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Abstract: In this investigation our main aim is to determine the radii of uniform convexity of selected normalized
q -Bessel and Wright functions. Here we consider six different normalized forms of q -Bessel functions and we apply three
different kinds of the normalization of the Wright function. We also show that the obtained radii are the smallest positive
roots of some functional equations.
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1. Introduction and preliminaries

Special and geometric function theories are the most important branches of mathematical analysis. There has
been a close relationship between special and geometric function theories since hypergeometric functions were
used in the proof of the famous Bieberbach conjecture. Therefore, most mathematicians have considered some
of the geometric properties of special functions that can be expressed by the hypergeometric series. Some of
the geometric properties of the Bessel, Struve, Lommel, Wright, and q -Bessel functions in particular have been
investigated by many authors. The first important results concerning the geometric properties of hypergeometric
and related functions can be found in [14, 22, 23, 29]. In fact, there are some relationships between the geometric
properties and the zeros of special functions. Due to these relationships, numerous investigations have been done
on the zeros of the above mentioned special functions. Comprehensive information about the Bessel function
and its q -analogue can be found in [28], and some results on the zeros of some special functions can be found
in [10, 18–21, 25, 26]. Recently, some of the geometric properties (like univalence, starlikeness, convexity, and
uniform convexity) of the Bessel, Struve, and Lommel functions of the first kind were investigated in [2, 3, 6–
9, 11–13, 15, 27, 30]. In addition, the radii of starlikeness and convexity of some normalized q -Bessel functions
were studied in [1, 4, 5]. Motivated by the previous works in this field, our aim is to determine the radii of
uniform convexity of some normalized q -Bessel and Wright functions.

First we would like to present some basic concepts related to geometric function theory. Let Dr be the
open disk {z ∈ C : |z| < r} with radius r > 0 and D1 = D . Let A denote the class of analytic functions
f : Dr → C,
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f(z) = z +
∑
n≥2

anz
n, (1)

which satisfy the normalization conditions f(0) = f ′(0) − 1 = 0 . By S we mean the class of functions that
belong to A that are univalent in Dr . On the other hand, the class of convex functions is defined by

K =

{
f ∈ S : ℜ

(
1 +

zf ′′(z)

f ′(z)

)
> 0 for all z ∈ Dr

}
.

The radius of convexity of an analytic locally univalent function f : C → C is defined by

rc(f) = sup

{
r > 0 : ℜ

(
1 +

zf ′′(z)

f ′(z)

)
> 0 for all z ∈ Dr

}
.

Note that rc(f) is the largest radius for which the image domain f
(
Drc(f)

)
is a convex domain in C. For more

information about convex functions, we refer to Duren’s book [16] and its references.
In [17] the author introduced the concept of uniform convexity for the functions of the form (1). A

function f(z) is said to be uniformly convex in D if f(z) is in the class of usual convex functions and if it has
the property that for every circular arc γ contained in D , with the center ζ also in D , the arc f(γ) is a convex
arc. An analytic description of the uniformly convex functions given by Rønning in [24] reads as follows:

Theorem 1 Let f(z) be of the form (1). Then f is a uniformly convex function if and only if

ℜ
(
1 +

zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ D.

On the other hand, the concept of the radius of uniform convexity is defined by (see [15])

ruc(f) = sup
{
r ∈ (0, rf ) : ℜ

(
1 +

zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ D
}
.

Thanks to the above theorem, we can determine the radius of uniform convexity for the functions of the form
(1). Also, we will need the following lemma in the sequel.

Lemma 1 ([15]) If a > b > r ≥ |z| , and λ ∈ [0, 1] , then∣∣∣∣ z

b− z
− λ

z

a− z

∣∣∣∣ ≤ r

b− r
− λ

r

a− r
. (2)

The following are very simple consequences of this inequality:

ℜ
(

z

b− z
− λ

z

a− z

)
≤ r

b− r
− λ

r

a− r
(3)

and

ℜ
(

z

b− z

)
≤
∣∣∣∣ z

b− z

∣∣∣∣ ≤ r

b− r
. (4)
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2. Radius of uniform convexity of some special functions

In this section we focus on some normalized q -Bessel and Wright functions and determine the radii of uniform
convexity for these functions.

