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Abstract: In this paper, we construct almost paracontact metric structures by using the fundamental 3-forms of

manifolds with G3,) structures. The existence of certain almost paracontact metric structures is investigated due
to the properties of the 2-fold vector cross-product. Furthermore, we give some relations between the classes of Gg(z)

structures and almost paracontact metric structures.
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1. Introduction

Almost paracontact structures on manifolds of odd dimension, analogues of the almost contact structures on
manifolds, were first introduced by Kaneyuki and Williams in [5]. After the work of Zamkovoy in [10], almost
paracontact metric structures have been a widely studied research area. In [11], almost paracontact metric
structures were classified into 2'2 classes taking into consideration the Levi-Civita covariant derivative of the

fundamental 2-form of the structure.
Almost contact metric structures induced by G structures were constructed by Matzeu and Munteanu

in [7]; see also [1]; and the possible classes that these structures may belong to were considered in [8].
The objective of this manuscript is the investigation of almost paracontact metric structures on mani-

folds with structure group Gz(z)- First, we construct almost paracontact metric structures induced by G;(Q)

structures. Then we investigate the relation between the classes of almost paracontact metric structures and

G;(z) structures. In addition, we give an elementary example to support the arguments of the manuscript.

2. Preliminaries

Consider R” with the standard basis {ey,...,e7}. The fundamental 3-form on R7 is defined as

0o = €123 M5 4 Q16T | (246 25T (347 _ ;356

)

where {e!,...,e"} denotes the basis dual to {ey,...,e7} and €% = e’ Ae/ AeF. The Lie group Gy is defined by

Go :={f € GL(T,R) | f*po=¢o};

see [3].
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A 7-dimensional oriented manifold M has a Gg structure if and only if its structure group reduces to
Go. Then there is a 3-form ¢ on M with the property that (7,M,,) = (R7,¢p), for all p € M, said to be
the fundamental 3-form or the Ga structure on M. Manifolds (M, g) with G5 structure were classified into 16
classes in [4].

The noncompact dual of Gs is the group
G0y ={9 € GL(T,R) | "0 = ¢},

where

(5: —6127 o 6135 4 6146 + 6236 4 6245 _ 6347 + 6567

and {e!,...,e"} denotes the dual to the standard basis of R*? = (R”, g4 3) with the metric g4 3 = (—1,—-1,—-1,—1,1,1,1).
A semi-Riemannian manifold M with the metric of signature (—, —, —, —, +, 4+, +) whose structure group re-
duces to G;(z) is called a manifold with G§(2) structure. Similar to the G5 case, there is the fundamental 3-form
(or the GS(Q) structure) ¢ on M inducing a metric g4 3, a volume form, and a 2-fold vector cross-product P

on M , which can be calculated via

&(X7KZ)294,3(P(X7Y)7Z); (21)

see [3]. Similar to the Gy case, a G}, structure ¢ satisfying V942@ = 0 is called a parallel G5, structure

and a G2

5(2) structure with VP P(X,Y,Z) =0 is called nearly parallel [6].

For convenience, throughout the paper, a G;(2) structure and the induced vector cross-product will be

denoted by ¢ and P, respectively.
A triple (¢,€&,71) on a 2n + 1-dimensional differentiable manifold M?"+! satisfying

p?*=1-n& =1, (2.2)

where ¢ is a (1,1) tensor field, £ is a vector field, and 7 is a 1-form 1 on M, is called an almost paracontact
structure on M and M is called an almost paracontact manifold. As a consequence of (2.2), one can see that
@(§) =0 and o ¢ =0 on the almost paracontact structure (¢,&,n).

If an almost paracontact manifold M has a semi-Riemannian metric g of signature (n,n+ 1) satisfying

9(0(X),6(Y)) = —g(X,Y) + n(X)n(Y), (2.3)

then M is an almost paracontact metric manifold having the almost paracontact metric structure (¢,&,7,9)
and g is said to be a compatible metric.

