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Abstract: We present the solution of a second-order nonlinear parabolic interface problem on a quasiuniform triangular
finite element with a linearized four-step implicit scheme used for the time discretization. The convergence of the scheme
in L2 -norm is established under certain regularity assumptions using interpolation and elliptic projection operators. A
numerical experiment is presented to support the theoretical result. It is assumed that the interface cannot be fitted
exactly.
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1. Introduction
Parabolic interface problems are frequently encountered in scientific computing and industrial applications. A
typical example is provided in the modeling of heat diffusion, which involves two or more materials with different
properties [8]. The most well-known linear parabolic partial differential equation (PDE) is the heat equation.
However, the linear heat equation has some limitations that could be addressed by nonlinear generalizations
[5]. It is therefore necessary to investigate the solution of nonlinear PDEs on bounded domains. The problem
becomes an interface problem when more than one material medium with different properties is involved.

Many contributions have been made towards the development of the finite element method (FEM) for
linear parabolic interface problems, e.g., [2, 4, 13–16, 21]. Semilinear parabolic interface problems were consid-
ered in [6, 17]. The finite element solution of nonlinear parabolic interface problems with time discretization
based on the θ method was discussed in [7]. With necessary assumptions that guarantee the uniqueness of
solutions, it was shown that the scheme preserves the discrete maximum principle. The results were based on
the algebraic discrete maximum principle for suitable ODE systems.

Yang [20] proposed and analyzed a linearized 2-step backward difference-finite element method for the
solution of the nonlinear parabolic interface problem with linear source term. With the assumption that the
coefficient σ(u) is positive and smooth with respect to u ∈ R but not continuous across the interface, the
author proved a convergence rate of almost optimal order in the L2 -norm. Solution of the quasilinear parabolic
interface problem using the antisymmetric interior penalty discontinuous Galerkin method was proposed in
[18]. Again the time discretization was based on a second-order linearized backward difference scheme. Use was
made of the over-penalized method to improve the L2 -norm error to optimal order with the assumption that
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the diffusion coefficient was only continuous on each subdomain and the interface could be fitted exactly (using
triangles with curved edges).

It is known that spatial and time discretizations are sources of errors in the FEM; however, research has
largely focused on the use of the FEM for parabolic interface problems with emphasis on the improvement of the
spatial discretization. In this work, we consider a nonlinear parabolic interface problem with nonlinear source
term. The unknown function is approximated by piecewise linear functions on quasiuniform triangular elements
with a four-step implicit scheme for time discretization. We consider the case where the triangulation cannot
perfectly fit the interface and obtain a convergence rate of almost optimal order for a fully discrete scheme
in L2(Ω) -norm. In this study, the linear theories of interface and noninterface problems and the Sobolev
embedding inequality are used. Other technical tools used in this paper are approximation properties of the
linear interpolation operator and projection operator.

In this work, we use the standard notations for Sobolev spaces and norms. For a given Banach space B ,
we define

Wm,p(0, T ;B) =


u(t) ∈ B for a.e. t ∈ (0, T ) and

m∑
i=0

∫ T

0

∥∥∥∥∂iu∂ti (t)
∥∥∥∥p
B

dt < 0 for 1 ≤ p <∞

u(t) ∈ B for a.e. t ∈ (0, T ) and
m∑
i=0

ess sup
0≤t≤T

∥∥∥∥∂iu∂ti (t)
∥∥∥∥
B

< 0 for p = ∞

equipped with the norms

∥u∥Wm,p(0,T ;B) =



[
m∑
i=0

∫ T

0

∥∥∥∥∂iu∂ti (t)
∥∥∥∥p
B

dt

]1/p

1 ≤ p <∞

m∑
i=0

ess sup
0≤t≤T

∥∥∥∥∂iu∂ti (t)
∥∥∥∥
B

p = ∞.

We write L2(0, T ;B) = W 0,2(0, T ;B) and Hm(0, T ;B) = Wm,2(0, T ;B) . We use the definition and notation
in [1] when m is negative or fractional. We shall need the following space:

X = H1(Ω) ∩H2(Ω1) ∩H2(Ω2)

equipped with the norm
∥v∥X = ∥v∥H1(Ω) + ∥v∥H2(Ω1) + ∥v∥H2(Ω2) ∀ v ∈ X.