2.1. Uniform convexity of some normalized q-Bessel functions

Jackson’s second and third (or Hahn–Exton) q -Bessel functions are defined as follow:

J (2)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∑
n≥0

(−1)n
(
z
2

)2n+ν

(q; q)n(qν+1; q)n
qn(n+ν)

and

J (3)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∑
n≥0

(−1)nz2n+ν

(q; q)n(qν+1; q)n
q

1
2n(n+1),

where z ∈ C, ν > −1, q ∈ (0, 1) , and

(a; q)0 = 1, (a; q)n =

n∏
k=1

(
1− aqk−1

)
, (a, q)∞ =

∏
k≥1

(
1− aqk−1

)
.

It is known that Jackson’s second and third q -Bessel functions are q -extensions of the classical Bessel function

of the first kind Jν . Clearly, for fixed z , we have J
(2)
ν ((1− z)q; q) → Jν(z) and J

(3)
ν ((1− z)q; q) → Jν(2z) as

q ↗ 1.

Because the functions J
(2)
ν (.; q) and J

(3)
ν (.; q) do not belong to A , we first consider the following six

normalized forms as in [5]. For ν > −1 ,

f (2)
ν (z; q) =

(
2νcν(q)J

(2)
ν (z; q)

) 1
ν

, ν ̸= 0

g(2)ν (z; q) = 2νcν(q)z
1−νJ (2)

ν (z; q),

h(2)
ν (z; q) = 2νcν(q)z

1− ν
2 J (2)

ν (
√
z; q),

f (3)
ν (z; q) =

(
cν(q)J

(3)
ν (z; q)

) 1
ν

, ν ̸= 0

g(3)ν (z; q) = cν(q)z
1−νJ (3)

ν (z; q),

h(3)
ν (z; q) = cν(q)z

1− ν
2 J (3)

ν (
√
z; q),

where cν(q) = (q; q)∞
/
(qν+1; q)∞ . Consequently, all of the above functions belong to the class A . Of course

there exist an infinite number of other normalizations for both the Jackson and Hahn–Exton q -Bessel functions,
but the main motivation for considering these six functions is the fact that their limiting cases for Bessel functions
appear in the literature. For an example of this see [14] and the references therein.
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It is known from [5, Lemma 1., p.972] that, if ν > −1 , then the Hadamard factorizations of the functions

z 7→ J
(2)
ν (z; q) and z 7→ J

(3)
ν (z; q) are of the form

J (2)
ν (z; q) =

zν

2νcν(q)

∏
n≥1

(
1− z2

j2ν,n(q)

)

and

J (3)
ν (z; q) =

zν

cν(q)

∏
n≥1

(
1− z2

l2ν,n(q)

)

where jν,n(q) and lν,n(q) are the nth positive zeros of the functions J
(2)
ν (z; q) and J

(3)
ν (z; q) . Also, it is known

from [5, Lemma 7., p. 975] that, if ν > 0 , then the Hadamard factorizations of the derivatives of the functions

z 7→ J
(2)
ν (z; q) and z 7→ J

(3)
ν (z; q) are of the form

dJ
(2)
ν (z; q)

dz
=

ν
(
z
2

)ν−1

2cν(q)

∏
n≥1

(
1− z2

j′2ν,n(q)

)

and
dJ

(3)
ν (z; q)

dz
=

νzν−1

cν(q)

∏
n≥1

(
1− z2

l′2ν,n(q)

)

where j′ν,n(q) and l′ν,n(q) are the nth positive zeros of the functions z 7→ dJ
(2)
ν (z; q)/dz and z 7→ dJ

(3)
ν (z; q)/dz .

In addition, for the derivatives of the functions z 7→ g
(2)
ν (z; q), z 7→ h

(2)
ν (z; q), z 7→ g

(3)
ν (z; q) , and

z 7→ h
(3)
ν (z; q) , the infinite product representations are given, respectively, in [5, Lemma 8, p. 975] as follow:

dg
(2)
ν (z; q)

dz
=
∏
n≥1

(
1− z2

α2
ν,n(q)

)
, (5)

dh
(2)
ν (z; q)

dz
=
∏
n≥1

(
1− z

β2
ν,n(q)

)
, (6)

dg
(3)
ν (z; q)

dz
=
∏
n≥1

(
1− z2

γ2
ν,n(q)

)
, (7)

and
dh

(3)
ν (z; q)

dz
=
∏
n≥1

(
1− z

δ2ν,n(q)

)
, (8)

where αν,n(q) and βν,n(q) are the nth positive zeros of z 7→ z.dJ
(2)
ν (z; q)/dz + (1 − ν)J

(2)
ν (z; q) and z 7→

z.dJ
(2)
ν (z; q)/dz+(2−ν)J

(2)
ν (z; q) , while γν,n(q) and δν,n(q) are the nth positive zeros of z 7→ z.dJ

(3)
ν (z; q)/dz+

(1− ν)J
(3)
ν (z; q) and z 7→ z.dJ

(3)
ν (z; q)/dz + (2− ν)J

(3)
ν (z; q) .
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Finally, it is known from [5, Lemma 9., p. 975] that, between any two consecutive roots of the function

z 7→ J
(s)
ν (z; q) , the function z 7→ dJ

(s)
ν (z; q)/dz has precisely one zero when ν ≥ 0 and s ∈ {2, 3} .