The 2-form
O(X,Y) == g(¢(X),Y)

is said to be the fundamental 2-form of the almost paracontact metric structure. It is known that on an almost

paracontact metric manifold there is an orthonormal basis (called a ¢-basis) {e1, pe1, - ,en, den, &} with
g(eivej):7g(¢6ia¢ej):5ij7 g(ei7¢6j):03 Za]:L , 1

see [10]. For the almost contact case, see [2].
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Let F be the (0,3) tensor field defined by

F(X,Y,Z) = (Vx®)(Y, Z) = g((Vx @)Y, 2), (2.4)

for X,Y,Z € TM . It can be seen that F' has the following properties:

F(X.,Y,Z)=—-F(X,Z,Y), (2.5)
F(X,¢(Y),$(2)) = F(X,Y,Z) + n(Y)F(X, Z,§) —n(Z)F(X,Y,€).

In [11], a classification of almost paracontact metric manifolds was obtained by considering the space F

of tensors F' that satisfy (2.5). Initially, this space was decomposed into four subspaces

F(X,Y,Z) = g(AV X, Z),
Wi ={FeF| F(6,Y,2) = g(AL€, 2) =0, : (2.6)

F(X,Y,Z) =n(Y)g(d(ALX), Z)

Wo=(FeF +n(2)9(s(AFX),Y), o, (2.7)
AFe =0

W3 =G ={F € FIF(X,Y,Z) = n(X)F (£, 6(Y),¢(2)}, (2.8)

Wi =Gz ={F € FIF(X,Y, Z) = n(X)(n(Y )wr(Z) = n(Z)wr(Y))}, (2.9)

where ALY = (Vy¢)(X), AS'X = Vx¢ and wp(X) = F(£,¢,X). Then Wy and W, were written as sums

of U(n) x 1 irreducible components Gy, Gs,G3,Gy4, and Gs, - - - , Gy respectively, where U(n) is the paraunitary

group, with the following defining relations [11]:
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G [ F(X,Y,Z) = 5o {o(X, 0V )0r(62) — 9(X, 6Z)0r (8Y )
+9(6X,62)0r(hY) - g(6X, 6Y)0(hZ)}

g2 F(¢Xa¢KZ)Z7F(X7YaZ)a 9F:0

Gy | F(&,Y,Z2)=F(X,£,Z2)=0, F(X)Y,Z)=-F(Y,X,2)

g4 F(g,Y,Z):F(X,E,Z):O, G(X,Y,Z)F(Xayaz)zo

G | F(X,Y,2) = B0 [n(Y)g(6X,0Z) — 1(Z)g(¢X, 8V )]

Go | F(X,Y,2) = —E&[y(Y)g(X,02) — n(2)g(X, dY)]

Gr | FX,Y,2)=-FY,Z,X)+ F(Z,X,Y) - 2F(¢X, ¢Y, Z),
= —F(pX, Y. Z) — F(¢X.Y,$Z)

05(6) =0

Gs | FX,Y,2)=-F(Y,Z,X)-F(Z,X,Y),
=—F(¢X,9Y,Z) - F(¢X,Y,¢Z)

'9F(£) =0

g9 F(va?Z):_F(KZaX>+F<ZaX7Y>+2F(¢Xa¢Y7Z)7
= F(¢X,9Y, Z) + F(¢X,Y,¢Z)

Gio F(X7Y7Z):_F(KZ7X)_F(Z7X3Y)
= F(¢X,9Y,Z) + F(¢X,Y,90Z)

Gro | F(X,Y, Z) = n(X) [n(Y)wr(Z) = n(Z)wrp(Y)]

where 0p(X) = g7 F(ej,ej, X), 05(X) = g F(e;, ¢(ej, X), and h(X) = ¢?(X).

The trivial class denoted by Gg, for which the defining relation is V® = 0, is the class of paracosym-
plectic structures. The classes G5 and Gg correspond to a-para-Sasakian and S-para-Kenmotsu structures,
respectively. Also, the defining relations of paracontact and almost K-paracontact classes are dn = ¢ and
V¢® = 0, respectively.