1.1. Problem specification

Let Ω be a convex polygonal domain in R2 with boundary ∂Ω and Ω1 ⊂ Ω be an open domain with smooth
boundary Γ = ∂Ω1 . Let Ω2 = Ω \ Ω̄1 be another open domain contained in Ω with boundary Γ ∪ ∂Ω ; see the
Figure. We consider the parabolic interface problem

ut −∇ · (a(x, u)∇u) = f(x, u) in Ω× (0, T ] (1.1)

with initial and boundary conditions{
u(x, 0) = u0(x) in Ω
u(x, t) = 0 on ∂Ω× [0, T ]

(1.2)
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Figure 1. A polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ .

and interface conditions 
[u]Γ = 0[

a(x, u)
∂u

∂n

]
Γ

= g(x, t)
(1.3)

where 0 < T <∞ , the symbol [u] is a jump of a quantity u across the interface Γ , and n is the unit outward
normal to the boundary ∂Ω1 . The interface conditions are defined as the difference of the limiting values from
each side of the interface. The input functions a(x, u) and f(x, u) are assumed continuous on each domain but
discontinuous across the interface for t ∈ [0, T ] . We impose the following:

Assumption 1.1 A1 Ω is a bounded convex polygonal domain in R2 ; the interface Γ ⊂ Ω and the boundary
∂Ω are piecewise smooth, Lipschitz continuous, and 1-dimensional.

A2 Functions a : Ω × R → R , f : Ω × R → R are measurable and bounded with respect to their first
variable x ∈ Ω and continuously differentiable with respect to their second variable η ∈ R , g(x, t) ∈
L2(0, T ;H2(Γ)) ∩H1(0, T ;H1/2(Γ)) .

A3 Functions a and f satisfy

0 < µ1 ≤ a(x, ξ) ≤ µ2,

∣∣∣∣∂a∂ξ (x, ξ)
∣∣∣∣+ ∣∣∣∣∂f∂ξ (x, ξ)

∣∣∣∣ ≤ µ3 ,

for ξ ∈ R , x ∈ Ω with positive constants µ1 , µ2 , and µ3 independent of (x, ξ) .

In [12], we investigated the nonlinear interface problem (1.1)−(1.3). Under certain assumptions on the
input data, we obtained regularity estimates that were used to establish convergence rates of almost optimal
order in H1(Ω) -norm for both semi and full discretizations of the problem. The time discretization was based on
an implicit Euler scheme and the implementation was based on predictor-corrector method due to the presence
of the nonlinear term. This is computationally time-consuming as a time step will be computed twice. In this
present work, a linearized four-step implicit scheme is proposed and analyzed to ease the computational stress
and improve the accuracy.

The weak form of (1.1)−(1.3) is:
Find u(t) ∈ H1

0 (Ω) , t ∈ (0, T ] such that

(ut, v) +A(u : u, v) = (f, v) + ⟨g, v⟩Γ ∀ v(t) ∈ H1
0 (Ω), t ∈ (0, T ] (1.4)
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where

(ϕ, ψ) =

∫
Ω

ϕψ dx A(ξ : ϕ, ψ) =

∫
Ω

a(x, ξ)∇ϕ · ∇ψ dx ⟨ϕ, ψ⟩Γ =

∫
Γ

ϕψ dΓ.

We define
|f | = sup

x∈Ω,ξ∈R
|f(x, ξ)| .

For (1.1)−(1.3), we have the following regularity estimates (cf [12]):

Theorem 1.2 Supposing u0(x) ∈ H1
0 (Ω) and that the conditions of Assumption 1.1 are satisfied for every

a : Ω × R → R , f : Ω × R → R , and g ∈ L2(0, T ;H1/2(Γ)) , there exists a constant C depending on µ1 , µ2 ,
µ3 , T , and Ω such that

∥u∥L∞(0,T ;L2(Ω)) + ∥u∥L2(0,T ;H1(Ω)) + ∥ut∥L2(0,T ;H−1(Ω)) ≤ C
(
∥g∥L2(0,T ;H1/2(Γ)) + ∥u0∥L2(Ω) + |f |

)
and

∥u∥L2(0,T ;X) ≤ C
(
∥g∥L2(0,T ;H1/2(Γ)) + ∥u0∥H1(Ω) + |f |

)
if u0(x) ∈ X ∩H1(Ω).

The paper is organized as follows. In Section 2, we describe a finite element discretization of the problem
and state some auxiliary results. The linearized 4-step implicit scheme is presented in Section 3 and the almost
optimal convergence rate is established. Numerical examples are presented in Section 4.

Throughout this paper, C is a generic positive constant (which is independent of the mesh parameter
h and the time step size k ) and may take on different values at different occurrences. The boundary value of
u ∈ H1(Ω) is defined in the sense of trace. The trace operator from H1(Ω) to H1/2(∂Ω) is continuous and
satisfies the embedding

∥z∥L2(∂Ω) ≤ ∥z∥H1/2(∂Ω) ≤ c0∥z∥H1(Ω) ∀ z ∈ H1(Ω). (1.5)

See [1, 3] for more information on trace operators.