The following are our first main results concerning the q -Bessel functions.

Theorem 2 Let ν > −1, s ∈ {2, 3} and q ∈ (0, 1). The following assertions are true.

a. Suppose that ν > 0 . Then the radius of uniform convexity of the function z 7→ f
(s)
ν (z; q) is the smallest

positive root of the equation

1 + 2r

(
f
(s)
ν (r; q)

)′′
(
f
(s)
ν (r; q)

)′ = 0.

b. The radius of uniform convexity of the function z 7→ g
(s)
ν (z; q) is the smallest positive root of the equation

(2ν − 1)(ν − 1)J (s)
ν (r; q) + (5− 4ν)r

(
J (s)
ν (r; q)

)′
+ 2r2

(
J (s)
ν (r; q)

)′′
= 0.

c. The radius of uniform convexity of the function z 7→ h
(s)
ν (z; q) is the smallest positive root of the equation

(ν − 1)(ν − 2)J (s)
ν (

√
r; q) + (4− 2ν)

√
r
(
J (s)
ν (

√
r; q)

)′
+ r

(
J (s)
ν (

√
r; q)

)′′
= 0.

Proof The proofs for the cases s = 2 and s = 3 are almost the same. This is why we only present the proof
for the case s = 2.

a. Let jν,n(q) and j′ν,n(q) be the nth positive roots of the functions z 7→ J
(2)
ν (z; q) and z 7→ dJ

(2)
ν (z; q)/dz ,

respectively. In [5, p. 979], it was shown that the following equality is valid:

1 + z

(
f
(2)
ν (z; q)

)′′
(
f
(2)
ν (z; q)

)′ = 1−
(
1

ν
− 1

)∑
n≥1

2z2

j2ν,n(q)− z2
−
∑
n≥1

2z2

j′2ν,n(q)− z2
.

In the first step of our proof we consider the case ν ≥ 1 . We know that the zeros of Jackson’s second and
third q -Bessel functions are all real when ν > −1, according to [18, 20]. Also, it is known from [5, Lemma

9, p. 975] that the zeros of the functions z 7→ J
(s)
ν (z; q) and z 7→ dJ

(s)
ν (z; q)/dz are interlaced. Here it is

important to mention that the nonnegative smallest zero is z = 0 for Jackson’s second and third q -Bessel
functions. By taking λ = 1− 1

ν in inequality (3) we have

ℜ

(
2z2

j′2ν,n(q)− z2
−
(
1− 1

ν

)
2z2

j2ν,n(q)− z2

)
≤

(
2r2

j′2ν,n(q)− r2
−
(
1− 1

ν

)
2r2

j2ν,n(q)− r2

)
,

for |z| ≤ r < j′ν,1(q) < jν,1(q) , and so we get that

ℜ

1 + z

(
f
(2)
ν (z; q)

)′′
(
f
(2)
ν (z; q)

)′
 ≥ 1 + r

(
f
(2)
ν (r; q)

)′′
(
f
(2)
ν (r; q)

)′ . (9)
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On the other hand, inequality (2) implies that

∣∣∣∣∣ 2z2

j′2ν,n(q)− z2
−
(
1− 1

ν

)
2z2

j2ν,n(q)− z2

∣∣∣∣∣ ≤ 2r2

j′2ν,n(q)− r2
−
(
1− 1

ν

)
2r2

j2ν,n(q)− r2
,

where |z| ≤ r < j′ν,1(q) < jν,1(q) . Therefore, we find that

∣∣∣∣∣∣∣z
(
f
(2)
ν (z; q)

)′′
(
f
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣ ≤ −r

(
f
(2)
ν (r; q)

)′′
(
f
(2)
ν (r; q)

)′ . (10)

As a second step, one can easily show that inequalities (9) and (10) hold for ν ∈ (0, 1). Clearly, by
considering inequality (4), we can write that

