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Abstract: In the present paper, we consider an inverse problem for the Sturm–Liouville operator with a finite number
of discontinuities at interior points and boundary conditions polynomially dependent on the spectral parameter on an
arbitrary finite interval, and prove the Hochstadt–Lieberman-type theorem for this problem.
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1. Introduction
We consider the boundary value problem $ generated by the second-order differential equation of Sturm–
Liouville (S-L) type

y′′ + (λ− q(x))y = 0 (1.1)

for x ∈ [a0, b0] , with the boundary conditions{
a(λ)y′(a0, λ)− b(λ)y(a0, λ) = 0,

c(λ)y′(b0, λ)− d(λ)y(b0, λ) = 0,
(1.2)

and the transmission (discontinuous) conditions{
y(xp + 0) = αpy(xp − 0), p = 1, 2, 3, ..., ℓ,

y′(xp + 0) = α−1
p y′(xp − 0), p = 1, 2, 3, ..., ℓ,

(1.3)

where λ is the spectral parameter, q is a real-valued function in L2(a0, b0) , αp ∈ R and αp ̸= 0 for
p = 1, 2, 3, ..., ℓ , a0 < x1 < x2 < ... < xk−1 < xk = a0+b0

2 < xk+1 < ... < xℓ < b0 , a(λ) , b(λ) , c(λ) ,
and d(λ) are real polynomials as follows:

a(λ) =

m∑
j=1

ajλ
j , b(λ) =

m∑
j=1

bjλ
j , c(λ) =

r∑
j=1

cjλ
j , d(λ) =

r∑
j=1

djλ
j . (1.4)
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Without loss of generality, we assume that am = cr = 1 and
∫ b0
a0

q(x)dx = 0 .

S-L problems with interior discontinuities arise from several models such as quantum mechanics models
(for example, in the description of delta interactions [1]), physical or geophysical models, and quantum physics
(for example, in the oscillation of the Earth [2, 11], or the description of radially symmetric quantum trees [15]).

Inverse problems for the S-L equation (1.1) without discontinuity were studied under various conditions
on the potential q(x) by several mathematicians (for example, see [10]). In the case where the problem has one
transmission condition, the asymptotic formulas for the eigenvalues and the eigenfunctions were investigated
in [13, 14, 16, 17] and the references therein. Moreover, by Weyl–Titchmarsh M -function, the uniqueness of
the solution for the inverse problem $ with Robin boundary conditions (i.e. a(λ) = c(λ) = 1 , b(λ) = h ,
d(λ) = −H , where h and H are real numbers) and an arbitrary number of transmission conditions on the
interval (0, 1) were studied in [18]. Recently, the asymptotic forms of eigenvalues and eigenfunctions of $ with
one discontinuity at x = 1/2 ∈ (0, 1) were obtained by Keskin and Ozkan [8], and the potential q(x) was
reconstructed from nodal points (zeros of eigenfunctions).

In 1987, Hochstadt and Lieberman considered equation (1.1) on (0,1) with Robin boundary conditions,
where q ∈ L1(0, 1) . They proved that the spectrum of the problem and q|( 1

2 ,1)
determine q(x) uniquely (see

[7]). Next, some mathematicians obtained more results and generalized Hochstadt and Lieberman’s results
under various conditions on S-L operators. In [6], Hald proved a Hochstadt–Lieberman result in the case
where the problem has one discontinuous condition. Then, for S-L boundary value problems (BVPs) with a
reflection symmetry, Kobayashi proved a similar result [9]. Later, Gesztesy and Simon by partial spectrum and
information of q(x) established a generalization of the Hochstadt–Lieberman theorem [5]. Shieh et al. presented
some Hochstadt–Lieberman-type theorems for $ on (0, 1) under Robin boundary conditions with arbitrary finite
number of discontinuities [19]. Also, in [20], Wang and Koyunbakan studied this for discontinuous BVPs with
boundary conditions linearly dependent on the spectral parameter.

The purpose of the presented paper is to discuss some Hochstadt–Lieberman-type theorems for S-L
BVPs with an arbitrary finite number of transmission conditions on finite intervals and boundary conditions
polynomially dependent on the spectral parameter. First, we present a Hochstadt–Lieberman-type theorem in
the case of one transmission condition at x = 1/2 inside the interval (0, 1) . Then we will generalize our results
for the BVP $ with discontinuities at the points x1, x2, ..., xℓ ∈ (a0, b0) .

2. Preliminaries
Let s(x, λ) and u(x, λ) be the solutions of (1.1) on the interval (0, 1) satisfying the initial conditions

s(0, λ) = a(λ), s′(0, λ) = b(λ), u(1, λ) = c(λ), u′(1, λ) = d(λ).