2. Finite element discretization
We adopt the discretization used in [2, 4]. Th denotes a partition of Ω into disjoint triangles K (called
elements) such that no vertex of any triangle lies on the interior or side of another triangle. The domain Ω1

is approximated by a domain Ωh
1 with a polygonal boundary Γh whose vertices all lie on the interface Γ . Ωh

2

represents the domain with ∂Ω and Γh as its exterior and interior boundaries, respectively.
Let hK be the diameter of an element K ∈ Th and h = maxK∈Th

hK . Let T ⋆
h denote the set of all

elements that are intersected by the interface Γ :

T ⋆
h = {K ∈ Th : K ∩ Γ ̸= ∅}.

K ∈ T ⋆
h is called an interface element and we write Ω⋆

h =
∪

K∈T ⋆
h
K .

The triangulation Th of the domain Ω satisfies the following conditions:

(i) Ω̄ =
∪

K∈Th

K̄ .
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(ii) If K̄1, K̄2 ∈ Th , and K̄1 ̸= K̄2 , then either K̄1 ∩ K̄2 = ∅ or K̄1 ∩ K̄2 is a common vertex or a common
edge.

(iii) Each K ∈ Th is either in Ωh
1 or Ωh

2 , and has at most two vertices lying on Γh .

(iv) For each element K ∈ Th , let rK and r̄K be the diameters of its inscribed and circumscribed circles,
respectively. It is assumed that, for some fixed h0 > 0 , there exist two positive constants C0 and C1 ,
independent of h , such that

C0rK ≤ h ≤ C1r̄K ∀ h ∈ (0, h0).

Let Sh ⊂ H1
0 (Ω) denote the space of continuous piecewise linear functions on Th vanishing on ∂Ω .

The FE solution uh(x, t) ∈ Sh is represented as

uh(x, t) =

Nh∑
j=1

αj(t)ϕj(x) ,

where each basis function ϕj , (j = 1, 2, . . . , Nh) is a pyramid function with unit height. For the approximation
ĝ(t) , let {zj}nh

j=1 be the set of all nodes of the triangulation Th that lie on the interface Γ and {ψj}nh
j=1 be the

hat functions corresponding to {zj}nh
j=1 in the space Sh .

Let πh : C(Ω̄) → Sh be the Lagrange interpolation operator corresponding to the space Sh . The
standard interpolation theory cannot be applied because the solutions of interface problems are nonsmooth or
even discontinuous across the interface. We have:

Lemma 2.1 For the linear interpolation operator πh : C(Ω̄) → Sh , we have, for m = 0, 1 and 0 < h < 1 ,

∥u− πhu∥Hm(Ω) ≤ Ch2−m

(
1 +

1

| logh|

)1/2

∥u∥X ∀ u ∈ X. (2.1)

Proof See [2]. 2

Remark 2.2 In Lemma 2.1, it is assumed that the mesh cannot perfectly fit the interface. However, with
the assumption that the interface can be fitted exactly using interface elements with curved edges, the optimal
convergence rate is possible (see [14] for an example). In practice, the use of curved interface elements that
perfectly fit the interface may be computationally difficult or impossible, particularly when the interface is of
irregular shape. The convergence rate of optimal order is also obtainable when the approximation to the interface
and the finite element spaces meet certain conditions [11]. Such conditions include Ω⋆

h ∈ Sδ where Sδ is a
δ -neighborhood of the interface, with δ = O(h2) . With this condition, interface elements need to divide more
rapidly than noninterface elements to guarantee the optimal convergence rate.

We recall some existing results that will be used in our analysis. See [4, 12, 16] for proofs.
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Lemma 2.3 Letting Ω⋆
h be the union of all interface elements, πh : C(Ω) → Sh be the interpolation operator,

and g ∈ H2(Γ) , we have

∥v∥H1(Ω⋆
h)

≤ Ch1/2∥v∥X ∀ v ∈ X (2.2)

|⟨g, vh⟩Γ − ⟨gh, vh⟩Γh
| ≤ Ch3/2∥g∥H2(Γ)∥vh∥H1(Ω⋆

h)
∀ vh ∈ Sh (2.3)

|A(ξ : νh, ωh)−Ah(ψ : νh, ωh)| ≤ µ3∥∇νh∥L∞(Ω)∥ξ − ψ∥L2(Ω)∥ωh∥H1(Ω)

+ Ch∥νh∥H1(Ω⋆
h)
∥ωh∥H1(Ω⋆

h).
(2.4)

Let Ph : X ∩H1
0 (Ω) → Sh be the elliptic projection of the exact solution u in Sh defined by

