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Abstract: In this paper, we construct almost paracontact metric structures by using the fundamental 3-forms of
manifolds with G∗

2(2) structures. The existence of certain almost paracontact metric structures is investigated due
to the properties of the 2-fold vector cross-product. Furthermore, we give some relations between the classes of G∗

2(2)

structures and almost paracontact metric structures.
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1. Introduction
Almost paracontact structures on manifolds of odd dimension, analogues of the almost contact structures on
manifolds, were first introduced by Kaneyuki and Williams in [5]. After the work of Zamkovoy in [10], almost
paracontact metric structures have been a widely studied research area. In [11], almost paracontact metric
structures were classified into 212 classes taking into consideration the Levi-Civita covariant derivative of the
fundamental 2-form of the structure.

Almost contact metric structures induced by G2 structures were constructed by Matzeu and Munteanu
in [7]; see also [1]; and the possible classes that these structures may belong to were considered in [8].

The objective of this manuscript is the investigation of almost paracontact metric structures on mani-
folds with structure group G∗

2(2) . First, we construct almost paracontact metric structures induced by G∗
2(2)

structures. Then we investigate the relation between the classes of almost paracontact metric structures and
G∗

2(2) structures. In addition, we give an elementary example to support the arguments of the manuscript.

2. Preliminaries
Consider R7 with the standard basis {e1, ..., e7} . The fundamental 3-form on R7 is defined as

φ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where {e1, ..., e7} denotes the basis dual to {e1, ..., e7} and eijk = ei ∧ ej ∧ ek . The Lie group G2 is defined by

G2 := {f ∈ GL(7,R) | f∗φ0 = φ0};

see [3].
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A 7 -dimensional oriented manifold M has a G2 structure if and only if its structure group reduces to
G2 . Then there is a 3-form φ on M with the property that (TpM,φp) ∼= (R7, φ0) , for all p ∈ M , said to be
the fundamental 3-form or the G2 structure on M . Manifolds (M, g) with G2 structure were classified into 16
classes in [4].

The noncompact dual of G2 is the group

G∗
2(2) = {g ∈ GL(7,R) | g∗φ̃ = φ̃},

where
φ̃ = −e127 − e135 + e146 + e236 + e245 − e347 + e567

and {e1, ..., e7} denotes the dual to the standard basis of R4,3 = (R7, g4,3) with the metric g4,3 = (−1,−1,−1,−1, 1, 1, 1) .
A semi-Riemannian manifold M with the metric of signature (−,−,−,−,+,+,+) whose structure group re-
duces to G∗

2(2) is called a manifold with G∗
2(2) structure. Similar to the G2 case, there is the fundamental 3-form

(or the G∗
2(2) structure) φ̃ on M inducing a metric g4,3 , a volume form, and a 2-fold vector cross-product P̃

on M , which can be calculated via

φ̃(X,Y, Z) = g4,3(P̃ (X,Y ), Z); (2.1)

see [3]. Similar to the G2 case, a G∗
2(2) structure φ̃ satisfying ∇g4,3 φ̃ = 0 is called a parallel G∗

2(2) structure

and a G∗
2(2) structure with ∇g4,3

X φ̃(X,Y, Z) = 0 is called nearly parallel [6].

For convenience, throughout the paper, a G∗
2(2) structure and the induced vector cross-product will be

denoted by φ and P , respectively.
A triple (ϕ, ξ, η) on a 2n+ 1 -dimensional differentiable manifold M2n+1 satisfying

ϕ2 = I − η ⊗ ξ, η(ξ) = 1, (2.2)

where ϕ is a (1, 1) tensor field, ξ is a vector field, and η is a 1-form η on M , is called an almost paracontact
structure on M and M is called an almost paracontact manifold. As a consequence of (2.2), one can see that
ϕ(ξ) = 0 and η ◦ ϕ = 0 on the almost paracontact structure (ϕ, ξ, η) .