Denote the Weyl–Titchmarsh M -function corresponding to (1.1) as follows:

M(λ) =
s(1, λ)

s′(1, λ)
,

which is a meromorphic function. We know that M uniquely determines the potential q(x) (see [3, 18]).
Moreover, it is not difficult to show that the solution s(x, λ) satisfies the following integral equation (for more
details see [12]):

s(x, λ) = a(λ) cos
√
λx+ b(λ)

sin
√
λx√
λ

+

∫ x

0

sin
√
λ(x− t)√
λ

q(t)s(t, λ)dt.
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In order to prove our main results, we need the following lemma.

Lemma 2.1 ([8]) Let q ∈ L2(0, 1) . Then the following asymptotic formula holds:

s(x, λ) = λm{cos
√
λx+

sin
√
λx√
λ

(bm +
1

2

∫ x

0

q(t)dt) + o(
1√
λ

exp(ζx))}

as |λ| → ∞ , where ζ = |Im
√
λ| . Moreover, in the case where a0 = 0 , b0 = 1 and the problem (1.1)–(1.3) has

only one transmission condition at x = 1/2 (i.e. p = 1 and αp = α), the eigenvalues of $ satisfy the following
asymptotic representation as n → ∞ :

√
λn(q) = (n−m− r)π +

bm − dr − (−1)n−m−rω

(n−m− r)π
+ o(

1

n
), (2.1)

where

ω =
α−

α+
{bm + dr +

1

2

∫ 1
2

0

q(t)dt− 1

2

∫ 1

1
2

q(t)dt}, α± =
1

2
(α± 1

α
).

For our analysis, we also need the following lemma to establish some Hochstadt–Lieberman-type theorems
for $ .

Lemma 2.2 Let f(z) be an entire function that satisfies the following:

(1) sup|z|=Rk
|f(z)| ≤ C1 exp(C2R

ρ
k) for some 0 < ρ < 1 , C1, C2 > 0 , and some sequences Rk → ∞ as

k → ∞ .

(2) lim|x|→∞ |f(ix)| = 0 .

Then f ≡ 0 .

Proof See Proposition B.6 of [5]. 2

3. Main results
In this section, first we prove a Hochstadt–Lieberman-type theorem for S-L problems with one interior discon-
tinuity and boundary conditions polynomially dependent on the spectral parameter. Then we will generalize
the results of our study to the S-L problems with an arbitrary finite number of transmission conditions on finite
intervals.

We denote Na
b := {aj , bj}mj=1 , N c

d := {cj , dj}rj=1 , and the characteristic function of the problem $0
consisting of (1.1)–(1.2) as follows:

∆(Na
b , N

c
d , q)(λ) =W (u, s)(x, λ) = W (u, s)(

1

2
, λ)

=A

∞∏
n=0

(1− λ

λ0
n

), (3.1)
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where W (u, s)(x, λ) is the Wronskian of u and s , {λ0
n} is the spectrum of $0 , and A is a constant. According

to Lemma 2.1, we have

∆(Na
b , N

c
d , q)(λ) = λm{−

√
λ sin

√
λ+ (bm − dr) cos

√
λ+O(

1√
λ

exp(ζ))}.

Further, | sin
√
λ| ≥ Aσ exp(ζ) for σ ∈ (0, π) and

√
λ ∈ Γσ := {

√
λ ∈ C : |

√
λ − nπ| > σ, n ∈ Z} . Thus, we

get for
√
λ ∈ Γσ and sufficiently large |λ|

|∆(Na
b , N

c
d , q)(λ)| ≥ Aσ|

√
λ| exp(ζ).

Now, for x ∈ [0, 1
2 ] , let

y1(x) = y(x), y2(x) = y(1− x), q1(x) = q(x), q2(x) = q(1− x). (3.2)

Hence, the problem $0 can be transformed to the BVP $1 as follows:
Y ′′ + (λI − q(x))Y = 0, x ∈ (0, 1

2 ),

Ma
c (λ)Y ′(0)− Mb

d(λ)Y(0) = 0,

D1Y ′( 12 ) + D2Y( 12 ) = 0,

where I is the 2× 2 identity matrix and

Y(x, λ) =diag(y1(x, λ), y2(x, λ)) =

[
y1(x, λ) 0

0 y2(x, λ)

]
,

q(x) =diag(q1(x), q2(x)),

Ma
c (λ) =diag(a(λ), c(λ)), Mb

d(λ) = diag(b(λ), d(λ)),

D1 =

[
0 0
1 1

]
, D2 =

[
1 −1
0 0

]
.

Therefore, we have the following theorem.