Ah(u : Phν, ϕ) = A(u : ν, ϕ) ∀ ϕ ∈ Sh, t ∈ [0, T ]. (2.5)

It follows from (2.5) that there exists C > 0 ,

∥Phν∥H1(Ω) ≤ C∥ν∥H1(Ω) ∀ ν ∈ H1(Ω). (2.6)

For this projection, we have:

Lemma 2.4 Let a(x, u) satisfy the conditions of Assumption 1.1 and u ∈ X ∩H1
0 (Ω) for t ∈ (0, T ] . Letting

Phu be defined as in (2.5), then

∥Phu− u∥H1(Ω) ≤ Ch

(
1 +

1

| logh|

)1/2

∥u∥X , (2.7)

∥Phu− u∥L2(Ω) ≤ Ch2
(
1 +

1

| logh|

)
∥u∥X . (2.8)

Proof For ρ > 0 , we have:

ρ∥Phu− u∥2H1(Ω) ≤ Ah(u : Phu− u, Phu− u)

≤ |A(u : u, Phu− ϕ)−Ah(u : u, Phu− ϕ)|

+|Ah(u : Phu− u, ϕ− u)| ϕ ∈ Sh

≤ Ch∥u∥H1(Ω)∥Phu− ϕ∥H1(Ω) + ∥Phu− u∥H1(Ω)∥ϕ− u∥H1(Ω)

≤ εCh2∥u∥2H1(Ω) +
3

4ε
∥Phu− u∥2H1(Ω) + ε∥ϕ− u∥2H1(Ω).

(2.7) follows, using (2.1) with ε = 2/ρ and ϕ = πhu .
Now consider the dual problem

−∇ · (a(x, u)∇ψ) = Phu− u in Ω, ψ = 0 on ∂Ω,

whose weak form is
A(u : ψ, ϕ) = (Phu− u, ϕ) ∀ ϕ ∈ H1

0 (Ω). (2.9)

By Assumption 1.1, it follows from a similar argument of Thomee [19, pg. 233] that

∥ψ∥X ≤ C∥Phu− u∥L2(Ω). (2.10)
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Now, from (2.9), we obtain

∥Phu− u∥2L2(Ω) = A(u : Phu− u, ψ)

= A(u : Phu− u, ψ − ϕ) +A(u : Phu− u, ϕ) ϕ ∈ Sh

≤ C∥Phu− u∥H1(Ω)∥ψ − ϕ∥H1(Ω) + |A(u : Phu, ϕ)−Ah(u : Phu, ϕ)|.

It follows from (2.1), (2.4), (2.7), and (2.2) with ϕ = πhψ that

∥Phu− u∥2L2(Ω) ≤ Ch2
(
1 +

1

| logh|

)
∥u∥X∥ψ∥X + Ch2∥Phu∥H1(Ω)∥πhψ∥H1(Ω).

(2.8) follows using (2.10), (2.6), and the fact that ∥πhψ∥ ≤ C∥ψ∥ in the last inequality. 2

Lemma 2.5 Let a(x, u) satisfy the conditions of Assumption 1.1, utt ∈ L2(Ω) , u ∈ X ∩H1
0 (Ω) for t ∈ (0, T ] ,

and assume at is uniformly bounded. Letting Phu be defined as in (2.5), then

∥(Phu− u)t∥H1(Ω) ≤ Ch

(
1 +

1

| logh|

)1/2

(∥u∥X + ∥ut∥X), (2.11)

∥(Phu− u)t∥L2(Ω) ≤ Ch2
(
1 +

1

| logh|

)
(∥u∥X + ∥ut∥X). (2.12)

Proof Let ξ = Phu− u , and assume that at is uniformly bounded. Following the argument of Thomee [19],
we have

ρ∥ξt∥2H1(Ω) ≤ A(u : ξt, ξt)

= A(u : ξt, ϕ− ut) +A(u : ξt, (Phu)t − ϕ)

= A(u : ξt, ϕ− ut) +

∫
Ω

[
∂

∂t
(a∇ξ)− ∂a

∂t
∇ξ

]
· ∇((Phu)t − ϕ) dx

≤ ∥ξt∥H1(Ω)∥ϕ− ut∥H1(Ω) + ∥ξ∥H1(Ω)∥(Phu)t − ϕ∥H1(Ω).

Take ϕ = πhut . Using (2.1), (2.7), and Young’s inequality, we obtain

∥(Phu− u)t∥2H1(Ω) ≤ Ch2
(
1 +

1

| logh|

)
(∥u∥2X + ∥ut∥2X). (2.13)

Following the duality argument above, it is easy to see that

∥(Phu− u)t∥2L2(Ω) ≤ Ch4
(
1 +

1

| logh|

)2

(∥u∥2X + ∥ut∥2X).