ℜ

(
2z2

j′2ν,n(q)− z2

)
≤

∣∣∣∣∣ 2z2

j′2ν,n(q)− z2

∣∣∣∣∣ ≤ 2r2

j′2ν,n(q)− r2

and

ℜ
(

2z2

j2ν,n(q)− z2

)
≤
∣∣∣∣ 2z2

j2ν,n(q)− z2

∣∣∣∣ ≤ 2r2

j2ν,n(q)− r2

for |z| ≤ r < j′ν,1(q) < jν,1(q) . Since 1
ν − 1 > 0, the above last two inequalities imply that inequalities (9)

and (10) hold true. Consequently, using these two inequalities yields that

ℜ

1 + z

(
f
(2)
ν (z; q)

)′′
(
f
(2)
ν (z; q)

)′
−

∣∣∣∣∣∣∣z
(
f
(2)
ν (z; q)

)′′
(
f
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣ ≥ 1 + 2r

(
f
(2)
ν (r; q)

)′′
(
f
(2)
ν (r; q)

)′ (11)

for |z| ≤ r < j′ν,1(q). In (11), the equality holds if and only if z = r. Thus, it follows that

inf
|z|<r

ℜ
1 + z

(
f
(2)
ν (z; q)

)′′
(
f
(2)
ν (z; q)

)′
−

∣∣∣∣∣∣∣z
(
f
(2)
ν (z; q)

)′′
(
f
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣
 = 1 + 2r

(
f
(2)
ν (r; q)

)′′
(
f
(2)
ν (r; q)

)′ ,
where r ∈ (0, j′ν,1(q)) . The mapping Φν : (0, j′ν,1(q)) 7→ R defined by

Φν(r) = 1 + 2r

(
f
(2)
ν (r; q)

)′′
(
f
(2)
ν (r; q)

)′ = 1− 2
∑
n≥1

(
2r2

j′2ν,n(q)− r2
−
(
1− 1

ν

)
2r2

j2ν,n(q)− r2

)

is strictly decreasing since

Φ′
ν(r) = −2

∑
n≥1

(
4rj′

2
ν,n(q)(

j′2ν,n(q)− r2
)2 −

(
1− 1

ν

)
4rj2ν,n(q)(

j2ν,n(q)− r2
)2
)

< 0
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for r ∈ (0, j′ν,1(q)) . Also, we have the following limits:

lim
r↘0

Φν(r) = 1 and lim
r↗j′ν,1(q)

Φν(r) = −∞.

As a result of this, we can say that the equation

1 + 2r

(
f
(2)
ν (r; q)

)′′
(
f
(2)
ν (r; q)

)′ = 0

has a unique root r0 in the interval (0, j′ν,1(q)) , which is the radius of uniform convexity r0 = ruc
(
f
(2)
ν (z; q)

)
of the function z 7→ f

(2)
ν (z; q).

b. By using the logarithmic derivative of the function z 7→ dg
(2)
ν (z; q)/dz , which is given by (5), we get that

z

(
g
(2)
ν (z; q)

)′′
(
g
(2)
ν (z; q)

)′ = −
∑
n≥1

2z2

α2
ν,n(q)− z2

(12)

and

1 + z

(
g
(2)
ν (z; q)

)′′
(
g
(2)
ν (z; q)

)′ = 1−
∑
n≥1

2z2

α2
ν,n(q)− z2

. (13)

Now, for |z| ≤ r < αν,1(q) , using inequality (4) in equalities (13) and (12), respectively, implies that

ℜ

1 + z

(
g
(2)
ν (z; q)

)′′
(
g
(2)
ν (z; q)

)′
 ≥ 1 + r

(
g
(2)
ν (r; q)

)′′
(
g
(2)
ν (r; q)

)′ (14)

and ∣∣∣∣∣∣∣z
(
g
(2)
ν (z; q)

)′′
(
g
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣ ≤ −r

(
g
(2)
ν (r; q)

)′′
(
g
(2)
ν (r; q)

)′ . (15)

From inequalities (14) and (15), we deduce

ℜ

1 + z

(
g
(2)
ν (z; q)

)′′
(
g
(2)
ν (z; q)

)′
−

∣∣∣∣∣∣∣z
(
g
(2)
ν (z; q)

)′′
(
g
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣ ≥ 1 + 2r

(
g
(2)
ν (r; q)

)′′
(
g
(2)
ν (r; q)

)′ (16)

for |z| ≤ r < αν,1(q) . The equality holds in (16) if and only if z = r . As a result, we have

inf
|z|<r

ℜ
1 + z

(
g
(2)
ν (z; q)

)′′
(
g
(2)
ν (z; q)

)′
−

∣∣∣∣∣∣∣z
(
g
(2)
ν (z; q)

)′′
(
g
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣
 = 1 + 2r

(
g
(2)
ν (r; q)

)′′
(
g
(2)
ν (r; q)

)′ ,
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where r ∈ (0, αν,1(q)) . Now consider the function Aν : (0, αν,1(q)) 7→ R defined by

Aν(r) = 1 + 2r

(
g
(2)
ν (r; q)

)′′
(
g
(2)
ν (r; q)

)′ = 1−
∑
n≥1

4r2

α2
ν,n(q)− r2

.

