т ̈̈вітак

On the asymptotic behavior of solution of certain systems of Volterra equations

Ewa SCHMEIDEL* ${ }^{*}$, Małgorzata ZDANOWICZ ${ }^{\text {© }}$

Institute of Mathematics, University of Bialystok, Białystok, Poland

| Received: 25.05.2018 | Accepted/Published Online: 21.09.2018 | Final Version: 27.11 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

This paper is concerned with the asymptotic property of the solution of a system of the linear Volterra difference equations. The criterion for the existence of a solution of the considered system that is asymptotically equivalent to a given sequence is established. The results presented here improve and generalize the results published by Diblik et al. Unlike in those works, here periodicity of the nonhomogeneous term of the equation is not assumed. Examples illustrate the obtained results.

Key words: Linear Volterra difference equation, asymptotic equivalence

1. Introduction and notation

We consider a Volterra system of difference equations

$$
\begin{equation*}
X(n+1)=A(n)+B(n) X(n)+\sum_{i=0}^{n} K(n, i) X(i) \tag{1}
\end{equation*}
$$

where $n \in \mathbb{N}:=\{0,1,2, \ldots\}$. Let \mathbb{R} denote the set of real numbers. Here $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)^{T}, B=$ $\operatorname{diag}\left(b_{1}, \ldots, b_{r}\right)$, and $X=\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{T}$, where $a_{s}, x_{s}: \mathbb{N} \rightarrow \mathbb{R}$ and $b_{s}: \mathbb{N} \rightarrow \mathbb{R} \backslash\{0\}, s=1, \ldots, r$. Moreover $K=\left(K_{s p}\right)_{s, p=1, \ldots, r}$, where $K_{s p}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ for $s, p \in\{1, \ldots, r\}$. By a solution of system (1) we mean a sequence $X=\left(x_{1}, x_{2}, \ldots, x_{r}\right)^{T}$ whose terms satisfy (1) for every $n \in \mathbb{N}$.

In the last years, there has been an interest among many authors to study the asymptotic behavior of solutions of Volterra difference equations. The results were published, e.g., by Appleby et al. [1], by Appleby and Patterson [2], by Berezansky et al. [3], by Gajda et al. [7], by Gil and Medina [8], by Gronek and Schmeidel [9], by Györi and Horváth [10], by Györi and Reynolds [11], by Medina [12, 13], by Migda and Migda [14, 17], by Migda et al. [18], and by Song and Baker [19].

In 2018, Migda and Migda [15] presented a new approach to the theory of asymptotic properties of solutions to nonlinear discrete Volterra equations in which a higher order forward difference operator is involved. The method of proof is based on using the iterated remainder operator and asymptotic difference pairs. This approach allows the authors to control the degree of approximation. Migda et al. [16], also in 2018, obtained sufficient conditions for the existence of the solutions with prescribed asymptotic behavior.

The following definition and lemma will be used in the sequel.

[^0]Definition 1 (asymptotically equivalent sequences) Sequences $x: \mathbb{N} \rightarrow \mathbb{R}$ and $y: \mathbb{N} \rightarrow \mathbb{R} \backslash\{0\}$ are called asymptotically equivalent if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{x(n)}{y(n)}=1 \tag{2}
\end{equation*}
$$

If two sequences x and y satisfy Definition 1, notation $x(n) \sim y(n)$ is often used instead of equality (2).

Lemma 1 (Schauder's fixed point theorem, [4]) Let S be a nonempty, convex, and compact subset of a Banach space and let $T: S \rightarrow S$ be continuous. Then T has a fixed point in S.