2

Remark 2.6 Usually for the parabolic interface problem, the solution u ∈ L2(0, T ;X) ∩ H1(0, T ;Y ) where
Y = L2(Ω) ∩ H1(Ω1) ∩ H1(Ω2) [4, 14]; however, the assumptions of Lemma 2.5 guarantee that ut ∈ X for
t ∈ (0, T ] . To see this, differentiate (1.1) with respect to t :

∇ · (a∇ut) = utt −∇ · (at∇u)− ft ∈ L2(Ωi) for i = 1, 2, t ∈ (0, T ]. (2.14)
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Differentiate (1.4) with respect to t :

(utt, v) +A(u : ut, v) +

∫
Ω

at∇u · ∇v = (ft, v) + ⟨gt, v⟩Γ ∀ v(t) ∈ H1
0 (Ω), t ∈ (0, T ].

Using (1.5) with v = ut and the fact that at is bounded, we have

1

2

d

dt
∥ut∥2L2(Ω) +

µ1

2
∥ut∥2H1(Ω) ≤ (µ1 + µ3)∥ut∥2L2(Ω) +

c21
µ1

∥u∥2H1(Ω) +
c20
µ1

∥gt∥2H1/2(Ω). (2.15)

It follows from (2.15) and Theorem 1.2 that

max
0≤t≤T

∥ut∥2L2(Ω) + ∥ut∥2L2(0,T ;H1(Ω)) ≤ C
(
∥g∥H1(0,T ;H1/2(Γ)) + ∥u0∥L2(Ω) + |f |

)
. (2.16)

We conclude from (2.14) and (2.16) that ut ∈ L2(0, T ;X) .

3. Error estimate
In this section we propose a fully discrete scheme based on a four-step backward difference approximation.
The almost optimal order error estimate is analyzed in L2(Ω) -norm. The finite element analysis of nonlinear
noninterface problems is given in [19] and the references therein.

The interval [0, T ] is divided into M equally spaced (for simplicity) subintervals:

0 = t0 < t1 < . . . < tM = T,

with tn = nk , k = T/M being the time step. Let In = (tn−1, tn] be the nth subinterval and let

un = u(x, tn) and gn = g(x, tn) .

For a given sequence {wn}Mn=0 ⊂ L2(Ω) , we have the backward difference quotients defined by

∂1wn =
wn − wn−1

τ1
n = 1, 2, . . . ,M

∂2wn =
3wn − 4wn−1 + wn−2

2τ2
n = 2, 3, . . . ,M

∂3wn =
11wn − 18wn−1 + 9wn−2 − 2wn−3

6τ3
n = 3, 4, . . . ,M

∂4wn =
25wn − 48wn−1 + 36wn−2 − 16wn−3 + 3wn−4

12k
n = 4, 6, . . . ,M.

The fully discrete finite element approximation to (1.4) is defined as follows:
Let U0

h = πhu0 , and find Un
h ∈ Sh , such that

(∂1U1
h , vh)h +Ah(U

0
h : U1

h , vh) = (f(U0
h , x), vh)h + ⟨g1h, vh⟩Γh

∀ vh ∈ Sh (3.1)

(∂2U2
h , vh)h +Ah(2U

1
h − U0

h : U2
h , vh) = (f(2U1

h − U0
h , x), vh)h + ⟨g2h, vh⟩Γh

∀ vh ∈ Sh (3.2)

(∂3U3
h , vh)h +Ah(3U

2
h − 3U1

h + U0
h : U3

h , vh) = (f(3U2
h − 3U1

h + U0
h , x), vh)h + ⟨g3h, vh⟩Γh

∀ vh ∈ Sh(3.3)
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(∂4Un
h , vh)h +Ah(4U

n−1
h − 6Un−2

h + 4Un−3
h − Un−4

h : Un
h , vh)

= (f(4Un−1
h − 6Un−2

h + 4Un−3
h − Un−4

h , x), vh)h + ⟨gnh , vh⟩Γh

∀ vh ∈ Sh n = 4, 5, . . . ,M. (3.4)

The scheme (3.1)−(3.4) is zero-stable. To see this, we obtain the first characteristic polynomials:

ρ1(y) = y − 1

ρ2(y) =
3

2
y2 − 2y +

1

2

ρ3(y) =
11

6
y3 − 3y2 +

3

2
y − 1

3

ρ4(y) =
25

12
y4 − 4y3 + 3y2 − 4

3
y +

1

4
.

The roots of these polynomials have moduli less than one and the roots with modulus one are simple. See [10]
for more information on zero-stability.