Let (M, ¢,£,7n,9) be an almost paracontact metric manifold. M is called normal if
P(Vxd)(Y)) = (Voxd)(Y) + (Vxn)(Y)§ = 0; (2.10)

see [9].

3. Almost paracontact metric structures and G;(Q) structures

Consider a 7-dimensional smooth manifold M with a G;Q) -structure ¢ inducing the pseudo-Riemannian metric

g4 3 and the vector cross-product P. Let { be a nonzero vector field on M such that g43(£,€) = —1. Then
the quadruple (¢,&,7,g), where the endomorphism is

P(X) = P(¢, X) (3.1)
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and g = —ga3, N(X) = g(§, X), is an almost paracontact metric structure on M . Indeed, we have

$*X = ¢(¢X) = p(P(€, X)) = P(& P(€, X))
= _94,3(§7£)X +g4,3(§7x)€ = g(§7£)X - g(gax)g
=X —n(X)¢

and
9(¢X,9Y) = —gs3(P(§,X), P(£,Y)
= —043(£,€)923(X,Y) + 943(§, X)ga,3(6,Y)
= —g(X,Y) +n(X)n(Y).

Throughout the paper, unless otherwise stated, (¢,&,7,g) corresponds to the almost paracontact metric

structure (a.p.m.s.) obtained by a Gz structure ¢ on M. Note that V¥ = V93 and we use the notation V

for the Levi-Civita covariant derivative V9.

The following proposition gives a relation between the covariant derivatives of the fundamental 2-form of

the almost paracontact structure and of the G§(2) structure ¢.

Proposition 3.1 For an a.p.m.s. (¢,€,7,9) on M, the equation
(Vx®)(Y,Z) = =(Vx9)(§ Y, Z) — o(Vx&,Y, Z) (32)
holds.
Proof
(Vxe)(&,Y,Z) = g43(VxP(£,Y), Z) — 913(P(Vx&,Y), Z) — g43(P(§, VxY), Z)
=—9(Vx(¢Y), Z) = o(Vx& Y, Z) + g(¢(VxY), Z)
=—9((Vx9)(Y),Z) —p(Vx¢,Y, Z)
=—(Vx®)(Y,2) — o(Vx& Y, 2).

O

The following proposition gives a condition for almost paracontact metric structures induced by G;(z)

structures to be paracontact.

Proposition 3.2 An a.p.m.s. (¢,€,7,9) induced by a G;(Q) structure is paracontact (i.e. dn = ® ) if and only
if & salisfies

1
94,3(P(§a X)v Y) = 5(94,3(VX€7 Y) — 94,3 (Vva X)) (33)
Proof The exterior derivative of 7 is:

2dn(X,Y) = (Vxn)Y — (Vyn)X. (3.4)
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After some calculations, the following is obtained:

A(X.¥) = L (~01s(VxE Y) + 0as(VrE, X)),

Besides, for the corresponding almost paracontact metric structure, we have ®(X,Y) = g(¢(X),Y) = —ga 3(P(&, X),Y).
Thus, dn = @ if the relation (3.3) holds. O

Theorem 1 An a.p.m.s. (¢,£,n,9) induced by a parallel G;(z) structure ¢ on (M, ga3) (i.e V9430 =0) is
in the class Go(V® = 0) (paracosymplectic) if and only if the vector field & is parallel.
Proof Let ¢ be a parallel structure; that is, Vo = 0. Then from the equation (3.2), we have

(VX(I))(Y’ Z) = *‘P(Ya Z, ng) = 794,3(P(Y7 Z)’ ng)a

which implies
Vo =0 < VE=0.

Theorem 2 For an a.p.m.s. ($,€,7n,9), if € is not parallel, then the structure is not in W7 .

Proof Consider the equation
J(ALX,62) = g(Vxé. 62).

Letting the vector field £ not be parallel, then there exists X, such that Vx,£ # 0 and obviously the third
condition of the defining relation (2.6) of W7 fails. O

Note that, under the assumption of Theorem 2, the structure is not an element of any subclass of
Wi=G1®G®G3®0s.