For $s, k \in\{1,2, \ldots, r\}$, we set

$$
\beta_{s}(n):=\prod_{i=0}^{n-1} b_{s}(i), \quad \tilde{a}_{s}(n):=\sum_{i=0}^{n-1} \frac{a_{s}(i)}{\beta_{s}(i+1)}
$$

and

$$
\begin{equation*}
M_{s k}(n):=\sum_{j=n}^{\infty} \sum_{i=0}^{j}\left|\frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)}\right| \tag{3}
\end{equation*}
$$

We define matrix $\tilde{M}:=\left(M_{s p}(0)\right)_{s, p=1, \ldots, r}$ and vector

$$
\tilde{A}:=\left(\sup _{n \in \mathbb{N}}\left|\tilde{a}_{1}(n)\right|, \ldots, \sup _{n \in \mathbb{N}}\left|\tilde{a}_{r}(n)\right|\right)^{T}
$$

Let us take $c_{s} \in \mathbb{R}, s=1, \ldots, r$ and vector $C=\left(c_{1}, c_{2}, \ldots, c_{r}\right)^{T}$. Moreover, \mathbb{I} stands for an $r \times r$ unit matrix. By D_{s} we denote the matrix formed by replacing the s-th column of $(\mathbb{I}-\tilde{M})$ by the column vector $\tilde{M}(C+\tilde{A})$.

2. Asymptotic formula for solutions of system (1)

In the following theorem we present the sufficient conditions for the existence of the solution of system (1), which is equivalent to a given sequence.

Theorem 1 Assume that $M_{s k}(0)<\infty$ for all $s, k \in\{1, \ldots, r\}$. If for some given constant vector C and $s=1, \ldots, r$, inequalities

$$
\begin{equation*}
\operatorname{det}(\mathbb{I}-\tilde{M}) \neq 0, \quad \frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\tilde{M})}>0, \quad c_{s}+\frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\tilde{M})}+\sup _{n \in \mathbb{N}}\left|\tilde{a}_{s}(n)\right|>0 \tag{4}
\end{equation*}
$$

are satisfied, then there exists a solution $X: \mathbb{N} \rightarrow \mathbb{R}^{r}$ of (1) such that

$$
\begin{equation*}
x_{s}(n) \sim\left(c_{s}+\tilde{a}_{s}(n)\right) \beta_{s}(n) \tag{5}
\end{equation*}
$$

for any $s=1, \ldots, r$.
Proof We define a vector $\left(\alpha_{1}(n), \ldots, \alpha_{r}(n)\right)^{T}, n \in \mathbb{N}$ as

$$
\begin{equation*}
\alpha_{s}(n)=\sum_{k=1}^{r} M_{s k}(n)\left(c_{k}+\sup _{n \in \mathbb{N}}\left|\tilde{a}_{k}(n)\right|+\alpha_{k}(0)\right) . \tag{6}
\end{equation*}
$$

The terms $\alpha_{s}(0), s=1,2, \ldots, r$ are well defined since (6) for $n=0$ turns into a system regarding $\alpha_{s}(0)$:

$$
\alpha_{s}(0)=\sum_{k=1}^{r} M_{s k}(0)\left(c_{k}+\sup _{n \in \mathbb{N}}\left|\tilde{a}_{k}(n)\right|+\alpha_{k}(0)\right), \quad s=1,2, \ldots, r
$$

which can be rewritten in the form

$$
\begin{equation*}
(\mathbb{I}-\tilde{M}) \alpha=\tilde{M}(C+\tilde{A}) \tag{7}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}(0), \alpha_{2}(0), \ldots, \alpha_{r}(0)\right)^{T}$. Since $\operatorname{det}(\mathbb{I}-\tilde{M}) \neq 0$, system (7) has a unique solution α, where by (4),

$$
\alpha_{s}(0)=\frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\tilde{M})}>0, \quad s=1,2, \ldots, r
$$

According to the assumption $M_{s k}(0)<\infty$ for $s, k \in\{1, \ldots, r\}$, we have that $\lim _{n \rightarrow \infty} M_{s k}(n)=0$ for $s=1, \ldots, r$. Hence, by (6), we note that also

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{s}(n)=0, \quad s=1,2, \ldots, r \tag{8}
\end{equation*}
$$

From (3), we get

$$
M_{s k}(n) \leq M_{s k}(0) \text { for } n \in \mathbb{N}
$$

Therefore, for $n \in \mathbb{N}$

$$
\sum_{k=1}^{r} M_{s k}(0)\left(c_{k}+\sup _{n \in \mathbb{N}}\left|\tilde{a}_{k}(n)\right|+\alpha_{k}(0)\right) \geq \sum_{k=1}^{r} M_{s k}(n)\left(c_{k}+\sup _{n \in \mathbb{N}}\left|\tilde{a}_{k}(n)\right|+\alpha_{k}(0)\right)
$$