The analysis of this work is done with the assumption that ∥∂
iu

∂ti
∥L2(Ω) exist (for i = 1, . . . , 5). It can be shown

using Taylor expansion that


∥Un

h − 2Un−1
h + Un−2

h ∥L2(Ω) ≤ (∆t)2λ0

∥Un
h − 3Un−1

h + 3Un−2
h − Un−3

h ∥L2(Ω) ≤ (∆t)3λ1

∥Un
h − 4Un−1

h + 6Un−2
h − 4Un−3

h + Un−4
h ∥L2(Ω) ≤ (∆t)4λ2.

(3.5)

The following is our main result.

Theorem 3.1 Let un and Un
h be the solutions of (1.4) and (3.1)−(3.4) at tn , respectively. Suppose a :

Ω × R → R , f : Ω × R → R and g(x, t) satisfy the conditions of Assumption 1.1, and ∂5u

∂t5
is defined for

Ω× [0, T ] . There exists a positive constant C independent of h and k such that

∥un − Un
h ∥L2(Ω) ≤

[
k4 + h2

(
1 +

1

| logh|

)]
B(u0, u, g)

where

B(u0, u, g) = sqrt

max

C
1 + ∫ tn

0

 5∑
j=2

∥∂
ju

∂tj
∥2L2(Ω)

 dt

 ,
C

[
∥u0∥2X +

∫ tn

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt

]}]
.

Proof Letting zn = Phu
n − Un

h , from (1.4) and (3.4), we have

(∂4zn, vh)h +Ah(z
n, vh) = B1 +B2 +B3 (3.6)
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where

B1 = (∂4(Phu
n − un), vh)h + (∂4un − unt , vh) + (∂4un, vh)h − (∂4un, vh)

B2 = (f(x, un), vh)− (fn, vh)h + ⟨gn, vh⟩Γ − ⟨gnh , vh⟩Γh

B3 = Ah(4U
n−1
h − 6Un−2

h + 4Un−3
h − Un−4

h : Phu
n, vh)−Ah(u

n : Phu
n, vh)

and fn = f(x, 4Un−1
h − 6Un−2

h + 4Un−3
h − Un−4

h ) .
With vh = zn , we have

B1 ≤ ∥∂4(Phu
n − un)∥2L2(Ω) +

1

2
∥zn∥2L2(Ω) + ∥∂4un − unt ∥2L2(Ω)

+ γCh4∥∂4un∥2X +
1

4γ
∥zn∥2H1(Ω). (3.7)

Using Lemma 2.3 and (3.5) with the fact that Dαzn = 0 for |α| = 2 , we have

B2 ≤ Ch3/2|f |∥zn∥H1(Ω⋆
h)

+ µ3∥un − Un
h ∥L2(Ω)∥zn∥L2(Ω)

+Ch3/2∥gn∥H2(Γ)∥zn∥H1(Ω⋆
h)

+ µ3∥Un
h − (4Un−1

h − 6Un−2
h + 4Un−3

h − Un−4
h )∥L2(Ω)∥zn∥L2(Ω)

≤ Ch2|f |∥zn∥H1(Ω) +

(
µ3 +

1

2

)
∥zn∥2L2(Ω) + C∥Phu

n − un∥2L2(Ω)

+Ch2∥gn∥H2(Γ)∥zn∥H1(Ω) + µ3λ2k
4∥zn∥L2(Ω)

≤ C(γ)h4
(
1 +

1

| logh|

)2 (
∥un∥2X + ∥gn∥2H2(Γ) + |f |2

)
+

1

2γ
∥zn∥2H1(Ω)

+C∥zn∥2L2(Ω) + Ck8. (3.8)

For B3 , let ∥∇Phu
n∥L2(Ω) = β and use Assumption 1.1:

B3 ≤ |a(x, 4Un−1
h − 6Un−2

h + 4Un−3
h − Un−4

h )− a(x, un)|
∑

K∈Th

∫
K

|Phu
n · ∂4zn| dx

≤ βµ3∥(4Un−1
h − 6Un−2

h + 4Un−3
h − Un−4

h )− un∥L2(Ω)∥zn∥H1(Ω)

≤ µ3λ2k
4∥zn∥H1(Ω) + βµ3∥Phu

n − un∥L2(Ω)∥zn∥H1(Ω)

+ βµ3∥zn∥L2(Ω)∥zn∥H1(Ω)

≤ γβ2µ2
3∥zn∥2L2(Ω) +

3

4γ
∥zn∥2H1(Ω) + Ch4

(
1 +

1

| logh|

)2

∥un∥2X + Ck8. (3.9)
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Substituting (3.7)−(3.9) into (3.6), we have, for c1 > 0 ,

