Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2018) 42: 3025 - 3033
© TÜBİTAK
doi:10.3906/mat-1706-10

Almost paracontact structures obtained from $G_{2(2)}^{*}$ structures

Nülifer ÖZDEMİR ${ }^{1}{ }^{(D}$, Şirin AKTAY ${ }^{1}{ }^{(0)}$, Mehmet SOLGUN ${ }^{2, *}$ ©
${ }^{1}$ Department of Mathematics, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, Turkey

| Received: 02.06 .2017 | • Accepted/Published Online: 03.10 .2018 | • Final Version: 27.11 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper, we construct almost paracontact metric structures by using the fundamental 3 -forms of manifolds with $G_{2(2)}^{*}$ structures. The existence of certain almost paracontact metric structures is investigated due to the properties of the 2 -fold vector cross-product. Furthermore, we give some relations between the classes of $G_{2(2)}^{*}$ structures and almost paracontact metric structures.

Key words: $G_{2(2)}^{*}$ structure, almost paracontact metric structure

1. Introduction

Almost paracontact structures on manifolds of odd dimension, analogues of the almost contact structures on manifolds, were first introduced by Kaneyuki and Williams in [5]. After the work of Zamkovoy in [10], almost paracontact metric structures have been a widely studied research area. In [11], almost paracontact metric structures were classified into 2^{12} classes taking into consideration the Levi-Civita covariant derivative of the fundamental 2-form of the structure.

Almost contact metric structures induced by G_{2} structures were constructed by Matzeu and Munteanu in [7]; see also [1]; and the possible classes that these structures may belong to were considered in [8].

The objective of this manuscript is the investigation of almost paracontact metric structures on manifolds with structure group $G_{2(2)}^{*}$. First, we construct almost paracontact metric structures induced by $G_{2(2)}^{*}$ structures. Then we investigate the relation between the classes of almost paracontact metric structures and $G_{2(2)}^{*}$ structures. In addition, we give an elementary example to support the arguments of the manuscript.

2. Preliminaries

Consider \mathbb{R}^{7} with the standard basis $\left\{e_{1}, \ldots, e_{7}\right\}$. The fundamental 3-form on \mathbb{R}^{7} is defined as

$$
\varphi_{0}=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

where $\left\{e^{1}, \ldots, e^{7}\right\}$ denotes the basis dual to $\left\{e_{1}, \ldots, e_{7}\right\}$ and $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$. The Lie group G_{2} is defined by

$$
G_{2}:=\left\{f \in G L(7, \mathbb{R}) \mid f^{*} \varphi_{0}=\varphi_{0}\right\}
$$

see [3].

[^0]A 7-dimensional oriented manifold M has a G_{2} structure if and only if its structure group reduces to G_{2}. Then there is a 3 -form φ on M with the property that $\left(T_{p} M, \varphi_{p}\right) \cong\left(\mathbb{R}^{7}, \varphi_{0}\right)$, for all $p \in M$, said to be the fundamental 3-form or the G_{2} structure on M. Manifolds (M, g) with G_{2} structure were classified into 16 classes in [4].

The noncompact dual of G_{2} is the group

$$
G_{2(2)}^{*}=\left\{g \in G L(7, \mathbb{R}) \mid g^{*} \widetilde{\varphi}=\widetilde{\varphi}\right\}
$$

where

$$
\widetilde{\varphi}=-e^{127}-e^{135}+e^{146}+e^{236}+e^{245}-e^{347}+e^{567}
$$

and $\left\{e^{1}, \ldots, e^{7}\right\}$ denotes the dual to the standard basis of $\mathbb{R}^{4,3}=\left(\mathbb{R}^{7}, g_{4,3}\right)$ with the metric $g_{4,3}=(-1,-1,-1,-1,1,1,1)$. A semi-Riemannian manifold M with the metric of signature $(-,-,-,-,+,+,+)$ whose structure group reduces to $G_{2(2)}^{*}$ is called a manifold with $G_{2(2)}^{*}$ structure. Similar to the G_{2} case, there is the fundamental 3-form (or the $G_{2(2)}^{*}$ structure) $\widetilde{\varphi}$ on M inducing a metric $g_{4,3}$, a volume form, and a 2 -fold vector cross-product \widetilde{P} on M, which can be calculated via

$$
\begin{equation*}
\widetilde{\varphi}(X, Y, Z)=g_{4,3}(\widetilde{P}(X, Y), Z) \tag{2.1}
\end{equation*}
$$

see [3]. Similar to the G_{2} case, a $G_{2(2)}^{*}$ structure $\widetilde{\varphi}$ satisfying $\nabla^{g_{4,3}} \widetilde{\varphi}=0$ is called a parallel $G_{2(2)}^{*}$ structure and a $G_{2(2)}^{*}$ structure with $\nabla_{X}^{g_{4,3}} \widetilde{\varphi}(X, Y, Z)=0$ is called nearly parallel [6].