If an almost paracontact manifold M has a semi-Riemannian metric g of signature (n, n+1) satisfying

g(ϕ(X), ϕ(Y )) = −g(X,Y ) + η(X)η(Y ), (2.3)

then M is an almost paracontact metric manifold having the almost paracontact metric structure (ϕ, ξ, η, g)

and g is said to be a compatible metric.
The 2-form

Φ(X,Y ) := g(ϕ(X), Y )

is said to be the fundamental 2-form of the almost paracontact metric structure. It is known that on an almost
paracontact metric manifold there is an orthonormal basis (called a ϕ -basis) {e1, ϕe1, · · · , en, ϕen, ξ} with

g(ei, ej) = −g(ϕei, ϕej) = δij , g(ei, ϕej) = 0, i, j = 1, · · · , n;

see [10]. For the almost contact case, see [2].
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Let F be the (0, 3) tensor field defined by

F (X,Y, Z) = (∇XΦ)(Y, Z) = g((∇Xϕ)Y, Z), (2.4)

for X,Y, Z ∈ TM . It can be seen that F has the following properties:

F (X,Y, Z) = −F (X,Z, Y ), (2.5)

F (X,ϕ(Y ), ϕ(Z)) = F (X,Y, Z) + η(Y )F (X,Z, ξ)− η(Z)F (X,Y, ξ).

In [11], a classification of almost paracontact metric manifolds was obtained by considering the space F
of tensors F that satisfy (2.5). Initially, this space was decomposed into four subspaces

W1 =

F ∈ F

∣∣∣∣∣∣
F (X,Y, Z) = g(AF

Y X,Z),
F (ξ, Y, Z) = g(AF

Y ξ, Z) = 0,

F (X, ξ, Z) = g(A′F
ξ X,ϕ(Z)) = 0

 , (2.6)

W2 =

F ∈ F

∣∣∣∣∣∣∣
F (X,Y, Z) = η(Y )g(ϕ(A′F

ξ X), Z)

+η(Z)g(ϕ(A′F
ξ X), Y ),

A′F
ξ ξ = 0

 , (2.7)

W3 = G11 = {F ∈ F|F (X,Y, Z) = η(X)F (ξ, ϕ(Y ), ϕ(Z)} , (2.8)

W4 = G12 = {F ∈ F|F (X,Y, Z) = η(X)(η(Y )ωF (Z)− η(Z)ωF (Y ))} , (2.9)

where AF
XY = (∇Y ϕ)(X),A′F

ξ X = ∇Xξ and ωF (X) = F (ξ, ξ,X) . Then W1 and W2 were written as sums
of U(n)× 1 irreducible components G1,G2,G3,G4 , and G5, · · · ,G10 respectively, where U(n) is the paraunitary
group, with the following defining relations [11]:
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G1 F (X,Y, Z) = 1
2(n−1){g(X,ϕY )θF (ϕZ)− g(X,ϕZ)θF (ϕY )

+g(ϕX, ϕZ)θF (hY )− g(ϕX, ϕY )θ(hZ)}

G2 F (ϕX, ϕY, Z) = −F (X,Y, Z), θF = 0

G3 F (ξ, Y, Z) = F (X, ξ, Z) = 0, F (X,Y, Z) = −F (Y,X,Z)

G4 F (ξ, Y, Z) = F (X, ξ, Z) = 0, S(X,Y,Z)F (X,Y, Z) = 0

G5 F (X,Y, Z) = θF (ξ)
2n [η(Y )g(ϕX, ϕZ)− η(Z)g(ϕX, ϕY )]

G6 F (X,Y, Z) = − θ∗
F (ξ)
2n [η(Y )g(X,ϕZ)− η(Z)g(X,ϕY )]

G7 F (X,Y, Z) = −F (Y, Z,X) + F (Z,X, Y )− 2F (ϕX, ϕY, Z),
= −F (ϕX, ϕY, Z)− F (ϕX, Y, ϕZ)

θ∗F (ξ) = 0

G8 F (X,Y, Z) = −F (Y, Z,X)− F (Z,X, Y ),
= −F (ϕX, ϕY, Z)− F (ϕX, Y, ϕZ)

θF (ξ) = 0

G9 F (X,Y, Z) = −F (Y, Z,X) + F (Z,X, Y ) + 2F (ϕX, ϕY, Z),
= F (ϕX, ϕY, Z) + F (ϕX, Y, ϕZ)

G10 F (X,Y, Z) = −F (Y, Z,X)− F (Z,X, Y )
= F (ϕX, ϕY, Z) + F (ϕX, Y, ϕZ)

G11 F (X,Y, Z) = η(X)F (ξ, ϕY, ϕZ)

G12 F (X,Y, Z) = η(X) [η(Y )ωF (Z)− η(Z)ωF (Y )]

where θF (X) = gijF (ei, ej , X) , θ∗F (X) = gijF (ei, ϕ(ej , X) , and h(X) = ϕ2(X).