1

k
∥zn∥2L2(Ω) + µ1∥zn∥2H1(Ω) ≤ C

k

(
∥zn∥L2(Ω)∥zn−1∥L2(Ω) + ∥zn∥L2(Ω)∥zn−2∥L2(Ω)

+ ∥zn∥L2(Ω)∥zn−3∥L2(Ω) + ∥zn∥L2(Ω)∥zn−4∥L2(Ω)

)
+ ∥∂4(Phu

n − un)∥2L2(Ω) + C0∥zn∥2L2(Ω)

+ ∥∂kun − unt ∥2L2(Ω) + Ch4∥∂4un∥2X

+ Ch4
(
1 +

1

| logh|

)2 (
∥un∥2X + ∥gn∥2H2(Γ) + |f |2

)
+

1

γ
∥zn∥2H1(Ω) + Ck8,

where C0 =
1

2
+ µ3 + γβ2µ2

3 . With γ =
1

µ1
, we obtain

(1− C0k) ∥zn∥2L2(Ω)

≤ C
(
∥zn−1∥2L2(Ω) + ∥zn−2∥2L2(Ω) + ∥zn−3∥2L2(Ω) + ∥zn−4∥2L2(Ω)

)
+C

[
k∥∂4(Phu

n − un)∥2L2(Ω) + k∥∂4un − unt ∥2L2(Ω) + kh4∥∂4un∥2X
]

+ Ch4k

(
1 +

1

| logh|

)2 (
∥un∥2X + ∥gn∥2H2(Γ) + |f |2

)
+ Ck9.

For 0 < k < min
{
1,

1

C0

}
, there is a C > 0 such that (1− C0k)

−1 ≤ C , and therefore

∥zn∥2L2(Ω) ≤ C
[
∥zn−1∥2L2(Ω) + ∥zn−2∥2L2(Ω) + ∥zn−3∥2L2(Ω) + ∥zn−4∥2L2(Ω)

+ k∥∂4(Phu
n − un)∥2L2(Ω) + k∥∂4un − unt ∥2L2(Ω) + kh4∥∂4un∥2X

+ Ch4k

(
1 +

1

| logh|

)2 (
∥un∥2X + ∥gn∥2H2(Γ) + |f |2

)
+ Ck9

for n = 4, . . . ,M .
By iteration on n , we have

∥zn∥2L2(Ω) ≤ C
[
∥z0∥2L2(Ω) + ∥z1∥2L2(Ω) + ∥z2∥2L2(Ω) + ∥z3∥2L2(Ω)

]
+ Ck

n∑
j=4

∥∂4(uj − Phu
j)∥2L2(Ω) + Ck9

+ Ch4k

(
1 +

1

| logh|

)2 n∑
j=4

(∥uj∥2X + ∥gj∥2H2(Γ) + |f |2)

+ Ck

n∑
j=4

∥∂4uj − ujt∥2L2(Ω) + Ch4k

n∑
j=4

∥∂4uj∥2X .
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After a simple calculation, we have

∥zn∥2L2(Ω) ≤ C
[
∥z0∥2L2(Ω) + ∥z1∥2L2(Ω) + ∥z2∥2L2(Ω) + ∥z3∥2L2(Ω)

]
+C

∫ tn

0

∥(u− Phu)t∥2L2(Ω) dt+ Ck8
∫ tn

0

∥∂
5u

∂t5
∥2L2(Ω) dt

+Ch4
(
1 +

1

| logh|

)2 ∫ tn

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt

+ Ck9

≤ C
[
∥z0∥2L2(Ω) + ∥z1∥2L2(Ω) + ∥z2∥2L2(Ω) + ∥z3∥2L2(Ω)

]
+Ch4

(
1 +

1

| logh|

)2 ∫ tn

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt

+ Ck8
∫ tn

0

∥∂
5u

∂t5
∥2L2(Ω) dt+ Ck9. (3.10)

Letting z1 = Phu
1 − U1

h , from (1.4) and (3.1), we have

(∂1z1, vh)h +Ah(z
1, vh) = (∂1(Phu

1 − u1), vh)h + (∂1u1 − u1t , vh)

+ (∂1u1, vh)h − (∂1u1, vh)

+ Ah(U
0
h : Phu

1, vh)−Ah(u
1 : Phu

1, vh)

+ (f(x, u1), vh)− (f(x,U0
h), vh)h + ⟨g1, vh⟩Γ − ⟨g1h, vh⟩Γh

.