For convenience, throughout the paper, a $G_{2(2)}^{*}$ structure and the induced vector cross-product will be denoted by φ and P, respectively.

A triple (ϕ, ξ, η) on a $2 n+1$-dimensional differentiable manifold $M^{2 n+1}$ satisfying

$$
\begin{equation*}
\phi^{2}=I-\eta \otimes \xi, \quad \eta(\xi)=1 \tag{2.2}
\end{equation*}
$$

where ϕ is a $(1,1)$ tensor field, ξ is a vector field, and η is a 1 -form η on M, is called an almost paracontact structure on M and M is called an almost paracontact manifold. As a consequence of (2.2), one can see that $\phi(\xi)=0$ and $\eta \circ \phi=0$ on the almost paracontact structure (ϕ, ξ, η).

If an almost paracontact manifold M has a semi-Riemannian metric g of signature ($n, n+1$) satisfying

$$
\begin{equation*}
g(\phi(X), \phi(Y))=-g(X, Y)+\eta(X) \eta(Y) \tag{2.3}
\end{equation*}
$$

then M is an almost paracontact metric manifold having the almost paracontact metric structure (ϕ, ξ, η, g) and g is said to be a compatible metric.

The 2-form

$$
\Phi(X, Y):=g(\phi(X), Y)
$$

is said to be the fundamental 2-form of the almost paracontact metric structure. It is known that on an almost paracontact metric manifold there is an orthonormal basis (called a ϕ-basis) $\left\{e_{1}, \phi e_{1}, \cdots, e_{n}, \phi e_{n}, \xi\right\}$ with

$$
g\left(e_{i}, e_{j}\right)=-g\left(\phi e_{i}, \phi e_{j}\right)=\delta_{i j}, \quad g\left(e_{i}, \phi e_{j}\right)=0, \quad i, j=1, \cdots, n
$$

see [10]. For the almost contact case, see [2].

Let F be the $(0,3)$ tensor field defined by

$$
\begin{equation*}
F(X, Y, Z)=\left(\nabla_{X} \Phi\right)(Y, Z)=g\left(\left(\nabla_{X} \phi\right) Y, Z\right) \tag{2.4}
\end{equation*}
$$

for $X, Y, Z \in T M$. It can be seen that F has the following properties:

$$
\begin{align*}
& F(X, Y, Z)=-F(X, Z, Y) \tag{2.5}\\
& F(X, \phi(Y), \phi(Z))=F(X, Y, Z)+\eta(Y) F(X, Z, \xi)-\eta(Z) F(X, Y, \xi)
\end{align*}
$$

In [11], a classification of almost paracontact metric manifolds was obtained by considering the space \mathcal{F} of tensors F that satisfy (2.5). Initially, this space was decomposed into four subspaces

$$
\begin{align*}
& W_{1}=\left\{\begin{array}{l|l}
F \in \mathcal{F} & \begin{array}{l}
F(X, Y, Z)=g\left(\mathcal{A}_{Y}^{F} X, Z\right), \\
F(\xi, Y, Z)=g\left(\mathcal{A}_{Y}^{F} \xi, Z\right)=0, \\
F(X, \xi, Z)=g\left(\mathcal{A}_{\xi}^{\prime} F X, \phi(Z)\right)=0
\end{array}
\end{array}\right\}, \tag{2.6}\\
& W_{2}=\left\{F \in \mathcal{F} \left\lvert\, \begin{array}{ll}
F(X, Y, Z) & =\eta(Y) g\left(\phi\left(\mathcal{A}_{\xi}^{\prime} F X\right), Z\right) \\
\mathcal{A}_{\xi}^{\prime F} \xi & =\eta(Z) g\left(\phi\left(\mathcal{A}_{\xi}^{\prime F} X\right), Y\right), \\
\end{array}\right.\right\}, \tag{2.7}\\
& W_{3}=\mathcal{G}_{11}=\{F \in \mathcal{F} \mid F(X, Y, Z)=\eta(X) F(\xi, \phi(Y), \phi(Z)\}, \tag{2.8}\\
& W_{4}=\mathcal{G}_{12}=\left\{F \in \mathcal{F} \mid F(X, Y, Z)=\eta(X)\left(\eta(Y) \omega_{F}(Z)-\eta(Z) \omega_{F}(Y)\right)\right\}, \tag{2.9}
\end{align*}
$$

where $\mathcal{A}_{X}^{F} Y=\left(\nabla_{Y} \phi\right)(X), \mathcal{A}_{\xi}^{\prime F} X=\nabla_{X} \xi$ and $\omega_{F}(X)=F(\xi, \xi, X)$. Then W_{1} and W_{2} were written as sums of $U(n) \times 1$ irreducible components $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \mathcal{G}_{4}$, and $\mathcal{G}_{5}, \cdots, \mathcal{G}_{10}$ respectively, where $U(n)$ is the paraunitary group, with the following defining relations [11]:

