=
∑
i

[pi] .

Now we can define an R -action on F (ω) (x, y) as r · [pi] =
[
(r · ai1) ki1a′i1 ...ainkina

′
in

]
and r ·

(∑
i

[pi]

)
=∑

i

[r · pi] for all r ∈ R , and with this action the quotient group F (ω) (x, y) is clearly an R -module.

Hence, the family F (ω) = {F (ω) (x, y) : x, y ∈ A0} becomes a pre-R -algebroid by the composition
defined for all x, y, z ∈ A0 as

F (ω) (x, y)× F (ω) (y, z) −→ F (ω) (x, z)(∑
i

[pi] ,
∑
j

[pj ]

)
7−→

(∑
i

[pi]

)(∑
j

[pj ]

)
=
∑
i,j

[pipj ] =
∑
i

∑
j

[pipj ]
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where if pi = ai1ki1a
′
i1
...ainkina

′
in

and pj = aj1kj1a
′
j1
...ajn′kjn′a

′
jn′ then pipj = ai1ki1a

′
i1
...ainkina

′
in
aj1kj1a

′
j1
...

ajn′kjn′a
′
jn′ .

Moreover, an associative A-action on F (ω) can be defined as a

(∑
i

[pi]

)
=
∑
i

[api] and
(∑

i

[pi]

)a′

=

∑
i

[
pa

′

i

]
where api = (aai1) ki1a

′
i1
...ainkina

′
in

and pa
′

i = ai1ki1a
′
i1
...ainkin

(
a′ina

′) under the condition ta = spi ,

tpi = sa′ , and this action makes F (ω) an A-module.

Define im : K −→ F (ω) as im (k) = [1k1] (= [1ω1kk1ω2k]) and α : F (ω) −→ N as α [aka′] = a (fk)
a′

,

α [pi] = α
[
ai1ki1a

′
i1

]
...α

[
ainkina

′
in

]
and α

(∑
i

[pi]

)
=
∑
i

α [pi] for all (f, IA0×A0
) : ω −→ ξN . It can easily be

shown that (im, IA0×A0
) is a morphism from ω to ξF(ω)

and (α, IA) is an A-module morphism from (F (ω) ,A)

to (N,A) satisfying f = αim . Obviously, α is unique from its definition. Moreover, it can be shown that
(F (ω) ,A) with the morphism (im, IA0×A0

) is unique up to isomorphism. 2

The construction of the free module gives a functor F from Sets0/ (Alg(R)/A) to ModAlg(R) /A defined
as F (ω) = (F (ω) ,A) on objects and as F (f, IA0×A0

) = (Ff, IA) on morphisms such that Ff ([aka′]) =

[a (fk) a′] on generators.

Proposition 10 The functor F is the left adjoint of the forgetful functor U :ModAlg (R) /A−→Sets0/ (Alg(R)/A) ,
which is defined as U (N,A) = ξN for each R -algebroid module (N,A) and is defined as U (g, IA) = (Ug, IA0×A0

)

on morphisms such that (Ug) (n) = gn for all n ∈ N.

Proof We must find a natural equivalence

Φ : (ModAlg (R) /A) (F (−) , (−)) ∼= (Sets0/ (Alg(R)/A)) (−, U (−)) ,

which is required to give a map

Φ : Ob (Sets0/ (Alg(R)/A))×Ob (ModAlg (R) /A) −→ Sets
(ω : K −→ A0 × A0, (N,A)) 7−→ Φ(ω, (N,A))

such that Φ(ω, (N,A)) is a bijection from (ModAlg (R) /A) (F (ω) , (N,A)) to (Sets0/ (Alg(R)/A)) (ω,U (N,A)

= ξN) and is natural in both ω and (N,A) for all ω ∈ Ob (Sets0/ (Alg(R)/A)) and (N,A) ∈ Ob (ModAlg (R) /A) .
We abbreviate Φ(ω, (N,A)) as Φ(ω,A) and define Φ(ω,N) as Φ(ω,N) (f, IA) = (Φ (ω,N) (f) , IA0×A0