The function Aν(r) is strictly decreasing since

A′
ν(r) = −

∑
n≥1

8rα2
ν,n(q)(

α2
ν,n(q)− r2

)2 < 0

for r ∈ (0, αν,1(q)) and in addition

lim
r↘0

Aν(r) = 1 and lim
r↗αν,1(q)

Aν(r) = −∞.

Therefore, the equation

1 + 2r

(
g
(2)
ν (r; q)

)′′
(
g
(2)
ν (r; q)

)′ = 0 (17)

has a unique root r1 ∈ (0, αν,1(q)) and r1 = ruc
(
g
(2)
ν (z; q)

)
. By using the first and second derivatives of

the function z 7→ g
(2)
ν (z; q) , one can easily see that equation (17) is equivalent to

(2ν − 1)(ν − 1)J (2)
ν (r; q) + (5− 4ν)r

(
J (2)
ν (r; q)

)′
+ 2r2

(
J (2)
ν (r; q)

)′′
= 0.

Thus, the proof is completed.

c. The proof of this part can be done in a similar manner. The logarithmic derivative of the function

z 7→ dh
(2)
ν (z; q)/dz , which is given by (6), implies that

z

(
h
(2)
ν (z; q)

)′′
(
h
(2)
ν (z; q)

)′ = −
∑
n≥1

z

β2
ν,n(q)− z

(18)

and

1 + z

(
h
(2)
ν (z; q)

)′′
(
h
(2)
ν (z; q)

)′ = 1−
∑
n≥1

z

β2
ν,n(q)− z

. (19)

Now, for |z| ≤ r < β2
ν,1(q) , by using inequality (4) in equalities (19) and (18), respectively, we get that

ℜ

1 + z

(
h
(2)
ν (z; q)

)′′
(
h
(2)
ν (z; q)

)′
 ≥ 1 + r

(
h
(2)
ν (r; q)

)′′
(
h
(2)
ν (r; q)

)′ (20)
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and ∣∣∣∣∣∣∣z
(
h
(2)
ν (z; q)

)′′
(
h
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣ ≤ −r

(
h
(2)
ν (r; q)

)′′
(
h
(2)
ν (r; q)

)′ . (21)

Now summarizing inequalities (20) and (21), we obtain

ℜ

1 + z

(
h
(2)
ν (z; q)

)′′
(
h
(2)
ν (z; q)

)′
−

∣∣∣∣∣∣∣z
(
h
(2)
ν (z; q)

)′′
(
h
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣ ≥ 1 + 2r

(
h
(2)
ν (r; q)

)′′
(
h
(2)
ν (r; q)

)′ (22)

for |z| ≤ r < β2
ν,1(q) . The equality holds in (22) if and only if z = r . Finally, we have

inf
|z|<r

ℜ
1 + z

(
h
(2)
ν (z; q)

)′′
(
h
(2)
ν (z; q)

)′
−

∣∣∣∣∣∣∣z
(
h
(2)
ν (z; q)

)′′
(
h
(2)
ν (z; q)

)′
∣∣∣∣∣∣∣
 = 1 + 2r

(
h
(2)
ν (r; q)

)′′
(
h
(2)
ν (r; q)

)′ ,
where r ∈

(
0, β2

ν,1(q)
)
. Now consider the function Bν :

(
0, β2

ν,1(q)
)
7→ R defined by

Bν(r) = 1 + 2r

(
h
(2)
ν (r; q)

)′′
(
h
(2)
ν (r; q)

)′ = 1−
∑
n≥1

2r

β2
ν,n(q)− r

.

The function Bν(r) is strictly decreasing since

B′
ν(r) = −

∑
n≥1

2β2
ν,n(q)(

β2
ν,n(q)− r

)2 < 0

for r ∈
(
0, β2

ν,1(q)
)

and furthermore

lim
r↘0

Bν(r) = 1 and lim
r↗β2

ν,1(q)
Bν(r) = −∞.