\mathcal{G}_{1}	$\begin{aligned} F(X, Y, Z) & =\frac{1}{2(n-1)}\left\{g(X, \phi Y) \theta_{F}(\phi Z)-g(X, \phi Z) \theta_{F}(\phi Y)\right. \\ & \left.+g(\phi X, \phi Z) \theta_{F}(h Y)-g(\phi X, \phi Y) \theta(h Z)\right\} \end{aligned}$
\mathcal{G}_{2}	$F(\phi X, \phi Y, Z)=-F(X, Y, Z), \quad \theta_{F}=0$
\mathcal{G}_{3}	$F(\xi, Y, Z)=F(X, \xi, Z)=0, \quad F(X, Y, Z)=-F(Y, X, Z)$
\mathcal{G}_{4}	$F(\xi, Y, Z)=F(X, \xi, Z)=0, \quad \mathfrak{S}_{(X, Y, Z)} F(X, Y, Z)=0$
\mathcal{G}_{5}	$F(X, Y, Z)=\frac{\theta_{F}(\xi)}{2 n}[\eta(Y) g(\phi X, \phi Z)-\eta(Z) g(\phi X, \phi Y)]$
\mathcal{G}_{6}	$F(X, Y, Z)=-\frac{\theta_{F}^{*}(\xi)}{2 n}[\eta(Y) g(X, \phi Z)-\eta(Z) g(X, \phi Y)]$
\mathcal{G}_{7}	$\begin{aligned} & F(X, Y, Z)=-F(Y, Z, X)+F(Z, X, Y)-2 F(\phi X, \phi Y, Z), \\ &=-F(\phi X, \phi Y, Z)-F(\phi X, Y, \phi Z) \\ & \theta_{F}^{*}(\xi)=0 \end{aligned}$
\mathcal{G}_{8}	$\begin{aligned} & \hline F(X, Y, Z)=-F(Y, Z, X)-F(Z, X, Y), \\ &=-F(\phi X, \phi Y, Z)-F(\phi X, Y, \phi Z) \\ & \theta_{F}(\xi)=0 \end{aligned}$
\mathcal{G}_{9}	$\begin{aligned} F(X, Y, Z) & =-F(Y, Z, X)+F(Z, X, Y)+2 F(\phi X, \phi Y, Z), \\ & =F(\phi X, \phi Y, Z)+F(\phi X, Y, \phi Z) \end{aligned}$
\mathcal{G}_{10}	$\begin{aligned} F(X, Y, Z) & =-F(Y, Z, X)-F(Z, X, Y) \\ & =F(\phi X, \phi Y, Z)+F(\phi X, Y, \phi Z) \end{aligned}$
\mathcal{G}_{11}	$F(X, Y, Z)=\eta(X) F(\xi, \phi Y, \phi Z)$
\mathcal{G}_{12}	$F(X, Y, Z)=\eta(X)\left[\eta(Y) \omega_{F}(Z)-\eta(Z) \omega_{F}(Y)\right]$

where $\theta_{F}(X)=g^{i j} F\left(e_{i}, e_{j}, X\right), \theta_{F}^{*}(X)=g^{i j} F\left(e_{i}, \phi\left(e_{j}, X\right)\right.$, and $h(X)=\phi^{2}(X)$.
The trivial class denoted by \mathcal{G}_{0}, for which the defining relation is $\nabla \Phi=0$, is the class of paracosymplectic structures. The classes \mathcal{G}_{5} and \mathcal{G}_{6} correspond to α-para-Sasakian and β-para-Kenmotsu structures, respectively. Also, the defining relations of paracontact and almost K-paracontact classes are $d \eta=\Phi$ and $\nabla_{\xi} \Phi=0$, respectively.

Let (M, ϕ, ξ, η, g) be an almost paracontact metric manifold. M is called normal if

$$
\begin{equation*}
\phi\left(\left(\nabla_{X} \phi\right)(Y)\right)-\left(\nabla_{\phi X} \phi\right)(Y)+\left(\nabla_{X} \eta\right)(Y) \xi=0 \tag{2.10}
\end{equation*}
$$

see [9].