)

such that
Φ(ω,N) (f) : K −→ N

k 7−→ Φ(ω,N) (f) (k) = f [1k1]

for all (f, IA) ∈ (ModAlg (R) /A) ((F (ω) ,A) , (N,A)) where ω : K → A0×A0 . Clearly, Φ(ω,N) is well defined
and 1-1. It is also onto since each morphism

(h, IA0×A0
) : (ω : K −→ A0 × A0) −→ (ξN : N −→ A0 × A0)

is the image of the morphism (f, IA) under Φ(ω,N) , where f : F (ω) −→ N is defined as f [aka′] = a (hk)
a′

on generators.
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Moreover, provided that (−)
• is a composition with (−) from right, for all (g, IA0×A0

) : ω −→ ω′ ,
(f, IA) : ((F (ω′) ,A) −→ (N,A)) and k ∈ K(

Φ(ω,N) (Fg)
•)

(f) (k) =
(
Φ(ω,N) (Fg)

•
(f)
)
(k) = (Φ (ω,N) (f (Fg))) (k)

= (f (Fg)) [1k1] = f [1 (gk) 1]

= (Φ (ω′,N) (f)) (gk) = ((Φ (ω′,N) (f)) g) (k)

= (g• (Φ (ω′,N) (f))) (k) = (g•Φ(ω′,N)) (f) (k) ,

i.e. the diagram in Figure 4 is commutative and Φ(ω,N) is natural in ω .

(ModAlg (R) /A) ((F (ω) ,A) , (N,A))
Φ(ω,N) // (Sets0/ (Alg (R) /A)) (ω, ξN)

(ModAlg (R) /A) ((F (ω′) ,A) , (N,A))
Φ(ω′,N)

//

(Fg)•

OO

(Sets0/ (Alg (R) /A)) (ω′, ξN)

g•

OO

Figure 4

A similar calculation shows that the diagram in Figure 5 is commutative for each (g, IA) ∈ (ModAlg (R) /A) ((N,A) ,

(N′,A)) , where (−)• is composition with (−) from left, and Φ(ω,N) is natural in (N,A) .

(ModAlg (R) /A) ((F (ω) ,A) , (N,A))
Φ(ω,N) //

g•

��

(Sets0/ (Alg (R) /A)) (ω, ξN)

(Ug)•

��
(ModAlg (R) /A) ((F (ω) ,A) , (N′,A))

Φ(ω,N′)
// (Sets0/ (Alg (R) /A))

(
ω, ξN′

)
Figure 5

2

4. Free R-algebroid precrossed modules

The fact that if η : N −→ A is a (pre)crossed module then there is a restricted function ηm : Mor (N) −→ A as
ηm (n) = ηn motivates us to form a category Sets/Alg(R) whose objects are all functions ω : K −→ A where
K is a set and A is an R -algebroid such that ωk is a morphism of A for all k ∈ K and whose morphisms
are all pairs (f, g) : ω −→ ω′ where if ω′ : K′−→ B then f : K −→ K′ is a function and g : A −→ B is an
R -algebroid morphism making the diagram in Figure 6 commutative.

K f //

ω

��

K′

ω′

��
A

g
// B

Figure 6

By fixing the R -algebroid A and taking g as IA , we obtain a subcategory Sets/(Alg(R)/A) of Sets/Alg(R).
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Note that, for each precrossed or crossed A-module N = (η : N −→ A) , the function ηm : Mor (N) −→ A
is an object of Sets/Alg(R).

Proposition 11 For any object ω : K −→ A of Sets/ (Alg(R)/A) there exists an R -algebroid precrossed
A-module FP (ω) = (ω

P
: FP (ω) −→ A) and a morphism

(
i
p
, IA
)
: ω −→ ω

Pm
such that for all R -algebroid

precrossed A-modules N = (η : N −→ A) and for all morphisms (f, IA) : ω −→ η
m

there exists a unique
precrossed A-module morphism (α, IA) : FP (ω) −→ N satisfying f = αip , which means the diagram in Figure
7 is commutative.