As a result, the equation

1 + 2r

(
h
(2)
ν (r; q)

)′′
(
h
(2)
ν (r; q)

)′ = 0 (23)

has a unique root r2 ∈
(
0, β2

ν,1(q)
)

and r2 = ruc
(
h
(2)
ν (z; q)

)
. By considering the first and second

derivatives of the function z 7→ h
(2)
ν (z; q) , we can easily find that equation (23) is equivalent to

(ν − 1)(ν − 2)J (2)
ν (

√
r; q) + (4− 2ν)

√
r
(
J (2)
ν (

√
r; q)

)′
+ r

(
J (2)
ν (

√
r; q)

)′′
= 0,

which is desired.

2

3018



AKTAŞ et al./Turk J Math

2.2. Uniform convexity of some normalized Wright functions
In this subsection, we will focus on the function

ϕ(ρ, β, z) =
∑
n≥0

zn

n!Γ(nρ+ β)
(ρ > −1 and z, β ∈ C)

named after the British mathematician E.M. Wright. It is well known that this function was introduced by him
for the first time in the case ρ > 0 in connection with his investigations on the asymptotic theory of partitions
[30].

From [12, Lemma 1] we know that under the conditions ρ > 0 and β > 0, the function z 7→ λρ,β(z) =

ϕ(ρ, β,−z2) has an infinite number of zeros, all of which are real. Thus, due to the Hadamard factorization
theorem, the expression λρ,β(z) can be written as

Γ(β)λρ,β(z) =
∏
n≥1

(
1− z2

λ2
ρ,β,n

)

where λρ,β,n stands for the nth positive zero of the function λρ,β(z) (or the positive real zeros of the function
Ψρ,β ). Moreover, let ζ ′ρ,β,n denote the nth positive zero of Ψ′

ρ,β , where Ψρ,β(z) = zβλρ,β(z), and then the
zeros satisfy the chain of inequalities

ζ ′ρ,β,1 < ζρ,β,1 < ζ ′ρ,β,2 < ζρ,β,2 < . . ..

One can easily see that the function z 7→ ϕ(ρ, β,−z2) does not belong to A , and thus first we perform
some natural normalization. We define three functions originating ϕ(ρ, β, .) :

fρ,β(z) =
(
zβΓ(β)ϕ(ρ, β,−z2)

) 1
β ,

gρ,β(z) = zΓ(β)ϕ(ρ, β,−z2),

hρ,β(z) = zΓ(β)ϕ(ρ, β,−z).

Clearly these functions are contained in the class A .
The following are our results regarding the uniform convexity of the functions fρ,β , gρ,β , and hρ,β .

Theorem 3 Let ρ > 0 and β > 0 .

a. The radius of uniform convexity of the function fρ,β is the smallest positive root of the equation

1 + 2r
Ψ′′

ρ,β(r)

Ψ′
ρ,β(r)

+ 2

(
1

β
− 1

)
rΨ′

ρ,β(r)

Ψρ,β(r)
= 0,

where Ψρ,β(z) = zβλρ,β(z).

b. The radius of uniform convexity of the function gρ,β is the smallest positive root of the equation

1 + 2r
g′′ρ,β(r)

g′ρ,β(r)
= 0.
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c. The radius of uniform convexity of the function hρ,β is the smallest positive root of the equation

1 + 2r
h′′
ρ,β(r)

h′
ρ,β(r)

= 0.

Proof a. Let ζρ,β,n and ζ ′ρ,β,n be the nth positive roots of Ψρ,β and Ψ′
ρ,β , respectively. In [12, Theorem 5]

the following equality was demonstrated:

1 +
zf ′′

ρ,β(z)

f ′
ρ,β(z)

= 1−
(
1

β
− 1

)∑
n≥1

2z2

ζ2ρ,β,n − z2
−
∑
n≥1

2z2

ζ ′2ρ,β,n − z2
.