It means that $\alpha_{s}(0) \geq \alpha_{s}(n), s=1,2, \ldots, r$, for any $n \in \mathbb{N}$.
Let \mathcal{B} be the Banach space of all real bounded sequences

$$
z=\left(z_{1}, z_{2}, \ldots, z_{r}\right)^{T}: \mathbb{N} \rightarrow \mathbb{R}^{r}
$$

equipped with the usual supremum norm. We define a subset $S \subset \mathcal{B}$ as

$$
S:=\left\{z(n) \in \mathcal{B}:\left|z_{s}(n)-\left(c_{s}+\tilde{a}_{s}(n)\right)\right| \leq \alpha_{s}(0), s=1,2, \ldots, r, n \in \mathbb{N}\right\}
$$

It is not difficult to prove that S is the nonempty, convex, and compact subset of \mathcal{B}.
Let us define a mapping $T: S \rightarrow \mathcal{B}, T=\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ in the following way:

$$
\begin{equation*}
\left(T_{s} z\right)(n)=c_{s}+\tilde{a}_{s}(n)-\sum_{k=1}^{r} \sum_{j=n}^{\infty} \sum_{i=0}^{j} \frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)} z_{k}(i) \tag{9}
\end{equation*}
$$

for any $s=1,2, \ldots, r$ and $n \in \mathbb{N}$.
We will prove that the mapping T has a fixed point in \mathcal{B}. We first show that $T(S) \subset S$. For $z \in S$, we
get

$$
\begin{align*}
\left|\left(T_{s} z\right)(n)-c_{s}-\tilde{a}_{s}(n)\right| & =\left|\sum_{k=1}^{r} \sum_{j=n}^{\infty} \sum_{i=0}^{j} \frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)} z_{k}(i)\right| \\
& \leq \sum_{k=1}^{r} \sum_{j=n}^{\infty} \sum_{i=0}^{j}\left|\frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)}\right|\left|z_{k}(i)\right| \\
& \leq \sum_{k=1}^{r} \sum_{j=n}^{\infty} \sum_{i=0}^{j}\left|\frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)}\right|\left(c_{k}+\tilde{a}_{k}(i)+\alpha_{k}(0)\right) \\
& \leq \sum_{k=1}^{r} M_{s k}(n)\left(c_{k}+\sup _{n \in \mathbb{N}}\left|\tilde{a}_{k}(n)\right|+\alpha_{k}(0)\right) \\
& =\alpha_{s}(n) \leq \alpha_{s}(0) \tag{10}
\end{align*}
$$

for any $s=1,2, \ldots, r$ and $n \in \mathbb{N}$.
Next, we prove that T is continuous. Let $z^{(q)}$ be a sequence in S such that $z^{(q)} \rightarrow z$ as $q \rightarrow \infty$. Since S is closed, $z \in S$. By (9), we get

$$
\begin{aligned}
\left|\left(T_{s} z^{(q)}\right)(n)-\left(T_{s} z\right)(n)\right| & \leq \sum_{k=1}^{r} \sum_{j=n}^{\infty} \sum_{i=0}^{j}\left|\frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)}\right|\left|z_{k}^{(q)}(i)-z_{k}(i)\right| \\
& \leq \sum_{k=1}^{r} \sum_{j=0}^{\infty} \sum_{i=0}^{j}\left|\frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)}\right| \sup _{i \in \mathbb{N}}\left|z_{k}^{(q)}(i)-z_{k}(i)\right| \\
& \leq \sum_{k=1}^{r} M_{s k}(0) \sup _{i \in \mathbb{N}}\left|z_{k}^{(q)}(i)-z_{k}(i)\right| \\
& \leq r \cdot \max _{s, p \in\{1,2, \ldots, r\}}\left\{M_{s p}(0)\right\} \cdot\left\|z^{(q)}-z\right\|
\end{aligned}
$$