K
ip //

f

!!D
DD

DD
DD

DD
DD

DD
DD

DD
D FP (ω)

α∃!

��
N

Figure 7

FP (ω) , with the morphism
(
i
p
, IA
)
, is called the free R -algebroid precrossed A-module determined by ω . The

free precrossed module is unique up to isomorphism.

Proof ω determines a function ωA0
: K −→ A0 × A0 as ωA0

(k) = (s (ωk) , t (ωk)) and from the previous
section there exists a free R -algebroid A-module F (ωA0

) determined by ωA0
, with an A-action defined as

a′′
[aka′] = [(a′′a) ka′] and [aka′]

a′′′
= [ak (a′a′′′)] on generators with ta′′ = sa and ta′ = sa′′′ . Now, taking

FP (ω) = F (ωA0
) , define ω

P
: FP (ω) −→ A as ω

P
[aka′] = a (ωk) a′ on generators and i

p
: K −→ FP (ω) as

ipk = [1k1] for all k ∈ K. It can easily be checked that, by these definitions, FP (ω) = (ω
P
: FP (ω) −→ A) is

a precrossed module and
(
ip , IA

)
is a morphism from ω to ω

Pm
.

Defining α : FP (ω) −→ N as α [aka′] = a(fk)a
′ on generators, since the rest are detail, completes the

proof. 2

As in the case of free modules, the construction of free precrossed module gives a functor FP :

Sets/ (Alg(R)/A) −→ PXAlg(R)/A defined as FP (ω) = (ω
P
: FP (ω) −→ A) on objects and as FP (f, IA) =

(FP f, IA) on morphisms such that FP f [aka′] = [a (fk) a′] on generators.

Proposition 12 The functor FP is the left adjoint of the forgetful functor U : PXAlg(R)/A −→ Sets/ (Alg(R)/A) ,
which for a precrossed module N = (η : N −→ A) gives the function η

m
and for a precrossed A-module mor-

phism (f, IA) : N −→ N ′ gives the morphism U (f, IA) = (Uf, IA) : ηm
−→ η′

m
such that Uf (n) = fn for all

n ∈ N .

Proof We omit the proof, since the constructions are almost the same as those in the proof of Proposition
10. 2
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5. Peiffer ideal of a precrossed module

Since our aim in the next section is to obtain the free R -algebroid crossed modules, in this section we construct
the Peiffer ideal for a precrossed module of R -algebroids to get a crossed module. The term ‘Peiffer element’
was first used by Brown and Huebschmann [9], and Baus and Conduché [6] gave a substantial theory of Peiffer
commutator calculus. Brown et al. used the Peiffer subgroup to obtain crossed modules of groups in [7] and
Shammu used Peiffer commutators to get crossed modules of algebras in [22].

Definition 13 Let M =(µ : M −→ A) be a precrossed module of R -algebroids and let m,m′ be two
morphisms of M satisfying the condition tm = sm′. The Peiffer commutators of m and m′ are defined
as Jm,m′K1 = mµm′ −mm′ and Jm,m′K2 = µmm′ −mm′ .

If M is a crossed module then both of these commutators are zero. Conversely, a precrossed module in
which all of these commutators are zero is a crossed module.

For all x, y ∈ A0 , we denote the subgroup of M (x, y) generated by JM,MKg (x, y) = {Jm,m′K1, Jm,m′K2 :

m,m′ ∈ M, x = sm, tm′ = y} , the set of all Peiffer commutators of M (x, y) , by JM,MK (x, y) . Since M (x, y) is
abelian, JM,MK (x, y) is also abelian. By a direct calculation, it can be shown that r · Jm,m′K1 = Jr ·m,m′K1 =Jm, r ·m′K1 and r · Jm,m′K2 = Jr ·m,m′K2 = Jm, r ·m′K2 for all Jm,m′K1 , Jm,m′K2 ∈ JM,MK (x, y) and for all
r ∈ R , which means JM,MK (x, y) is closed under the action of R , and this results in that JM,MK (x, y) is an
R -module, an R -submodule of M (x, y) .