In order to prove the theorem, we need to investigate two different cases such as β ∈ (0, 1] and β > 1 . First
suppose β ∈ (0, 1] . In this case, with the help of (4) for β ∈ (0, 1] , we deduce that the inequality

ℜ

(
1 +

zf ′′
ρ,β(z)

f ′
ρ,β(z)

)
≥ 1−

(
1

β
− 1

)∑
n≥1

2r2

ζ2ρ,β,n − r2
−
∑
n≥1

2r2

ζ ′2ρ,β,n − r2
(24)

= 1 +
rf ′′

ρ,β(r)

f ′
ρ,β(r)

, |z| ≤ r < ζ ′ρ,β,1 < ζρ,β,1

holds true for |z| = r . Moreover, in view of (4), we get∣∣∣∣∣zf ′′
ρ,β(z)

f ′
ρ,β(z)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≥1

2z2

ζ ′2ρ,β,n − z2
+

(
1

β
− 1

)∑
n≥1

2z2

ζ2ρ,β,n − z2

∣∣∣∣∣∣ (25)

≤
∑
n≥1

∣∣∣∣∣
(

2z2

ζ ′2ρ,β,n − z2
+

(
1

β
− 1

)
2z2

ζ2ρ,β,n − z2

)∣∣∣∣∣
≤
∑
n≥1

(
2r2

ζ ′2ρ,β,n − r2
+

(
1

β
− 1

)
2r2

ζ2ρ,β,n − r2

)

= −
rf ′′

ρ,β(r)

f ′
ρ,β(r)

where |z| ≤ r < ζ ′ρ,β,1 < ζρ,β,1. On the other hand, in view of inequality (3) we obtain that (24) and (25) are
also valid when β ≥ 1 for all z ∈ (0, ζ ′ρ,β,1). Here we assume that the zeros of ζρ,β,n and ζ ′ρ,β,n interlace as
mentioned before; that is, we have ζ ′ρ,β,1 < ζρ,β,1. Eventually, thanks to (24) and (25), we arrive at

ℜ

(
1 +

zf ′′
ρ,β(z)

f ′
ρ,β(z)

)
−

∣∣∣∣∣zf ′′
ρ,β(z)

f ′
ρ,β(z)

∣∣∣∣∣ ≥ 1 + 2r
f ′′
ρ,β(r)

f ′
ρ,β(r)

, |z| ≤ r < ζ ′ρ,β,1. (26)

Due to the minimum principle for harmonic functions, the equality holds if and only if z = r . Now, the above
deduced inequalities imply for r ∈ (0, ζ ′ρ,β,1)

inf
|z|<r

{
ℜ

(
1 +

zf ′′
ρ,β(z)

f ′
ρ,β(z)

)
−

∣∣∣∣∣zf ′′
ρ,β(z)

f ′
ρ,β(z)

∣∣∣∣∣
}

= 1 + 2r
f ′′
ρ,β(r)

f ′
ρ,β(r)

.
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On the other hand, the function uρ,β : (0, ζ ′ρ,β,1) → R, defined by

uρ,β(r) = 1 + 2
rf ′′

ρ,β(r)

f ′
ρ,β(r)

= 1− 2
∑
n≥1

(
2r2

ζ ′2ρ,β,n − r2
−
(
1− 1

β

)
2r2

ζ2ρ,β,n − r2

)
,

is strictly decreasing when β ∈ (0, 1]. Moreover, it is also strictly decreasing when β > 1 since

u′
ρ,β(r) = −

(
1

β
− 1

)∑
n≥1

8rζ2ρ,β,n
(ζ2ρ,β,n − r2)2

−
∑
n≥1

8rζ ′2ρ,β,n
(ζ ′2ρ,β,n − r2)2

<
∑
n≥1

8rζ2ρ,β,n
(ζ2ρ,β,n − r2)2

−
∑
n≥1

8rζ ′2ρ,β,n
(ζ ′2ρ,β,n − r2)2

< 0

for r ∈ (0, ζ ′ρ,β,1). Observe also that

lim
r↘0

uρ,β(r) = 1 and lim
r↗ζ′

ρ,β,1

uρ,β(r) = −∞.

Thus, it follows that the equation

1 + 2r
rf ′′

ρ,β(r)

f ′
ρ,β(r)

= 0

has a unique root r3 ∈ (0, ζ ′ρ,β,1) and r3 = ruc(fρ,β) .

b. Let ϑρ,β,n be the nth positive zero of the function g′ρ,β(z) . In [12, Theorem 5] the following equality
was proven:

1 +
zg′′ρ,β(z)

g′ρ,β(z)
= 1−

∑
n≥1

2z2

ϑ2
ρ,β,n − z2

. (27)

As a result of this equality, the inequality

ℜ

(
1 +

zg′′ρ,β(z)

g′ρ,β(z)

)
≥ 1−

∑
n≥1

2r2

ϑ2
ρ,β,n − r2

, |z| ≤ r < ϑρ,β,1 (28)

was shown in [12]. From equality (27) we arrive at∣∣∣∣∣zg′′ρ,β(z)g′ρ,β(z)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≥1

2z2

ϑ2
ρ,β,n − z2

∣∣∣∣∣∣ ≤
∑
n≥1

∣∣∣∣∣ 2z2

ϑ2
ρ,β,n − z2

∣∣∣∣∣ ≤∑
n≥1

2r2

ϑ2
ρ,β,n − r2

(29)

= −
rg′′ρ,β(r)

g′ρ,β(r)
, |z| ≤ r < ϑρ,β,1.