The trivial class denoted by G0 , for which the defining relation is ∇Φ = 0 , is the class of paracosym-
plectic structures. The classes G5 and G6 correspond to α -para-Sasakian and β -para-Kenmotsu structures,
respectively. Also, the defining relations of paracontact and almost K-paracontact classes are dη = Φ and
∇ξΦ = 0 , respectively.

Let (M,ϕ, ξ, η, g) be an almost paracontact metric manifold. M is called normal if

ϕ((∇Xϕ)(Y ))− (∇ϕXϕ)(Y ) + (∇Xη)(Y )ξ = 0; (2.10)

see [9].

3. Almost paracontact metric structures and G∗
2(2) structures

Consider a 7-dimensional smooth manifold M with a G∗
2(2) -structure φ inducing the pseudo-Riemannian metric

g4,3 and the vector cross-product P . Let ξ be a nonzero vector field on M such that g4,3(ξ, ξ) = −1 . Then
the quadruple (ϕ, ξ, η, g) , where the endomorphism is

ϕ(X) = P (ξ,X) (3.1)
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and g = −g4,3 , η(X) = g(ξ,X) , is an almost paracontact metric structure on M . Indeed, we have

ϕ2X = ϕ(ϕX) = ϕ(P (ξ,X)) = P (ξ, P (ξ,X))

= −g4,3(ξ, ξ)X + g4,3(ξ,X)ξ = g(ξ, ξ)X − g(ξ,X)ξ

= X − η(X)ξ

and

g(ϕX, ϕY ) = −g4,3(P (ξ,X), P (ξ, Y )

= −g4,3(ξ, ξ)g4,3(X,Y ) + g4,3(ξ,X)g4,3(ξ, Y )

= −g(X,Y ) + η(X)η(Y ).

Throughout the paper, unless otherwise stated, (ϕ, ξ, η, g) corresponds to the almost paracontact metric
structure (a.p.m.s.) obtained by a G∗

2(2) structure φ on M . Note that ∇g = ∇g4,3 and we use the notation ∇

for the Levi-Civita covariant derivative ∇g .

The following proposition gives a relation between the covariant derivatives of the fundamental 2-form of
the almost paracontact structure and of the G∗

2(2) structure φ .

Proposition 3.1 For an a.p.m.s. (ϕ, ξ, η, g) on M , the equation

(∇XΦ)(Y, Z) = −(∇Xφ)(ξ, Y, Z)− φ(∇Xξ, Y, Z) (3.2)

holds.

Proof

(∇Xφ)(ξ, Y, Z) = g4,3(∇XP (ξ, Y ), Z)− g4,3(P (∇Xξ, Y ), Z)− g4,3(P (ξ,∇XY ), Z)

= −g(∇X(ϕY ), Z)− φ(∇Xξ, Y, Z) + g(ϕ(∇XY ), Z)

= −g((∇Xϕ)(Y ), Z)− φ(∇Xξ, Y, Z)

= −(∇XΦ)(Y, Z)− φ(∇Xξ, Y, Z).

2

The following proposition gives a condition for almost paracontact metric structures induced by G∗
2(2)

structures to be paracontact.

Proposition 3.2 An a.p.m.s. (ϕ, ξ, η, g) induced by a G∗
2(2) structure is paracontact (i.e. dη = Φ) if and only

if ξ satisfies

g4,3(P (ξ,X), Y ) =
1

2
(g4,3(∇Xξ, Y )− g4,3(∇Y ξ,X)). (3.3)

Proof The exterior derivative of η is:

2dη(X,Y ) = (∇Xη)Y − (∇Y η)X. (3.4)
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After some calculations, the following is obtained:

dη(X,Y ) =
1

2
(−g4,3(∇Xξ, Y ) + g4,3(∇Y ξ,X)).

Besides, for the corresponding almost paracontact metric structure, we have Φ(X,Y ) = g(ϕ(X), Y ) = −g4,3(P (ξ,X), Y ) .
Thus, dη = Φ if the relation (3.3) holds. 2

Theorem 1 An a.p.m.s. (ϕ, ξ, η, g) induced by a parallel G∗
2(2) structure φ on (M, g4,3) (i.e ∇g4,3φ = 0) is

in the class G0(∇Φ = 0) (paracosymplectic) if and only if the vector field ξ is parallel.