Proposition 14 (i) The family JM,MK = {JM,MK (x, y) : x, y ∈ A0} is a two sided ideal of M.

(ii) JM,MK is closed under the action of A .

Proof For all w, x, y, z ∈ A0 , Jm,m′K1, Jm,m′K2 ∈ JM,MK (x, y) , m′′ ∈ M (w, x) , m′′′ ∈ M (y, z) , a ∈ A (w, x) ,
and a′ ∈ A (y, z) , a direct calculation gives that

(i) m′′Jm,m′K1 = Jm′′m,m′K1 ∈ JM,MK (w, y)
Jm,m′K1m′′′ = Jm,m′m′′′K1 − Jmµm′

,m′′′K1 ∈ JM,MK (x, z)
m′′Jm,m′K2 = Jm′′m,m′K2 − Jm′′,µm m′K2 ∈ JM,MK (w, y)
Jm,m′K2m′′′ = Jm,m′m′′′K2 ∈ JM,MK (x, z)

(ii) aJm,m′K1 = Jam,m′K1 ∈ JM,MK (w, y)
Jm,m′Ka′

1 = Jm, (m′)
a′K1 ∈ JM,MK (x, z)

aJm,m′K2 = Jam,m′K2 ∈ JM,MK (w, y)
Jm,m′Ka′

2 = Jm, (m′)
a′K2 ∈ JM,MK (x, z) .

2

The ideal JM,MK is called the ‘Peiffer’ ideal of M.
Now construct the family

MJM,MK =

{
MJM,MK (x, y) = M (x, y)JM,MK (x, y) : x, y ∈ A0

}
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of quotient R -modules. Clearly, MJM,MK is a pre-R -algebroid which is an A-module thanks to the addition,

multiplication, R -action and associative A-action induced by those defined on M.
We write Mcr instead of MJM,MK and m instead of m+ JM,MK (x, y) for all m ∈ M (x, y) , to abbreviate.

µ induces a map
µcr : Mcr −→ A

m 7−→ µcrm = µm

since µ maps JM,MK to 0A =
{
0A(x,y) : x, y ∈ A0

}
, where 0A(x,y) is the additive identity of A (x, y) .

Proposition 15 (i) If M = (µ : M −→ A) is a precrossed module of R -algebroids, then Mcr = (µcr : Mcr −→
A) is a crossed module.

(ii) Provided that ϕ : M −→ Mcr is the quotient morphism, for all crossed A-modules N =(η : N −→ A)

and for all precrossed A-module morphisms (α, IA) : M −→ N , there exists a unique crossed A-module
morphism (α′, IA) : Mcr −→ N satisfying α = α′ϕ .

Proof (i) It can easily be shown that µcr is a pre-R -algebroid morphism. We show that it satisfies the
crossed module conditions: For all m,m′ ∈ M and for all a, a′ ∈ A with ta = sm , tm = sm′ = sa′

CM1) µcr (am) = µcr (am) = µ (am) = a (µm) = a (µcrm)

and similarly µcr
(
ma′

)
= (µcrm) a′ ,

CM2) mµcrm′
= mµm′

= mµm′ = mµm′
+ JM,MK (sm, tm′)

= mµm′
+ (−Jm,m′K1 + JM,MK (sm, tm′))

= mµm′
+ (−

(
mµm′ −mm′

)
+ JM,MK (sm, tm′))

= mm′ + JM,MK (sm, tm′) = mm′ = mm′

and similarly µcrmm′ = mm′ .
(ii) Define α′ : Mcr −→ N as α′m = αm . Obviously, (α′, IA) is a crossed A-module morphism and for

all m ∈ M
(α′ϕ) (m) = α′ (ϕm) = α′m = αm.