Theorem 3.1 Let q̃(x) be a 2 × 2 matrix-valued function with elements in L2(0,
1
2 ) , and let Ỹ(x) :=

diag(ỹ1(x, λ), ỹ2(x, λ)) be the solution of the matrix-valued equation

Ỹ ′′ + (λI − q̃(x))Ỹ = 0, x ∈ (0,
1

2
),

with the initial conditions Ỹ(0, λ) = H1(λ) , Ỹ ′(0, λ) = H2(λ) , where H1(λ) = diag(ã(λ), c̃(λ)) and H2(λ) =

diag(̃b(λ), d̃(λ)) are two complex-valued 2× 2 matrices and

ã(λ) =

m∑
j=1

ãjλ
j , b̃(λ) =

m∑
j=1

b̃jλ
j , c̃(λ) =

r∑
j=1

c̃jλ
j , d̃(λ) =

r∑
j=1

d̃jλ
j ,

where ãm = c̃r = 1 . Then, for sufficiently large |λ| , the following asymptotic representation holds:

Ỹ(x, λ) = λm{cos
√
λxI + sin

√
λx√
λ

I(̃bmI + 1

2

∫ x

0

q(t)dt) +O(
1√
λ

exp(ζx)).
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Corollary 3.2 If q̃(x) = q(x) = diag(q1(x), q2(x)) , H1(λ) = Ma
c (λ) , and H2(λ) = Mb

d(λ) , then Ỹ(x) =

diag(y1(x, λ), y2(x, λ)) , where yi(x, λ) is the solution of the initial value problem{
y′′ + (λ− qi(x))y = 0,

y(0, λ) = a(λ), y′(0, λ) = b(λ).

Moreover, from (3.1), the characteristic function of the problem $1 is

∆(Ma
c (λ),Mb

d(λ), q̃)(λ) = det(D1Ỹ ′(
1

2
, λ) + D2Ỹ(

1

2
, λ))

=W (y1, y2)(
1

2
, λ) = W (u, s)(

1

2
, λ)

=∆(Na
b (λ), N

c
d(λ),q)(λ).

Now, first we consider the problem $2 with one discontinuity at x = 1
2 as follows:

y′′ + (λ− q(x))y = 0, x ∈ (0, 1),

a(λ)y′(0, λ)− b(λ)y(0, λ) = 0,

c(λ)y′(1, λ)− d(λ)y(1, λ) = 0,

y( 12 + 0) = αpy(
1
2 − 0),

y′( 12 + 0) = α−1
p y′( 12 − 0),

where q(x) ∈ L2(0, 1) ,
∫ 1

0
q(t)dt = 0 , a(λ) , b(λ) , c(λ) , and d(λ) are defined as (1.4), α ∈ R , α ̸= 0 . In the

following theorem, we prove the first Hochstadt–Lieberman-type theorem of this section. Note, for this purpose,
that we use the Weyl–Titchmarsh M -function techniques from [4, 18, 21].

Theorem 3.3 Let q(x) ∈ L2(0, 1) and {λn(q)}n≥0 be the set of eigenvalues of $2 defined in (2.1). Then
{λn(q)} and q|( 1

2 ,1)
determine q(x) uniquely.

Proof By the replacement (3.2), we can transform $2 to the problem consisting of

Y ′′ + (λI − q(x))Y = 0, x ∈ (0,
1

2
) (3.3)

with the boundary conditions {
Ma

c (λ)Y ′(0)− Mb
d(λ)Y(0) = 0,

D3Y ′( 12 ) + D4Y( 12 ) = 0,

where q(x) = diag(q1(x), q2(x)) , q1(x) = q(x) and q2(x) = q(1− x) for x ∈ (0, 1
2 ) , and

D3 =

[
0 0

α−1 1

]
, D4 =

[
α −1
0 0

]
.

Let si(x, λ) denote the solution of the initial value problem{
y′′ + (λ− qi(x))y = 0, x ∈ (0, 1

2 ),

si(0, λ) = (a(λ))i, y′(0, λ) = (b(λ))i, i = 1, 2,
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where (a(λ))i =
∑m

j=1 aijλ
j , (b(λ))i =

∑m
j=1 bijλ

j , aim = 1 , and y(x, λ) = diag(s1(x, λ), s2(x, λ)) . Then, for
sufficiently large |λ| , the characteristic function of (3.3) is

∆(Ma
c (λ),Mb

d(λ),D3,D4,q)(λ) = det(D3Ỹ ′(
1

2
, λ) + D4Ỹ(

1

2
, λ))

=det
[

αs1(
1
2 , λ) −s2(

1
2 , λ)

α−1s′1(
1
2 , λ) s′2(

1
2 , λ)

]
=αs1(

1

2
, λ)s′2(

1

2
, λ) + α−1s′1(

1

2
, λ)s2(

1

2
, λ)

=O(
√
λ exp(ζ)).