Proof Let φ be a parallel structure; that is, ∇φ = 0 . Then from the equation (3.2), we have

(∇XΦ)(Y, Z) = −φ(Y, Z,∇Xξ) = −g4,3(P (Y, Z),∇Xξ),

which implies
∇Φ = 0 ⇐⇒ ∇ξ = 0.

2

Theorem 2 For an a.p.m.s. (ϕ, ξ, η, g) , if ξ is not parallel, then the structure is not in W1 .

Proof Consider the equation

g(A
′F
ξ X,ϕZ) = g(∇Xξ, ϕZ).

Letting the vector field ξ not be parallel, then there exists X0 such that ∇X0
ξ ̸= 0 and obviously the third

condition of the defining relation (2.6) of W1 fails. 2

Note that, under the assumption of Theorem 2, the structure is not an element of any subclass of
W1 = G1 ⊕ G2 ⊕ G3 ⊕ G4 .

Theorem 3 If the G∗
2(2) structure φ is nearly parallel and ξ is parallel, then (ϕ, ξ, η, g) is in W1 .

Proof Let φ be nearly parallel; that is,

(∇Xφ)(X,Y, Z) = 0,

and let ξ be parallel, i.e. ∇ξ = 0 . Then, from equation (3.2),

F (ξ, Y, Z) = −(∇ξφ)(ξ, Y, Z)− φ(∇ξξ, Y, Z) = 0

and
F (X, ξ, Z) = −(∇Xφ)(ξ, ξ, Z)− φ(∇Xξ, ξ, Z) = 0.

Thus, the definition of W1 is satisfied. 2

Theorem 4 An a.p.m.s. (ϕ, ξ, η, g) from a nearly parallel structure φ satisfies ∇ξΦ = 0 (almost K-
paracontact) if and only if ∇ξξ = 0 .
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Proof Let φ be nearly parallel. Then this is an immediate consequence of formula (3.2) and of the definition
of the nearly parallel G∗

2(2) structure. Indeed,

(∇ξΦ)(X,Y ) = −(∇ξφ)(ξ,X, Y )− φ(∇ξξ,X, Y ) = −φ(∇ξξ,X, Y ).

Then
∇ξΦ = 0 ⇐⇒ ∇ξξ = 0.

2

Note that an a.p.m.s. (ϕ, ξ, η, g) such that ∇ξξ ̸= 0 cannot be in the class W2 by the definition of W2 .
In addition, if ξ is not Killing, the structure is not in the class G5 ⊕ G8 .

Theorem 5 If ξ is not parallel, then the structure (ϕ, ξ, η, g) is not an element of W3(= G11) .

Proof Take Y = ξ in the defining relation (2.8) of the class W3 . Then, as a consequence of the formula (3.2),
the left-hand side of (2.8) is

(∇XΦ)(ξ, Z) = X[Φ(ξ, Z)]− Φ(∇Xξ, Z)− Φ(ξ,∇XZ)

= g(ϕZ,∇Xξ),

while the right-hand side vanishes since ϕ(ξ) = 0 . Thus, if ∇ξ ̸= 0 (i.e. ξ is not parallel), the structure can
not be in the class W3 . 2

Theorem 6 If there exists a vector field X ∈ {ξ}⊥ with the property ∇Xξ ̸= 0 , then the structure (ϕ, ξ, η, g)

is not in W4(= G12) .

Proof Let X ∈ {ξ}⊥ with ∇Xξ ̸= 0 . Take Y = ξ in the defining relation (2.9) of the class W4 . Then
η(X) = 0 since X ∈ {ξ}⊥ , so the right-hand side of the relation (2.9) is zero. On the other hand, from formula
(3.2),

(∇XΦ)(Y, Z) = (∇XΦ)(ξ, Z)

= X[Φ(ξ, Z)]− Φ(∇Xξ, Z)− Φ(ξ,∇XZ)

= g(ϕZ,∇Xξ).