The uniqueness of α′ comes from its definition. 2

Thus, we get a functor (−)
cr

: PXAlg (R) −→ XAlg (R) , which gives a crossed module Mcr for any
precrossed module M and is defined as (f, g)

cr
= (f cr, g) on morphisms where if (f, g) : M −→ M′ then

(f cr, g) : Mcr −→ M′cr such that f crm = fm for all m ∈ M.

Proposition 16 The functor (−)
cr

: PXAlg (R) −→ XAlg (R) is the left adjoint of the inclusion functor In :
XAlg (R) −→ PXAlg (R) .

Proof For all M ∈Ob (PXAlg (R)) , N ∈Ob (XAlg (R)) and crossed module morphisms g = (g1, g2) :

Mcr −→ N the pair h = (h1, g2) : M −→ N with h1m = g1m for all m ∈ M is clearly a precrossed
module morphism. Then the map Φ(M,N ) defined as

Φ(M,N ) : XAlg (R) (Mcr,N ) −→ PXAlg (R) (M,N )
g = (g1, g2) 7−→ Φ(M,N ) (g) = h = (h1, g2)

can be shown to be a bijection, which is natural in both M and N , and this completes the proof. 2
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6. Free R-algebroid crossed modules

Proposition 17 For any object ω : K −→ A of Sets/ (Alg(R)/A) there exists an R -algebroid crossed A-
module F

X
(ω) = (ω

X
: F

X
(ω) −→ A) and a morphism (ic, IA) : ω −→ ω

Xm
such that for all R -algebroid

crossed A-modules N = (η : N −→ A) and for all morphisms (f, IA) : ω −→ η
m

there exists a unique crossed
A-module morphism (α, IA) : FX

(ω) −→ N such that f = αic , i.e. the diagram in Figure 8 is commutative.

N

η

��

K

f

44

ω

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

ic // F
X
(ω)

ω
X

��

∃!
α

==

A

Figure 8

F
X
(ω) , with the morphism (ic, IA) , is called the free R -algebroid crossed A-module determined by ω . The free

crossed module is unique up to isomorphism.

Proof In the fourth section we got the free R -algebroid precrossed A-module FP (ω) = (ω
P
: FP (ω)−→ A)

determined by ω , with the morphism
(
i
p
, IA
)
: ω −→ ω

Pm
.

Then, taking F
X
(ω) = (FP (ω))

cr , where ω
X
= ωcr

P
, and then defining ic : K −→ F

X
(ω) as ick = [1k1]

for all k ∈ K and α : F
X
(ω) −→ N as α[aka′] = a(fk)a

′ on generators completes the proof. 2

Composing the free precrossed module functor FP and the functor (−)
cr we get a functor F

X
:

Sets/ (Alg(R)/A) −→ XAlg(R)/A defined as F
X
(ω) = (ω

X
: F

X
(ω) −→ A) on objects and as F

X
(f, IA) =

(F
X
f, IA) on morphisms where (F

X
f) [aka′] = [a (fk) a′] on generators.

Proposition 18 If ω : K −→ A and (g, IA) : ω −→ ω′ in Sets/ (Alg(R)/A) then ω′
Xg

: (F
X
g) (F

X
(ω)) → A

where ω′
Xg

is the restriction of ω′
X

on (F
X
g) (F

X
(ω)) , with ig : g (K) −→ (F

X
g) (F

X
(ω)) defined as ig (gk) =

[1gk1] , is the free R -algebroid crossed A-module determined by ω′
g : g (K) −→ A where ω′

g is the restriction of
ω′ on g (K) .