Suppose now that there are two potentials q and q̃ such that λn(q) = λn(q̃) and q(x) = q̃(x) on the interval
( 12 , 1) . Then, for the corresponding potential matrices q and q̃ , we get

σ(Ma
c (λ),Mb

d(λ),D3,D4,q) = σ(Ma
c (λ),Mb

d(λ),D3,D4, q̃). (3.4)

We denote the fundamental matrices of (3.3) corresponding to q and q̃ by Y(x, λ;q) = diag(s1(x, λ), s2(x, λ))

and Y(x, λ; q̃) = diag(s̃1(x, λ), s̃2(x, λ)) = diag(s̃1(x, λ), s2(x, λ)) , respectively. Hence, it follows from (3.4) that

∆(Ma
c (λ),Mb

d(λ),D3,D4,q) = ∆(Ma
c (λ),Mb

d(λ),D3,D4, q̃),

and therefore [
s1(

1
2 , λ) s′1(

1
2 , λ)

s̃1(
1
2 , λ) s̃′1(

1
2 , λ)

] [
αs′2(

1
2 , λ)

α−1s2(
1
2 , λ)

]
=

[
∆(Ma

c (λ),Mb
d(λ),D3,D4,q)(λ)

∆(Ma
c (λ),Mb

d(λ),D3,D4,q)(λ)

]
. (3.5)

On the other hand, since
[

αs′2(
1
2 , λ)

α−1s2(
1
2 , λ)

]
never vanishes, using (3.5) we obtain for each λ = λn(q)

W (s1, s̃1)(
1

2
, λ) = 0.

Thus, the function

f(λ) :=
W (s1, s̃1)(

1
2 , λ)

∆(Ma
c (λ),Mb

d(λ),D3,D4,q)(λ)
(3.6)

is an entire function. Now, using Lemma 2.2, we obtain f(λ) ≡ 0 . Since f is identically zero, then (3.6) yields

s1(
1
2 , λ)

s′1(
1
2 , λ)

=
s̃1(

1
2 , λ)

s̃′1(
1
2 , λ)

.

Therefore, q1(x) = q̃1(x) , and consequently q(x) = q̃(x) . 2

The previous Hochstadt–Lieberman-type theorem can be generalized for the BVP $3 consisting of (1.1)–
(1.3) on the interval (0, 1) , which has an arbitrary finite number of transmission conditions. In the next theorem,
we prove this assertion and show that the number and positions of discontinuities are not important.
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Theorem 3.4 Let a0 = 0 , b0 = 1 , q(x) ∈ L2(0, 1) , 0 < x1 < x2 < ... < xk−1 < xk = 1
2 < xk+1 < ... < xℓ < 1 ,

αp ∈ R , and αp ̸= 0 for p = 1, 2, 3, ..., ℓ . Assume that σ := σ(αp, N
a
b , N

c
d , q; p)(λ) is the spectrum of the problem

$3 consisting of (1.1)–(1.3) on the interval (0, 1) . Then σ and q|( 1
2 ,1)

uniquely determine the potential q(x) .

Proof Let s1(x, λ) be the solution of (1.1) satisfying s1(0, λ) = a(λ) , s′1(0, λ) = b(λ) and the discontinuity
condition (1.3) at x1, x2, ..., xk = 1

2 , and s2(x, λ) be the solution of (1.1) satisfying s2(0, λ) = c(λ) , s′2(0, λ) =

d(λ) and the discontinuity condition (1.3) at xk+1, ..., xℓ . By the same arguments as in the proofs of Theorem
3.3, we can uniquely determine the Weyl–Titchmarsh M -function s1(

1
2 , λ)/s

′
1(

1
2 , λ) for $3 on the interval

(0, 1
2 ) . Finally, since the M -function for the S-L problem $3 , which has arbitrary finite number of interior

discontinuities, can uniquely determine the potential q(x) (for more details, see [18]), we arrive at the assertion
of Theorem 3.4. 2

Finally, in the following theorem, we generalize Theorem 3.4 on an arbitrary finite interval [a0, b0] as
follows.

Theorem 3.5 Assume that q(x) ∈ L2(a0, b0) ,
∫ b0
a0

q(x)dx = 0 , a0 < x1 < x2 < ... < xk−1 < xk = a0+b0
2 <

xk+1 < ... < xℓ < b0 , αp ∈ R , and αp ̸= 0 for p = 1, 2, 3, ..., ℓ . Let σ1 := σ(αp, N
a
b , N

c
d , q; p)(λ) be the spectrum

of the boundary value problem $ generated by (1.1)–(1.3). Then σ1 and q|
(
a0+b0

2 ,b0)
uniquely determine the

potential q(x) .

Proof We denote for x ∈ (a0,
a0+b0

2 ) :{
y1(x) = y(x),

y2(x) = y(a0 + b0 − x),

{
q1(x) = q(x),

q2(x) = q(a0 + b0 − x).

Then, replacing (0, 1) and 1
2 by (a0, b0) and a0+b0

2 , respectively, and applying the same arguments as in the
proof of Theorem 3.4, we can conclude the assertion. 2
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