3. Almost paracontact metric structures and $G_{2(2)}^{*}$ structures

Consider a 7-dimensional smooth manifold M with a $G_{2(2)}^{*}$-structure φ inducing the pseudo-Riemannian metric $g_{4,3}$ and the vector cross-product P. Let ξ be a nonzero vector field on M such that $g_{4,3}(\xi, \xi)=-1$. Then the quadruple (ϕ, ξ, η, g), where the endomorphism is

$$
\begin{equation*}
\phi(X)=P(\xi, X) \tag{3.1}
\end{equation*}
$$

ÖZDEMİR/Turk J Math

and $g=-g_{4,3}, \eta(X)=g(\xi, X)$, is an almost paracontact metric structure on M. Indeed, we have

$$
\begin{aligned}
\phi^{2} X & =\phi(\phi X)=\phi(P(\xi, X))=P(\xi, P(\xi, X)) \\
& =-g_{4,3}(\xi, \xi) X+g_{4,3}(\xi, X) \xi=g(\xi, \xi) X-g(\xi, X) \xi \\
& =X-\eta(X) \xi
\end{aligned}
$$

and

$$
\begin{aligned}
g(\phi X, \phi Y) & =-g_{4,3}(P(\xi, X), P(\xi, Y) \\
& =-g_{4,3}(\xi, \xi) g_{4,3}(X, Y)+g_{4,3}(\xi, X) g_{4,3}(\xi, Y) \\
& =-g(X, Y)+\eta(X) \eta(Y)
\end{aligned}
$$

Throughout the paper, unless otherwise stated, (ϕ, ξ, η, g) corresponds to the almost paracontact metric structure (a.p.m.s.) obtained by a $G_{2(2)}^{*}$ structure φ on M. Note that $\nabla^{g}=\nabla^{g_{4,3}}$ and we use the notation ∇ for the Levi-Civita covariant derivative ∇^{g}.

The following proposition gives a relation between the covariant derivatives of the fundamental 2-form of the almost paracontact structure and of the $G_{2(2)}^{*}$ structure φ.

Proposition 3.1 For an a.p.m.s. (ϕ, ξ, η, g) on M, the equation

$$
\begin{equation*}
\left(\nabla_{X} \Phi\right)(Y, Z)=-\left(\nabla_{X} \varphi\right)(\xi, Y, Z)-\varphi\left(\nabla_{X} \xi, Y, Z\right) \tag{3.2}
\end{equation*}
$$

holds.

Proof

$$
\begin{aligned}
\left(\nabla_{X} \varphi\right)(\xi, Y, Z) & =g_{4,3}\left(\nabla_{X} P(\xi, Y), Z\right)-g_{4,3}\left(P\left(\nabla_{X} \xi, Y\right), Z\right)-g_{4,3}\left(P\left(\xi, \nabla_{X} Y\right), Z\right) \\
& =-g\left(\nabla_{X}(\phi Y), Z\right)-\varphi\left(\nabla_{X} \xi, Y, Z\right)+g\left(\phi\left(\nabla_{X} Y\right), Z\right) \\
& =-g\left(\left(\nabla_{X} \phi\right)(Y), Z\right)-\varphi\left(\nabla_{X} \xi, Y, Z\right) \\
& =-\left(\nabla_{X} \Phi\right)(Y, Z)-\varphi\left(\nabla_{X} \xi, Y, Z\right)
\end{aligned}
$$

The following proposition gives a condition for almost paracontact metric structures induced by $G_{2(2)}^{*}$ structures to be paracontact.

Proposition 3.2 An a.p.m.s. (ϕ, ξ, η, g) induced by a $G_{2(2)}^{*}$ structure is paracontact (i.e. $\left.d \eta=\Phi\right)$ if and only if ξ satisfies

$$
\begin{equation*}
g_{4,3}(P(\xi, X), Y)=\frac{1}{2}\left(g_{4,3}\left(\nabla_{X} \xi, Y\right)-g_{4,3}\left(\nabla_{Y} \xi, X\right)\right) \tag{3.3}
\end{equation*}
$$

Proof The exterior derivative of η is:

$$
\begin{equation*}
2 d \eta(X, Y)=\left(\nabla_{X} \eta\right) Y-\left(\nabla_{Y} \eta\right) X \tag{3.4}
\end{equation*}
$$

After some calculations, the following is obtained:

$$
d \eta(X, Y)=\frac{1}{2}\left(-g_{4,3}\left(\nabla_{X} \xi, Y\right)+g_{4,3}\left(\nabla_{Y} \xi, X\right)\right)
$$

Besides, for the corresponding almost paracontact metric structure, we have $\Phi(X, Y)=g(\phi(X), Y)=-g_{4,3}(P(\xi, X), Y)$. Thus, $d \eta=\Phi$ if the relation (3.3) holds.