By using inequalities (28) and (29) we obtain

ℜ

(
1 +

zg′′ρ,β(z)

g′ρ,β(z)

)
−

∣∣∣∣∣zg′′ρ,β(z)g′ρ,β(z)

∣∣∣∣∣ ≥ 1 + 2r
g′′ρ,β(r)

g′ρ,β(r)
, |z| ≤ r < ϑρ,β,1.
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Owing to the minimum principle for harmonic functions, the equality holds if and only if z = r . Thus, for
r ∈ (0, ϑρ,β,1) we get

inf
|z|<r

{
ℜ

(
1 +

zg′′ρ,β(z)

g′ρ,β(z)

)
−

∣∣∣∣∣zg′′ρ,β(z)g′ρ,β(z)

∣∣∣∣∣
}

= 1 + 2r
g′′ρ,β(r)

g′ρ,β(r)
.

The function vρ,β : (0, ϑρ,β,1) → R, defined by

vρ,β(r) = 1 + 2r
g′′ρ,β(r)

g′ρ,β(r)
,

is strictly decreasing and
lim
r↘0

vρ,β(r) = 1, lim
r↗ϑρ,β,1

vρ,β(r) = −∞.

Consequently, the equation

1 + 2r
g′′ρ,β(r)

g′ρ,β(r)
= 0

has a unique root r4 in (0, ϑρ,β,1) , and r4 = ruc(gρ,β) .
c. Let τρ,β,n denote the nth positive zero of the function hρ,β(z) . In [12, Theorem 5] the following

equation was obtained:
zh′′

ρ,β(z)

h′
ρ,β(z)

= −
∑
n≥1

z

τρ,β,n − z
, (30)

and, in the same paper, with the help of (30), the following inequality was given:

ℜ

(
1 +

zh′′
ρ,β(z)

h′
ρ,β(z)

)
≥ 1 +

rh′′
ρ,β(r)

h′
ρ,β(r)

, |z| ≤ r < τρ,β,1 < λρ,β,1. (31)

From (30) we get ∣∣∣∣∣zh′′
ρ,β(z)

h′
ρ,β(z)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≥1

z

τρ,β,n − z

∣∣∣∣∣∣ ≤
∑
n≥1

∣∣∣∣ z

τρ,β,n − z

∣∣∣∣ ≤∑
n≥1

r

τρ,β,n − r
(32)

= −
rh′′

ρ,β(r)

h′
ρ,β(r)

, |z| ≤ r < τρ,β,1.

From inequality (31) and (32) we deduce that

ℜ

(
1 +

zh′′
ρ,β(z)

h′
ρ,β(z)

)
−

∣∣∣∣∣zh′′
ρ,β(z)

h′
ρ,β(z)

∣∣∣∣∣ ≥ 1 + 2
rh′′

ρ,β(r)

h′
ρ,β(r)

, |z| ≤ r < τρ,β,1.

Due to the minimum principle for harmonic functions, the equality holds if and only if z = r . Thus, we find
that

inf
|z|<r

{
ℜ

(
1 +

zh′′
ρ,β(z)

h′
ρ,β(z)

)
−

∣∣∣∣∣zh′′
ρ,β(z)

h′
ρ,β(z)

∣∣∣∣∣
}

= 1 + 2r
h′′
ρ,β(r)

h′
ρ,β(r)

,
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for every r ∈ (0, τρ,β,1) . Since the function wρ,β(r) : (0, τρ,β,1) → R defined by

wρ,β(r) = 1 + 2r
h′′
ρ,β(r)

h′
ρ,β(r)

= 1−
∑
n≥1

2r

τρ,β,n − r

is strictly decreasing on (0, τρ,β,1) , and

lim
r↘0

wρ,β(r) = 1, lim
r↗τρ,β,1

wρ,β(r) = −∞,

it follows that the equation wρ,β(r) = 0 has a unique root r5 ∈ (0, τρ,β,1) , and this root is the radius of uniform
convexity. 2
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