Proof For any R -algebroid crossed A-module N = (η : N −→ A) and for any morphism (f, IA) : ω
′
g −→ N

the map αg : (F
X
g) (F

X
(ω)) −→ N defined as αg[a (gk) a′] =

a(fgk)a
′ on generators clearly forms a unique

crossed module morphism with IA and makes the universal diagram commutative, completing the proof. 2

Proposition 19 As in the case of free precrossed modules, the functor F
X

is the left adjoint of the forgetful
functor U : XAlg(R)/A −→ Sets/ (Alg(R)/A) , which for a crossed module N = (η : N −→ A) gives the
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function ηm and for a crossed A-module morphism (f, IA) : N −→ N ′ gives the morphism U (f, IA) = (Uf, IA) :

η
m
−→ η′

m
such that (Uf) (n) = fn for all n ∈ N.

Proof For all N ∈Ob (XAlg(R)/A) and ω∈Ob (Sets/ (Alg(R)/A)) we have bijections (XAlg(R)/A) (F
X
(ω) ,N ) ∼=

(PXAlg(R)/A) (FP (ω) ,N ) from Proposition 16 and (PXAlg(R)/A) (FP (ω) ,N ) ∼= (Sets/ (Alg(R)/A)) (ω, ηm)

from Proposition 12, and their composition gives the needed isomorphism which is natural in N and ω . 2

Proposition 20 i) There exists a natural transformation

δ = {(δω,IA) : ω ∈ Sets/ (Alg(R)/A)} : ISets/(Alg(R)/A) =⇒ UF
X

where (δω,IA) : ω −→ (UF
X
) (ω) is a morphism for all ω ∈ Sets/ (Alg(R)/A) and ISets/(Alg(R)/A) is the identity

functor on Sets/ (Alg(R)/A) .
ii) For each ω ∈ Sets/ (Alg(R)/A) , N ∈ XAlg(R)/A and morphism (g, IA) : ω −→ U (N ) = η

m
there

exists a unique crossed A-module morphism (f, IA) : FX
(ω) −→ N such that g = (Uf) δω .

Proof i) If ω : K −→ A, defining δωk = [1k1] for all k ∈ K completes the proof since the rest are clear.

ii) Define f [aka′] = a (gk)
a′

on generators. Then obviously (f, IA) is a crossed A-module morphism
and gk = f [1k1] = (Uf) [1k1] = (Uf) δωk for all k ∈ K. Moreover, (Uf) δω = (Uf ′) δω implies gk = f [1k1] =

f ′[1k1] and f [aka′] = f ′[aka′] for all k ∈ K and for all generators [aka′] ∈ F
X
(ω) and this ensures the

uniqueness of f for fixed g . 2

Proposition 21 i) There exists a natural transformation

θ = {(θN ,IA) : N ∈ XAlg(R)/A} : F
X
U =⇒ IXAlg(R)/A

where (θN ,IA) : (FX
U) (N ) −→ N is a crossed A-module morphism for all N ∈ XAlg(R)/A and IXAlg(R)/A

is the identity functor on XAlg(R)/A .
ii) For all ω ∈ Sets/ (Alg(R)/A) , N ∈ XAlg(R)/A and crossed A-module morphism (f, IA) : FX

(ω) −→
N there exists a unique morphism (g, IA) : ω −→ U (N ) = ηm such that f = θN (F

X
g) .

Proof i) For each N = (η : N −→ A) , defining θN

(
[ana′]

)
= ana′ on generators completes the proof since

the rest are clear.
ii) Define gk = f [1k1] . Then

f [aka′] = a
(
f [1k1]

)a′

= a (gk)
a′

= θN [a (gk) a′] = θN (F
X
g) [aka′]

for all generators [aka′] ∈ F
X
(ω) . Moreover, g is unique since if (g′, IA) : ω −→ U (N ) is another morphism

with f = θN (F
X
g′) then

gk = f [1k1] = (θN (F
X
g′))

(
[1k1]

)
= θN

(
[1g′k1]

)
= 1(g′k)1 = g′k

for all k ∈ K. 2
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