and $\lim _{q \rightarrow \infty}\left\|T z^{(q)}-T z\right\|=0$. This means that T is continuous.
By Schauder's fixed point theorem (see Lemma 1), there exists $z \in S$ such that $z(n)=(T z)(n)$ for any $n \in \mathbb{N}$. Thus,

$$
\begin{equation*}
z_{s}(n)=c_{s}+\tilde{a}_{s}(n)-\sum_{k=1}^{r} \sum_{j=n}^{\infty} \sum_{i=0}^{j} \frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)} z_{k}(i) \tag{11}
\end{equation*}
$$

for any $s=1,2, \ldots, r$ and $n \in \mathbb{N}$.
Due to (8) and (10),

$$
\lim _{n \rightarrow \infty}\left|z_{s}(n)-c_{s}-\tilde{a}_{s}(n)\right|=\lim _{n \rightarrow \infty}\left|T_{s} z(n)-c_{s}-\tilde{a}_{s}(n)\right|=0
$$

Hence,

$$
z_{s}(n) \sim c_{s}+\tilde{a}_{s}(n), \quad s=1,2, \ldots, n
$$

Finally, we will show that there exists a connection between the fixed point $z \in S$ and the existence of the solution of (1). Considering (11) for $z_{s}(n+1)$ and $z_{s}(n), s=1,2, \ldots, r$, we get

$$
\begin{aligned}
\Delta\left(z_{s}(n)\right)= & z_{s}(n+1)-z_{s}(n) \\
= & \tilde{a}_{s}(n+1)-\tilde{a}_{s}(n)-\sum_{k=1}^{r} \sum_{j=n+1}^{\infty} \sum_{i=0}^{j} \frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)} z_{k}(i) \\
& +\sum_{k=1}^{r} \sum_{j=n}^{\infty} \sum_{i=0}^{j} \frac{K_{s k}(j, i) \beta_{k}(i)}{\beta_{s}(j+1)} z_{k}(i) \\
= & \tilde{a}_{s}(n+1)-\tilde{a}_{s}(n)+\sum_{k=1}^{r} \sum_{i=0}^{n} \frac{K_{s k}(n, i) \beta_{k}(i)}{\beta_{s}(n+1)} z_{k}(i), n \in \mathbb{N} .
\end{aligned}
$$

Putting $z_{s}(n)=\frac{x_{s}(n)}{\beta_{s}(n)}$, we obtain

$$
\frac{x_{s}(n+1)}{\beta_{s}(n+1)}-\frac{x_{s}(n)}{\beta_{s}(n)}=\frac{a_{s}(n)}{\beta_{s}(n+1)}+\sum_{k=1}^{r} \sum_{i=0}^{n} \frac{K_{s k}(n, i)}{\beta_{s}(n+1)} x_{k}(i)
$$

It yields

$$
x_{s}(n+1)=a_{s}(n)+b_{s}(n) x_{s}(n)+\sum_{k=1}^{r} \sum_{i=0}^{n} K_{s k}(n, i) x_{k}(i)
$$

for $s=1,2, \ldots, r$.
Consequently, X is a solution of (1), and formula (5) is satisfied.
Putting $r=1$, and assuming periodicity of B and $\max _{s, p \in\{1,2, \ldots, r\}}\left\{M_{s p}(0)\right\} \in(0,1)$, Theorem 1 reduces to Theorem 1 [5].

Theorem 1 improves and generalizes Theorem 1 of [6] in three ways, namely:

1) we do not require ω-periodicity of sequence B sequence;
2) since $\sup _{n \in \mathbb{N}}\left|a_{s}(n)\right|$ is nonnegative, our assumption

$$
c_{s}+\frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\tilde{M})}+\sup _{n \in \mathbb{N}}\left|\tilde{a}_{s}(n)\right|>0
$$

is weaker than assumption $c_{s}+\frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\bar{M})}>0$ employed in [6];
3) assumption $c_{1} c_{2} \ldots c_{r} \neq 0$ is omitted.