Therefore, (∇XΦ)(Y, Z) does not have to be zero since ∇Xξ ̸= 0 . Hence, the defining relation is not satisfied
under the given conditions. 2

Example 7 Consider the seven-dimensional Lie algebra L with nonzero brackets

[e1, e2] = e5, [e1, e3] = e6.

Then L admits the G∗
2(2) structure

φ = e567 − e512 − e534 − e613 + e624 + e714 + e723. (3.5)

The metric g4,3 induced by φ is

g4,3(x, y) = x5y5 + x6y6 + x7y7 − x1y1 − x2y2 − x3y3 − x4y4
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for any vector fields x =
∑

xiei , y =
∑

yiei ; see [3]. Note that g4,3(ei, ei) = −1 for i = 1, 2, 3, 4 and
g4,3(ei, ei) = 1 otherwise. The cross-product of frame elements are obtained via (2.1):

P (e1, e2) = −e5, P (e1, e3) = −e6, P (e1, e4) = e7, P (e1, e5) = −e2,

P (e1, e6) = −e3, P (e1, e7) = e4, P (e2, e3) = e7, P (e2, e4) = e6,

P (e2, e5) = e1, P (e2, e6) = e4, P (e2, e7) = e3, P (e3, e4) = −e5,

P (e3, e5) = −e4, P (e3, e6) = e1, P (e3, e7) = −e2, P (e4, e5) = e3,

P (e4, e6) = −e2, P (e4, e7) = −e1, P (e5, e6) = e7, P (e5, e7) = −e6, P (e6, e7) = e5.

The nonzero Levi-Civita covariant derivatives evaluated by Kozsul’s formula are

∇e1e2 =
1

2
e5,∇e1e3 =

1

2
e6,∇e1e5 =

1

2
e2,∇e1e6 =

1

2
e3,∇e2e1 =

−1

2
e5,∇e2e5 =

−1

2
e1

∇e3e1 =
−1

2
e6,∇e3e6 =

−1

2
e1,∇e5e1 =

1

2
e2,∇e5e2 =

−1

2
e1,∇e6e1 =

1

2
e3,∇e6e3 =

−1

2
e1.

Now we investigate the existence of certain classes on L .
Assume that a nonzero vector field X = a1e1 + · · ·+ a7e7 is parallel. Then,

∇e1X = a1∇e1e1 + a2∇e1e2 + a3∇e1e3 + a4∇e1e4 + a5∇e1e5 + a6∇e1e6 + a7∇e1e7

=
a2

2
e5 +

a3

2
e6 +

a5

2
e2 +

a6

2
e3

= 0 ⇐⇒ a2 = a3 = a5 = a6 = 0.

On the other hand,

∇e2X = −a1

2
e5 = 0 ⇐⇒ a1 = 0 (3.6)

and there is no other restriction on the coefficients ai . Thus, X =
∑

aiei is parallel iff X = a4e4 + a7e7 , that is, iff
X ∈ span{e4, e7} .

Note that the G∗
2(2) structure (3.5) is neither parallel (since (∇e1φ)(e2, e3, e4) = 1 ̸= 0) nor nearly parallel (since

(∇e1φ)(e2, e3, e4) + (∇e2φ)(e1, e3, e4) =
1
2
̸= 0).

Now we give an example of an a.p.m.s. such that the characteristic vector field is parallel. Let (ϕ, ξ, η, g) be
the a.p.m.s. induced by the G∗

2(2) structure (3.5), where ξ = e4 and g = −g4,3 . Then from the equation (3.1), we
get ϕ(e1) = P (e4, e1) = −e7 , ϕ(e2) = −e6 , ϕ(e3) = e5 , ϕ(e4) = 0 , ϕ(e5) = e3 , ϕ(e6) = −e2 , ϕ(e7) = −e1 . Since
(∇e1ϕ)(e2) = −e3 ̸= 0 , this structure is not paracosymplectic. Theorem 1 states that an a.p.m.s. induced by a parallel
G∗

2(2) structure is paracosymplectic if and only if the characteristic vector field is parallel. This example shows that
if the G∗

2(2) structure is not parallel, we can obtain a.p.m. structures that are not paracosymplectic but have parallel
characteristic vector fields.