Theorem 3 If the G;‘(Z) structure ¢ is nearly parallel and & is parallel, then (¢,&,m,g) is in Wy.
Proof Let ¢ be nearly parallel; that is,
(Vxo)(X,Y,Z) =0,
and let £ be parallel, i.e. V&€ =0. Then, from equation (3.2),
F(6,Y,2) = ~(Veg)(&,Y, Z) - p(Vek, Y, Z) = 0

and
F(nga Z) = _(VX(JD)(gaé-vZ) - (p(VXga§7Z) = 0.

Thus, the definition of W is satisfied. O

Theorem 4 An a.p.m.s. (¢,§,m,9) from a nearly parallel structure ¢ satisfies Ve® = 0 (almost K-
paracontact) if and only if V& =0.
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Proof Let ¢ be nearly parallel. Then this is an immediate consequence of formula (3.2) and of the definition

of the nearly parallel GS(Z) structure. Indeed,

Then
VE(I):O — ngz().

O
Note that an a.p.m.s. (¢,£,7,g) such that V¢€ # 0 cannot be in the class W5 by the definition of Ws.
In addition, if £ is not Killing, the structure is not in the class G5 & Gs.

Theorem 5 If & is not parallel, then the structure (¢,&,m,g) is not an element of Ws(= G11).

Proof Take Y = ¢ in the defining relation (2.8) of the class W3. Then, as a consequence of the formula (3.2),
the left-hand side of (2.8) is

while the right-hand side vanishes since ¢(£) = 0. Thus, if V& # 0 (i.e. £ is not parallel), the structure can

not be in the class Ws. O

Theorem 6 If there exists a vector field X € {&€}* with the property Vx& # 0, then the structure (¢,€,1,9)
is not in Wy(= Gi2).

Proof Let X € {¢}+ with Vx¢& # 0. Take Y = ¢ in the defining relation (2.9) of the class Wj. Then
n(X) =0 since X € {¢}1, so the right-hand side of the relation (2.9) is zero. On the other hand, from formula
(3.2),

(Vx®)(Y,2) = (Vx®)(§, 2)
= 9(0Z,V x§).

Therefore, (Vx®)(Y, Z) does not have to be zero since Vx¢& # 0. Hence, the defining relation is not satisfied

under the given conditions. O

Example 7 Consider the seven-dimensional Lie algebra £ with nonzero brackets
le1,e2] = €5, [e1,e3] = e6.
Then £ admits the G§(2) structure
o= 50T _ (B12 (534 o613 4 o624 4 oTI4 | (723 (3.5)

The metric ga 3 induced by ¢ is

94,3(%,y) = x5Ys + TelYs + TrY7r — T1Y1 — TaY2 — T3Y3 — T4Ys
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for any vector fields x = > xe;, y = Y, yie;; see [3]. Note that gss(e;,e;) = —1 for i = 1,2,3,4 and

ga3(ei,e;) =1 otherwise. The cross-product of frame elements are obtained via (2.1):

P(ey1,e2) = —es, P(e1,e3) = —es, Ple1,eq) =e7, Pler,e5) = —ea,
P(e1,eq) = —e3, Pler,er) =eq, Plea,e3) =e7, Ples,eq) = eg,
P(es,e5) =e1, P(ea,eq) =e4, Ples,er) =es, P(es,eq) = —es,

Ples,e5) = —eq, P(es,eq) =e1, Ples,er) = —ea, P(eq,e5) = e3,
P(es,e6) = —e2, Pl(es,er) = —e1, Ples,eq) = er, Ples,er) = —es, Pleg, e7) = es.

The nonzero Levi-Clivita covariant derivatives evaluated by Kozsul’s formula are

1 1 1 1 -1 -1
v€162 = 5657V€1e3 = 5667V€165 = 5627ve166 = 5637ve261 = 7657V€265 = 761
—1 -1 1 —1 1 —
Vese1 = 786’v"'3€6 = 7elvv6561 = 5527V6562 = ?elaveeel = 5637ve6€3 =5 e

Now we investigate the existence of certain classes on £.