It means that if just one condition (or even two conditions) chosen from conditions

- sequence B is ω-periodic,
- $c_{s}+\frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\bar{M})}>0$,
- $c_{1} c_{2} \ldots c_{r} \neq 0$,
is not satisfied, Theorem 1 still generalizes Theorem 1 of [6]. To obtain Theorem 1 of [6] as a special case of Theorem 1 presented here, all the above conditions should be fulfilled.

The following examples illustrate three cases of system (1) for which Theorem 1 of [6] is not applicable, but our Theorem 1 is. In each example there is different reason why Theorem 1 of [6] cannot be applied.

Example 1 Let us consider system (1) where $r=2$ and

$$
\begin{array}{ll}
a_{1}(n)=-a_{2}(n)=\frac{9(-1)^{n}}{10^{n+1}}, & b_{1}(n)=b_{2}(n)=-1 \\
K_{11}(n, i)=-K_{22}(n, i)=\frac{3(-1)^{i} 2^{i}}{2^{2 n+3}}, & K_{12}(n, i)=-K_{21}(n, i)=\frac{9(-1)^{i} 5^{i}}{2^{n+2} 5^{n+1}}
\end{array}
$$

for $i, n \in \mathbb{N}$. It means that (1) takes the following form:

$$
\left\{\begin{array}{l}
x_{1}(n+1)=\frac{9(-1)^{n}}{10^{n+1}}-x_{1}(n)+\sum_{i=0}^{n} \frac{3(-1)^{i} 2^{i}}{2^{2 n+3}} x_{1}(i)+\sum_{i=0}^{n} \frac{9(-1)^{i} 5^{i}}{2^{n+2} 5^{n+1}} x_{2}(i) \tag{12}\\
x_{2}(n+1)=\frac{9(-1)^{n+1}}{10^{n+1}}-x_{2}(n)-\sum_{i=0}^{n} \frac{9(-1)^{i} 5^{i}}{2^{n+2} 5^{n+1}} x_{1}(i)-\sum_{i=0}^{n} \frac{3(-1)^{i} 2^{i}}{2^{2 n+3}} x_{2}(i)
\end{array}\right.
$$

Hence, we have

$$
\begin{gathered}
\beta_{s}(n)=\prod_{i=0}^{n-1} b_{s}(i)=(-1)^{n}, \sup _{n \in \mathbb{N}}\left|\tilde{a}_{s}(n)\right|=\sum_{i=0}^{\infty} \frac{9}{10^{i+1}}=1 \text { for } s=1,2 \\
M_{11}(0)=M_{22}(0)=3 \sum_{j=0}^{\infty} \sum_{i=0}^{j} \frac{2^{i}}{2^{2 j+3}}=1 \\
M_{12}(0)=M_{21}(0)=9 \sum_{j=0}^{\infty} \sum_{i=0}^{j} \frac{5^{i}}{2^{j+2} 5^{j+1}}=1
\end{gathered}
$$

$\tilde{M}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, and $\tilde{A}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Taking $C=\left(-\frac{3}{2},-\frac{3}{2}\right)^{T}$, we get $\tilde{M}(C+\tilde{A})=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$
and $\mathbb{I}-\tilde{M}=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right], \operatorname{det}(\mathbb{I}-\tilde{M})=-1$.
Further, $D_{1}=\left[\begin{array}{cc}-1 & -1 \\ -1 & 0\end{array}\right]$, $\operatorname{det} D_{1}=-1$ and $D_{2}=\left[\begin{array}{cc}0 & -1 \\ -1 & -1\end{array}\right]$, $\operatorname{det} D_{2}=-1$. We get $\frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\bar{M})}=1>0$, $c_{s}+\frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\tilde{M})}+\sup _{n \in \mathbb{N}}\left|\tilde{a}_{s}(n)\right|=-\frac{3}{2}+1+1=\frac{1}{2}>0, s=1,2$.