Theorem 1 An a.p.m.s. (ϕ, ξ, η, g) induced by a parallel $G_{2(2)}^{*}$ structure φ on $\left(M, g_{4,3}\right)\left(i . e \nabla^{g_{4,3}} \varphi=0\right)$ is in the class $\mathcal{G}_{0}(\nabla \Phi=0)$ (paracosymplectic) if and only if the vector field ξ is parallel.

Proof Let φ be a parallel structure; that is, $\nabla \varphi=0$. Then from the equation (3.2), we have

$$
\left(\nabla_{X} \Phi\right)(Y, Z)=-\varphi\left(Y, Z, \nabla_{X} \xi\right)=-g_{4,3}\left(P(Y, Z), \nabla_{X} \xi\right)
$$

which implies

$$
\nabla \Phi=0 \Longleftrightarrow \nabla \xi=0
$$

Theorem 2 For an a.p.m.s. (ϕ, ξ, η, g), if ξ is not parallel, then the structure is not in W_{1}.
Proof Consider the equation

$$
g\left(\mathcal{A}_{\xi}^{\prime F} X, \phi Z\right)=g\left(\nabla_{X} \xi, \phi Z\right)
$$

Letting the vector field ξ not be parallel, then there exists X_{0} such that $\nabla_{X_{0}} \xi \neq 0$ and obviously the third condition of the defining relation (2.6) of W_{1} fails.

Note that, under the assumption of Theorem 2, the structure is not an element of any subclass of $W_{1}=\mathcal{G}_{1} \oplus \mathcal{G}_{2} \oplus \mathcal{G}_{3} \oplus \mathcal{G}_{4}$.

Theorem 3 If the $G_{2(2)}^{*}$ structure φ is nearly parallel and ξ is parallel, then (ϕ, ξ, η, g) is in W_{1}.
Proof Let φ be nearly parallel; that is,

$$
\left(\nabla_{X} \varphi\right)(X, Y, Z)=0
$$

and let ξ be parallel, i.e. $\nabla \xi=0$. Then, from equation (3.2),

$$
F(\xi, Y, Z)=-\left(\nabla_{\xi} \varphi\right)(\xi, Y, Z)-\varphi\left(\nabla_{\xi} \xi, Y, Z\right)=0
$$

and

$$
F(X, \xi, Z)=-\left(\nabla_{X} \varphi\right)(\xi, \xi, Z)-\varphi\left(\nabla_{X} \xi, \xi, Z\right)=0
$$

Thus, the definition of W_{1} is satisfied.

Theorem 4 An a.p.m.s. $\quad(\phi, \xi, \eta, g)$ from a nearly parallel structure φ satisfies $\nabla_{\xi} \Phi=0$ (almost K paracontact) if and only if $\nabla_{\xi} \xi=0$.

ÖZDEMİR/Turk J Math

Proof Let φ be nearly parallel. Then this is an immediate consequence of formula (3.2) and of the definition of the nearly parallel $G_{2(2)}^{*}$ structure. Indeed,

$$
\left(\nabla_{\xi} \Phi\right)(X, Y)=-\left(\nabla_{\xi} \varphi\right)(\xi, X, Y)-\varphi\left(\nabla_{\xi} \xi, X, Y\right)=-\varphi\left(\nabla_{\xi} \xi, X, Y\right)
$$

Then

$$
\nabla_{\xi} \Phi=0 \Longleftrightarrow \nabla_{\xi} \xi=0
$$

Note that an a.p.m.s. (ϕ, ξ, η, g) such that $\nabla_{\xi} \xi \neq 0$ cannot be in the class W_{2} by the definition of W_{2}. In addition, if ξ is not Killing, the structure is not in the class $\mathcal{G}_{5} \oplus \mathcal{G}_{8}$.

Theorem 5 If ξ is not parallel, then the structure (ϕ, ξ, η, g) is not an element of $W_{3}\left(=\mathcal{G}_{11}\right)$.
Proof Take $Y=\xi$ in the defining relation (2.8) of the class W_{3}. Then, as a consequence of the formula (3.2), the left-hand side of (2.8) is

$$
\begin{aligned}
\left(\nabla_{X} \Phi\right)(\xi, Z) & =X[\Phi(\xi, Z)]-\Phi\left(\nabla_{X} \xi, Z\right)-\Phi\left(\xi, \nabla_{X} Z\right) \\
& =g\left(\phi Z, \nabla_{X} \xi\right)
\end{aligned}
$$

while the right-hand side vanishes since $\phi(\xi)=0$. Thus, if $\nabla \xi \neq 0$ (i.e. ξ is not parallel), the structure can not be in the class W_{3}.

Theorem 6 If there exists a vector field $X \in\{\xi\}^{\perp}$ with the property $\nabla_{X} \xi \neq 0$, then the structure (ϕ, ξ, η, g) is not in $W_{4}\left(=\mathcal{G}_{12}\right)$.