It is easy to check that this structure is in W1 , although the G∗
2(2) structure is not nearly parallel, comparing with

Theorem 3.
Now let (ϕ, ξ, η, g) be the a.p.m.s. induced by the G∗

2(2) structure (3.5), where ξ = e2 (ξ is not parallel in this
case) and g = −g4,3 . By Theorem 2, this structure is not in W1 . In addition, it is not in W3 by Theorem 5. Also,
since ∇e1e2 = 1

2
e5 ̸= 0 , this structure is not in W4 by Theorem 6. From the equation (3.1), we have ϕ(e1) = e5 ,

3032



ÖZDEMİR/Turk J Math

ϕ(e2) = 0 , ϕ(e3) = e7 , ϕ(e4) = e6 , ϕ(e5) = e1 , ϕ(e6) = e4 , ϕ(e7) = e3 . Since (∇e1ϕ)(e1) =
1
2
e2 ̸= 0 , this structure is

not paracosymplectic. One can check that ∇ξϕ = ∇e2ϕ = 0 ; that is, this structure is almost-K-paracontact.
Now we investigate the existence of paracontact structures on L induced by the G∗

2(2) structure (3.5). Let

(ϕ, ξ, η, g) be such a structure with fundamental 2-form Φ ; that is, dη = Φ . Since de5 = e12 , de6 = e13 , for η =
∑

bie
i ,

i = 1, . . . , 7 , we have dη = b5e
12 + b6e

13 = Φ . This implies ϕ(e5) = 0 . From the equation

g(ϕ(e5), ϕ(e5)) = −g(e5, e5) + η2(e5),

we obtain η2(e5) = −1 , which is a contradiction. Therefore, there is no paracontact structure on L induced by the given
G∗

2(2) structure.

Finally, we study the existence of α -para-Sasakian structures on L induced by the G∗
2(2) structure (3.5). Let

(ϕ, ξ, η, g) be an α -para-Sasakian structure induced by (3.5). Note that g = −g4,3 . The characteristic vector field ξ is
Killing. From the equation

g(∇eiξ, ej) + g(∇ej ξ, ei) = 0, (3.7)

we obtain that ξ is Killing if and only if a1 = a2 = a3 = 0 . Thus, ξ = a4e4 + . . . + a7e7 . From the definition of an
α -para-Sasakian structure, we have ϕ(X) = 1

α
∇xξ for all vector fields X . Then ϕ(e2) = − a5

2α
e1 and ϕ(e3) = − a6

2α
e1 .

The equation
g(ϕ(e2), ϕ(e3)) = −g(e2, e3) + η(e2)η(e3)

implies a5a6 = 0 . Thus, ϕ(e1) = 0 or ϕ(e2) = 0 . Assume without loss of generality that ϕ(e1) = 0 . Since

0 = g(ϕ(e1), ϕ(e1)) ̸= −g(e1, e1) + η2(e1) = −1,

there is no α -para-Sasakian structure induced by (3.5).

References

[1] Arikan MF, Cho H, Salur S. Existence of compatible contact structures on G2 manifolds. Asian J Math 2013; 17:
321-334.

[2] Blair DE. Riemannian Geometry of Contact and Symplectic Manifolds. Basel, Switzerland: Birkhäuser, 2002.

[3] Bryant R. Metrics with exceptional holonomy. Ann Math 1987; 126: 525-576.

[4] Fernández M, Gray A. Riemannian manifolds with structure group G2 . Ann Mat Pura Appl 1982; 132: 19-25.

[5] Kaneyuki S, Williams FL. Almost paracontact and parahodge structures on manifolds. Nagoya Math J 1985; 99:
173-187.

[6] Kath I. G∗
2(2) structures on pseudo-Riemannian manifolds. J Geometry Phys 1998; 27: 155-177.

[7] Matzeu P, Munteanu MI. Vector cross products and almost contact structures. Rendiconti di Matematica 2002; 22:
359-376.

[8] Özdemir N, Solgun M, Aktay Ş. Almost contact metric structures induced by G2 structures. Turk J Math 2017;
41: 1072-1086.

[9] Welyczko J. On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Result Math 2009;
54: 377-387.

[10] Zamkovoy S. Canonical connections on paracontact manifolds. Ann Glob Anal Geom 2009; 36: 37-60.

[11] Zamkovoy S, Nakova G. The decomposition of almost paracontact metric manifolds in eleven classes revisited. J
Geom 2018, 109: 18.

3033


	Introduction
	Preliminaries
	Almost paracontact metric structures and G2(2)* structures