All the assumptions of Theorem 1 are satisfied, so there exists a solution $x: \mathbb{N} \rightarrow \mathbb{R}^{2}$ such that

$$
x_{1}(n) \sim\left(-\frac{3}{2}-\left(1-\frac{1}{10^{n}}\right)\right)(-1)^{n}=\left(\frac{5}{2}-\frac{1}{10^{n}}\right)(-1)^{n+1}
$$

and

$$
x_{2}(n) \sim\left(-\frac{3}{2}+\left(1-\frac{1}{10^{n}}\right)\right)(-1)^{n}=\left(\frac{1}{2}+\frac{1}{10^{n}}\right)(-1)^{n+1}
$$

Notice that in Example 1 we have $c_{s}+\frac{\operatorname{det} D_{s}}{\operatorname{det}(\mathbb{I}-\tilde{M})}=-\frac{3}{2}+1=-\frac{1}{2}<0$. It means that Theorem 1 of [6] is not applicable here.

In the next two examples periodicity of B is not assumed.

Example 2 Let us consider a scalar equation of the form (1)

$$
\begin{equation*}
x(n+1)=\frac{n+2}{2^{n}}+\frac{n+2}{n+1} x(n)+\sum_{i=0}^{n} \frac{n+2}{(i+1) 2^{n+i}} x(i) \tag{13}
\end{equation*}
$$

Let us take $c<-2$. Here $\beta(n)=n+1, \tilde{a}(n)=2-\frac{1}{2^{n-1}}, \sup _{n \in \mathbb{N}}|\tilde{a}(n)|=2, \tilde{M}=\left[\frac{8}{3}\right], \tilde{M}(C+\tilde{A})=\left[\frac{8}{3}(c+2)\right]$, $\operatorname{det}(\mathbb{I}-\tilde{M})=-\frac{5}{3}$, $\operatorname{det} D_{1}=\frac{8}{3}(c+2)$. All assumptions of Theorem 1 are satisfied. Hence, equation (13) has a solution $x(n) \sim\left(c+2-\frac{1}{2^{n-1}}\right)(n+1)$.

Additionally, for system (13), Theorem 1 is applicable whereas Theorem 1 of [5] is not, because of the assumption $\max _{s, p \in\{1,2, \ldots, r\}}\left\{M_{s p}(0)\right\} \in(0,1)$.

Example 3 Put $r=2$ and consider system (1) with $C=(0,0)^{T}$ and

$$
\begin{align*}
& a_{1}(n)=\frac{(n+1)!}{2^{n}}, \quad a_{2}(n)=\frac{4(-1)^{n}}{3^{n}}, \quad b_{1}(n)=n+1, \quad b_{2}(n)=1 \\
& K_{11}(n, i)=(-1)^{n+i} \frac{(n+1)!}{i!2^{n+i+3}}, \quad K_{12}(n, i)=(-1)^{i} \frac{(n+1)!}{2^{n+i+3}} \tag{14}\\
& K_{21}(n, i)=\frac{(-1)^{n}}{i!2^{n+i+3}}, \quad K_{22}(n, i)=\frac{1}{2^{n+i+3}}
\end{align*}
$$

Hence, $\beta_{1}(n)=n!, \beta_{2}(n)=1, \tilde{a}_{1}(n)=2-\frac{1}{2^{n-1}}, \tilde{a}_{2}(n)=3+\left(-\frac{1}{3}\right)^{n-1}$. Since $\sup _{n \in \mathbb{N}}\left|\tilde{a}_{1}(n)\right|=2, \sup _{n \in \mathbb{N}}\left|\tilde{a}_{2}(n)\right|=4$, and $M_{11}(0)=M_{12}(0)=M_{21}(0)=M_{22}(0)=\frac{1}{3}$, we have $\tilde{M}=\left[\begin{array}{cc}\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3}\end{array}\right], \tilde{A}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $\mathbb{I}-\tilde{M}=\left[\begin{array}{cc}\frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3}\end{array}\right]$, $\operatorname{det}(\mathbb{I}-\tilde{M})=\frac{1}{3}>0$.
Let us take $c_{1}=0, c_{2}=0$. Then $\tilde{M}(C+\tilde{A})=[2,2]^{T}$ and $D_{1}=\left[\begin{array}{cc}2 & -\frac{1}{3} \\ 2 & \frac{2}{3}\end{array}\right]$, $\operatorname{det} D_{1}=2, D_{2}=\left[\begin{array}{cc}\frac{2}{3} & 2 \\ -\frac{1}{3} & 2\end{array}\right]$, $\operatorname{det} D_{2}=2$. All the assumptions of Theorem 1 are satisfied, so there exists a solution $x: \mathbb{N} \rightarrow \mathbb{R}^{2}$ such that