Proof Let $X \in\{\xi\}^{\perp}$ with $\nabla_{X} \xi \neq 0$. Take $Y=\xi$ in the defining relation (2.9) of the class W_{4}. Then $\eta(X)=0$ since $X \in\{\xi\}^{\perp}$, so the right-hand side of the relation (2.9) is zero. On the other hand, from formula (3.2),

$$
\begin{aligned}
\left(\nabla_{X} \Phi\right)(Y, Z) & =\left(\nabla_{X} \Phi\right)(\xi, Z) \\
& =X[\Phi(\xi, Z)]-\Phi\left(\nabla_{X} \xi, Z\right)-\Phi\left(\xi, \nabla_{X} Z\right) \\
& =g\left(\phi Z, \nabla_{X} \xi\right)
\end{aligned}
$$

Therefore, $\left(\nabla_{X} \Phi\right)(Y, Z)$ does not have to be zero since $\nabla_{X} \xi \neq 0$. Hence, the defining relation is not satisfied under the given conditions.

Example 7 Consider the seven-dimensional Lie algebra \mathfrak{L} with nonzero brackets

$$
\left[e_{1}, e_{2}\right]=e_{5}, \quad\left[e_{1}, e_{3}\right]=e_{6}
$$

Then \mathfrak{L} admits the $G_{2(2)}^{*}$ structure

$$
\begin{equation*}
\varphi=e^{567}-e^{512}-e^{534}-e^{613}+e^{624}+e^{714}+e^{723} \tag{3.5}
\end{equation*}
$$

The metric $g_{4,3}$ induced by φ is

$$
g_{4,3}(x, y)=x_{5} y_{5}+x_{6} y_{6}+x_{7} y_{7}-x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4}
$$

ÖZDEMİR/Turk J Math

for any vector fields $x=\sum x_{i} e_{i}, y=\sum y_{i} e_{i}$; see [3]. Note that $g_{4,3}\left(e_{i}, e_{i}\right)=-1$ for $i=1,2,3,4$ and $g_{4,3}\left(e_{i}, e_{i}\right)=1$ otherwise. The cross-product of frame elements are obtained via (2.1):

$$
\begin{gathered}
P\left(e_{1}, e_{2}\right)=-e_{5}, \quad P\left(e_{1}, e_{3}\right)=-e_{6}, \quad P\left(e_{1}, e_{4}\right)=e_{7}, \quad P\left(e_{1}, e_{5}\right)=-e_{2} \\
P\left(e_{1}, e_{6}\right)=-e_{3}, \quad P\left(e_{1}, e_{7}\right)=e_{4}, \quad P\left(e_{2}, e_{3}\right)=e_{7}, \quad P\left(e_{2}, e_{4}\right)=e_{6} \\
P\left(e_{2}, e_{5}\right)=e_{1}, \quad P\left(e_{2}, e_{6}\right)=e_{4}, \quad P\left(e_{2}, e_{7}\right)=e_{3}, \quad P\left(e_{3}, e_{4}\right)=-e_{5} \\
P\left(e_{3}, e_{5}\right)=-e_{4}, \quad P\left(e_{3}, e_{6}\right)=e_{1}, \quad P\left(e_{3}, e_{7}\right)=-e_{2}, \quad P\left(e_{4}, e_{5}\right)=e_{3} \\
P\left(e_{4}, e_{6}\right)=-e_{2}, \quad P\left(e_{4}, e_{7}\right)=-e_{1}, \quad P\left(e_{5}, e_{6}\right)=e_{7}, \quad P\left(e_{5}, e_{7}\right)=-e_{6}, P\left(e_{6}, e_{7}\right)=e_{5}
\end{gathered}
$$

The nonzero Levi-Civita covariant derivatives evaluated by Kozsul's formula are

$$
\begin{gathered}
\nabla_{e_{1}} e_{2}=\frac{1}{2} e_{5}, \nabla_{e_{1}} e_{3}=\frac{1}{2} e_{6}, \nabla_{e_{1}} e_{5}=\frac{1}{2} e_{2}, \nabla_{e_{1}} e_{6}=\frac{1}{2} e_{3}, \nabla_{e_{2}} e_{1}=\frac{-1}{2} e_{5}, \nabla_{e_{2}} e_{5}=\frac{-1}{2} e_{1} \\
\nabla_{e_{3}} e_{1}=\frac{-1}{2} e_{6}, \nabla_{e_{3}} e_{6}=\frac{-1}{2} e_{1}, \nabla_{e_{5}} e_{1}=\frac{1}{2} e_{2}, \nabla_{e_{5}} e_{2}=\frac{-1}{2} e_{1}, \nabla_{e_{6}} e_{1}=\frac{1}{2} e_{3}, \nabla_{e_{6}} e_{3}=\frac{-1}{2} e_{1} .
\end{gathered}
$$