Assume that a nonzero vector field X = aie1 + -+ -+ azer is parallel. Then,
Ve, X =a1Ve,e1 +a2Ve e2 +azVe ez +aaVe eq +asVe s + asVe, €6 +arVe, e7

%65 + %66 + %62 + %63

0 << a2=a3=as5 =ag = 0.

On the other hand,
Ver:—%eszo = a1 =0 (3.6)

and there is no other restriction on the coefficients a;. Thus, X = ase; is parallel iff X = aseq + arer, that is, iff
X € span{eas,er}.

Note that the G5,y structure (3.5) is neither parallel (since (Ve,¢)(e2,e3,e4) = 1 # 0) nor nearly parallel (since
(Verp)(e2,es,e4) + (Ve ) (e1,e3,e4) = 5 #0).

Now we give an example of an a.p.m.s. such that the characteristic vector field is parallel. Let (¢,&,m,g) be
the a.p.m.s. induced by the G5 structure (5.5), where § = es and g = —ga,3. Then from the equation (5.1), we
get ¢(e1) = Ples,e1) = —er, dle2) = —es, d(es) = es, ¢plea) =0, ¢(es) = e3, Pleg) = —e2, Pler) = —e1. Since
(Ve p)(e2) = —e3 # 0, this structure is not paracosymplectic. Theorem 1 states that an a.p.m.s. induced by a parallel
G;(2) structure is paracosymplectic if and only if the characteristic vector field is parallel. This example shows that
if the GE(Q) structure is not parallel, we can obtain a.p.m. structures that are not paracosymplectic but have parallel
characteristic vector fields.

It is easy to check that this structure is in W1, although the G5, structure is not nearly parallel, comparing with

Theorem 3.
Now let (¢,€,m,9) be the a.p.m.s. induced by the G5y structure (3.5), where § = ex (£ is not parallel in this

case) and g = —ga,3. By Theorem 2, this structure is not in Wi. In addition, it is not in W3 by Theorem 5. Also,

since Ve, €2 = %65 # 0, this structure is not in Wy by Theorem 6. From the equation (3.1), we have ¢(e1) = es,
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Pe2) =0, ¢(e3) = er, dlea) =es, ples) =e1, dles) =ea, pler) = es. Since (Ve,¢)(e1) = se2 # 0, this structure is
not paracosymplectic. One can check that Vep = Veyp = 0 that is, this structure is almost-K-paracontact.

Now we investigate the existence of paracontact structures on £ induced by the G5y structure (3.5). Let
(¢,€,m,9) be such a structure with fundamental 2-form ® ; that is, dn = ®. Since de® = e'?, de® = e'*, for n =3 bie,
i=1,...,7, we have dn = bse'? + bse'® = ®. This implies ¢(es) = 0. From the equation

g(d(es), d(es)) = —g(es, es) +n’(es),

we obtain 1> (es) = —1, which is a contradiction. Therefore, there is no paracontact structure on £ induced by the given
G3a) structure.
Finally, we study the existence of «-para-Sasakian structures on £ induced by the G;(Q) structure (8.5). Let

(6,&,m,9) be an a-para-Sasakian structure induced by (3.5). Note that g = —ga,3. The characteristic vector field £ is

Killing. From the equation
g(VGigvej) +9(V€j£76i) =0, (3'7)
we obtain that & is Killing if and only if a1 = a2 = a3 = 0. Thus, & = aseq + ...+ arer. From the definition of an

a-para-Sasakian structure, we have ¢(X) = 2V ,€ for all vector fields X . Then ¢(e2) = —25e1 and ¢(e3) = —2e; .

- T 2a 2a

The equation
9(9(e2), d(es)) = —g(ez, es) + n(ez)n(es)
implies asas = 0. Thus, ¢(e1) =0 or ¢(e2) =0. Assume without loss of generality that ¢p(e1) =0. Since

0= g(der), d(er)) # —gler,er) +n°(ex) = —1,

there is no «-para-Sasakian structure induced by (3.5).
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