$$
x_{1}(n) \sim\left(2-\frac{1}{2^{n-1}}\right) n!\text { and } x_{2}(n) \sim\left(3+\left(-\frac{1}{3}\right)^{n-1}\right)
$$

For the system of difference equations given by (14), Theorem 1 of [5] cannot be applied since $c_{1} c_{2}=0$.

Acknowledgment

This article received financial support from the Polish Ministry of Science and Higher Education under a subsidy for maintaining the research potential of the Faculty of Mathematics and Informatics, University of Bialystok.

References

[1] Appleby J, Györi I, Reynolds D. On exact convergence rates for solutions of linear systems of Volterra difference equations. J Difference Equ Appl 2006; 12: 1257-1275.
[2] Appleby JAD, Patterson DD. Large fluctuations and growth rates of linear Volterra summation equations. J Difference Equ Appl 2017; 23: 1047-1080.
[3] Berezansky L, Migda M, Schmeidel E. Some stability conditions for scalar Volterra difference equations. Opuscula Math 2016; 36: 459-470.
[4] Burton A. Stability by Fixed Point Theory for Functional Differential Equations. New York, NY, USA: Dover Publications, 2006.
[5] Diblík J, Schmeidel E. On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence. Appl Math Comput 2012; 218: 9310-9320.
[6] Diblík J, Schmeidel E, Ružičková M. Asymptotically periodic solutions of Volterra system of difference equations. Comput Math Appl 2010; 59: 2854-2867.
[7] Gajda K, Gronek T, Schmeidel E. On the existence of a weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete Contin Dyn Syst 2014; 19: 2681-2690.
[8] Gil M, Medina R. Nonlinear Volterra difference equations in space l^{p}. Discrete Dyn Nat Soc 2004; 2: 301-306.
[9] Gronek T, Schmeidel E. Existence of a bounded solution of Volterra difference equations via Darbo's fixed point theorem. J Differ Equations Appl 2013; 19: 1645-1653.
[10] Györi T, Horváth L. Asymptotic representation of the solutions of linear Volterra difference equations. Adv Difference Equ 2008; 2008: 932831.
[11] Györi I, Reynolds D. On asymptotically periodic solutions of linear discrete Volterra equations. Fasc Math 2010; 44: 53-67.
[12] Medina R. Asymptotic equivalence of Volterra difference systems. Int J Differ Equ Appl 2000; 1: 53-64.
[13] Medina R. Asymptotic behavior of Volterra difference equations. Comput Math Appl 2001; 41: 679-687.
[14] Migda J, Migda M. Asymptotic behavior of solutions of discrete Volterra equations. Opuscula Math 2016; 36: 265-278.
[15] Migda J, Migda M. Qualitative approximation of solutions to discrete Volterra equations. Electron J Qual Theory Differ Equ 2018; 3: 1-27.
[16] Migda J, Migda M, Nockowska-Rosiak M. Asymptotic properties of solutions to second-order difference equations of Volterra type. Discrete Dyn Nat Soc 2018; 2018: 2368694.
[17] Migda M, Migda J. Bounded solutions of nonlinear discrete Volterra equation. Math Slovaca 2016; 66: 1169-1178.
[18] Migda M, Schmeidel E, Ružičková M. Boundedness and stability of discrete Volterra equation. Adv Difference Equ 2015; 47: 1-11.
[19] Song Y, Baker CTH. Admissibility for discrete Volterra equations. J Difference Equ Appl 2006; 12: 433-457.

[^0]: *Correspondence: eschmeidel@math.uwb.edu.pl
 2010 AMS Mathematics Subject Classification: 39A10, 39A22