Now we investigate the existence of certain classes on \mathfrak{L}.
Assume that a nonzero vector field $X=a_{1} e_{1}+\cdots+a_{7} e_{7}$ is parallel. Then,

$$
\begin{aligned}
\nabla_{e_{1}} X & =a_{1} \nabla_{e_{1}} e_{1}+a_{2} \nabla_{e_{1}} e_{2}+a_{3} \nabla_{e_{1}} e_{3}+a_{4} \nabla_{e_{1}} e_{4}+a_{5} \nabla_{e_{1}} e_{5}+a_{6} \nabla_{e_{1}} e_{6}+a_{7} \nabla_{e_{1}} e_{7} \\
& =\frac{a_{2}}{2} e_{5}+\frac{a_{3}}{2} e_{6}+\frac{a_{5}}{2} e_{2}+\frac{a_{6}}{2} e_{3} \\
& =0 \Longleftrightarrow a_{2}=a_{3}=a_{5}=a_{6}=0
\end{aligned}
$$

On the other hand,

$$
\begin{equation*}
\nabla_{e_{2}} X=-\frac{a_{1}}{2} e_{5}=0 \Longleftrightarrow a_{1}=0 \tag{3.6}
\end{equation*}
$$

and there is no other restriction on the coefficients a_{i}. Thus, $X=\sum a_{i} e_{i}$ is parallel iff $X=a_{4} e_{4}+a_{7} e_{7}$, that is, iff $X \in \operatorname{span}\left\{e_{4}, e_{7}\right\}$.

Note that the $G_{2(2)}^{*}$ structure (3.5) is neither parallel (since $\left(\nabla_{e_{1}} \varphi\right)\left(e_{2}, e_{3}, e_{4}\right)=1 \neq 0$) nor nearly parallel (since $\left.\left(\nabla_{e_{1}} \varphi\right)\left(e_{2}, e_{3}, e_{4}\right)+\left(\nabla_{e_{2}} \varphi\right)\left(e_{1}, e_{3}, e_{4}\right)=\frac{1}{2} \neq 0\right)$.

Now we give an example of an a.p.m.s. such that the characteristic vector field is parallel. Let (ϕ, ξ, η, g) be the a.p.m.s. induced by the $G_{2(2)}^{*}$ structure (3.5), where $\xi=e_{4}$ and $g=-g_{4,3}$. Then from the equation (3.1), we get $\phi\left(e_{1}\right)=P\left(e_{4}, e_{1}\right)=-e_{7}, \phi\left(e_{2}\right)=-e_{6}, \phi\left(e_{3}\right)=e_{5}, \phi\left(e_{4}\right)=0, \phi\left(e_{5}\right)=e_{3}, \phi\left(e_{6}\right)=-e_{2}, \phi\left(e_{7}\right)=-e_{1}$. Since $\left(\nabla_{e_{1}} \phi\right)\left(e_{2}\right)=-e_{3} \neq 0$, this structure is not paracosymplectic. Theorem 1 states that an a.p.m.s. induced by a parallel $G_{2(2)}^{*}$ structure is paracosymplectic if and only if the characteristic vector field is parallel. This example shows that if the $G_{2(2)}^{*}$ structure is not parallel, we can obtain a.p.m. structures that are not paracosymplectic but have parallel characteristic vector fields.

It is easy to check that this structure is in W_{1}, although the $G_{2(2)}^{*}$ structure is not nearly parallel, comparing with Theorem 3.

Now let (ϕ, ξ, η, g) be the a.p.m.s. induced by the $G_{2(2)}^{*}$ structure (3.5), where $\xi=e_{2}$ (ξ is not parallel in this case) and $g=-g_{4,3}$. By Theorem 2, this structure is not in W_{1}. In addition, it is not in W_{3} by Theorem 5. Also, since $\nabla_{e_{1}} e_{2}=\frac{1}{2} e_{5} \neq 0$, this structure is not in W_{4} by Theorem 6. From the equation (3.1), we have $\phi\left(e_{1}\right)=e_{5}$,

ÖZDEMİR/Turk J Math

$\phi\left(e_{2}\right)=0, \phi\left(e_{3}\right)=e_{7}, \phi\left(e_{4}\right)=e_{6}, \phi\left(e_{5}\right)=e_{1}, \phi\left(e_{6}\right)=e_{4}, \phi\left(e_{7}\right)=e_{3}$. Since $\left(\nabla_{e_{1}} \phi\right)\left(e_{1}\right)=\frac{1}{2} e_{2} \neq 0$, this structure is not paracosymplectic. One can check that $\nabla_{\xi} \phi=\nabla_{e_{2}} \phi=0$; that is, this structure is almost-K-paracontact.

Now we investigate the existence of paracontact structures on \mathfrak{L} induced by the $G_{2(2)}^{*}$ structure (3.5). Let (ϕ, ξ, η, g) be such a structure with fundamental 2-form Φ; that is, $d \eta=\Phi$. Since $d e^{5}=e^{12}$, de $e^{6}=e^{13}$, for $\eta=\sum b_{i} e^{i}$, $i=1, \ldots, 7$, we have $d \eta=b_{5} e^{12}+b_{6} e^{13}=\Phi$. This implies $\phi\left(e_{5}\right)=0$. From the equation

$$
g\left(\phi\left(e_{5}\right), \phi\left(e_{5}\right)\right)=-g\left(e_{5}, e_{5}\right)+\eta^{2}\left(e_{5}\right),
$$

we obtain $\eta^{2}\left(e_{5}\right)=-1$, which is a contradiction. Therefore, there is no paracontact structure on \mathfrak{L} induced by the given $G_{2(2)}^{*}$ structure.

Finally, we study the existence of α-para-Sasakian structures on \mathfrak{L} induced by the $G_{2(2)}^{*}$ structure (3.5). Let (ϕ, ξ, η, g) be an α-para-Sasakian structure induced by (3.5). Note that $g=-g_{4,3}$. The characteristic vector field ξ is Killing. From the equation

$$
\begin{equation*}
g\left(\nabla_{e_{i}} \xi, e_{j}\right)+g\left(\nabla_{e_{j}} \xi, e_{i}\right)=0 \tag{3.7}
\end{equation*}
$$

we obtain that ξ is Killing if and only if $a_{1}=a_{2}=a_{3}=0$. Thus, $\xi=a_{4} e_{4}+\ldots+a_{7} e_{7}$. From the definition of an α-para-Sasakian structure, we have $\phi(X)=\frac{1}{\alpha} \nabla_{x} \xi$ for all vector fields X. Then $\phi\left(e_{2}\right)=-\frac{a_{5}}{2 \alpha} e_{1}$ and $\phi\left(e_{3}\right)=-\frac{a_{6}}{2 \alpha} e_{1}$. The equation

$$
g\left(\phi\left(e_{2}\right), \phi\left(e_{3}\right)\right)=-g\left(e_{2}, e_{3}\right)+\eta\left(e_{2}\right) \eta\left(e_{3}\right)
$$

implies $a_{5} a_{6}=0$. Thus, $\phi\left(e_{1}\right)=0$ or $\phi\left(e_{2}\right)=0$. Assume without loss of generality that $\phi\left(e_{1}\right)=0$. Since

$$
0=g\left(\phi\left(e_{1}\right), \phi\left(e_{1}\right)\right) \neq-g\left(e_{1}, e_{1}\right)+\eta^{2}\left(e_{1}\right)=-1,
$$

there is no α-para-Sasakian structure induced by (3.5).

References

[1] Arikan MF, Cho H, Salur S. Existence of compatible contact structures on G_{2} manifolds. Asian J Math 2013; 17: 321-334.
[2] Blair DE. Riemannian Geometry of Contact and Symplectic Manifolds. Basel, Switzerland: Birkhäuser, 2002.
[3] Bryant R. Metrics with exceptional holonomy. Ann Math 1987; 126: 525-576.
[4] Fernández M, Gray A. Riemannian manifolds with structure group G_{2}. Ann Mat Pura Appl 1982; 132: 19-25.
[5] Kaneyuki S, Williams FL. Almost paracontact and parahodge structures on manifolds. Nagoya Math J 1985; 99: 173-187.
[6] Kath I. $G_{2(2)}^{*}$ structures on pseudo-Riemannian manifolds. J Geometry Phys 1998; 27: 155-177.
[7] Matzeu P, Munteanu MI. Vector cross products and almost contact structures. Rendiconti di Matematica 2002; 22: 359-376.
[8] Özdemir N, Solgun M, Aktay Ş. Almost contact metric structures induced by G_{2} structures. Turk J Math 2017; 41: 1072-1086.
[9] Welyczko J. On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Result Math 2009; 54: 377-387.
[10] Zamkovoy S. Canonical connections on paracontact manifolds. Ann Glob Anal Geom 2009; 36: 37-60.
[11] Zamkovoy S, Nakova G. The decomposition of almost paracontact metric manifolds in eleven classes revisited. J Geom 2018, 109: 18.

[^0]: *Correspondence: mehmet.solgun@bilecik.edu.tr
 2010 AMS Mathematics Subject Classification: 53C25, 53D10
 This study was supported by the Anadolu University Scientific Research Projects Commission under the Grant No: 1501 F 017.