With vh = z1 , we have

1

τ1
∥z1∥2L2(Ω) + µ1∥z1∥2H1(Ω) ≤ 1

τ1
∥z0∥L2(Ω)∥z1∥L2(Ω) + ∥∂1(Phu

1 − u1)∥2L2(Ω) + Ch4|f |2

+

(
1

2
+ µ1

)
∥z1∥2L2(Ω) + ∥∂1u1 − u1t∥2L2(Ω) + Ch4∥∂1u1∥2X

+ Ch4∥g1∥2H2(Γ) +
1

γ
∥z1∥2H1(Ω) + γβ2µ2

3∥U0
h − u1∥2L2(Ω)

≤ 1

τ1
∥z0∥L2(Ω)∥z1∥L2(Ω) + ∥∂1(Phu

1 − u1)∥2L2(Ω)

+

(
1

2
+ µ1 + γβ2µ2

3

)
∥z1∥2L2(Ω) + ∥∂1u1 − u1t∥2L2(Ω)

+ Ch4∥∂1u1∥2X + Ch4∥g1∥2H2(Γ) +
1

γ
∥z1∥2H1(Ω)

+ Cτ1 + Ch4
(
1 +

1

| logh|

)2 (
∥u1∥2X + |f |2

)
.
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With γ =
1

µ1
, we obtain

(1− C0τ1) ∥z1|2L2(Ω) ≤ ∥z0∥2L2(Ω) + τ1∥∂1(Phu
1 − u1)∥2L2(Ω) + τ1∥∂1u1 − u1t∥2L2(Ω)

+ Cτ1h
4∥∂1u1∥2X + Cτ21

+ τ1Ch
4

(
1 +

1

| logh|

)2 (
∥u1∥2X + ∥g1∥2H2(Γ) + |f |2

)
.

For 0 < τ1 < min
{
1,

1

C0

}
, there is a C > 0 such that (1− C0τ1)

−1 ≤ C ; therefore,

∥z1∥2L2(Ω) ≤ C
[
∥z0∥2L2(Ω) + τ1∥∂1(Phu

1 − u1)∥2L2(Ω) + τ1∥∂1u1 − u1t∥2L2(Ω)

+τ1h
4∥∂1u1∥2X + τ1h

4

(
1 +

1

| logh|

)2 (
∥u1∥2X + ∥g1∥2H2(Γ) + |f |2

)
+ τ21

]

≤ C∥z0∥2L2(Ω) + C

∫ t1

0

∥(u− Phu)t∥2L2(Ω) dt+ Cτ21

∫ t1

0

∥utt∥2L2(Ω) dt

+Ch4
(
1 +

1

| logh|

)2 ∫ t1

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt+ Cτ21

≤ C∥z0∥2L2(Ω) + Cτ21

∫ t1

0

∥utt∥2L2(Ω) dt+ Cτ21

+Ch4
(
1 +

1

| logh|

)2 ∫ t1

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt. (3.11)

By similar arguments to the one that led to (3.11), we have

∥z2∥2L2(Ω) ≤ C
[
∥z0∥2L2(Ω) + ∥z1∥2L2(Ω)

]
+ Cτ42

∫ t2

0

∥uttt∥2L2(Ω) dt

+Ch4
(
1 +

1

| logh|

)2 ∫ t2

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt

+ Cτ42 (3.12)

∥z3∥2L2(Ω) ≤ C
[
∥z0∥2L2(Ω) + ∥z1∥2L2(Ω) + ∥z2∥2L2(Ω)

]
+ Cτ63

∫ t3

0

∥utttt∥2L2(Ω) dt

+Ch4
(
1 +

1

| logh|

)2 ∫ t3

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt

+ Cτ63 . (3.13)
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From (3.10)−(3.13) with τ1 ≤ k4 , τ2 ≤ k2 , and τ3 ≤ k4/3 , we have

∥zn∥2L2(Ω) ≤ C∥z0∥2L2(Ω) + Ck8
∫ tn

0


5∑

j=2

∥∂
ju

∂tj
∥2L2(Ω)

 dt+ Ck9

+ Ch4
(
1 +

1

| logh|

)2 ∫ tn

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt.

Now, from Lemma 2.3 and the last inequality,

∥un − Un
h ∥2L2(Ω) ≤ 2∥un − Phu

n∥2L2(Ω) + 2∥zn∥2L2(Ω)

≤ Ck8

1 + ∫ tn

0

 5∑
j=2

∥∂
ju

∂tj
∥2L2(Ω)

 dt


+ Ch4

(
1 +

1

| logh|

)2 {
∥u0∥2X +

∫ tn

0

[
∥u∥2X + ∥ut∥2X + ∥g∥2H2(Γ) + |f |2

]
dt

}
.

The result follows immediately. 2

Remark 3.2 The initial three steps of the scheme are constructed using a low-order time discretization scheme;
however, this does not affect the convergence rate since they are used once. Moreover, in the error analysis, the
step sizes of these low-order discretizations are chosen to be sufficiently small to guarantee the convergence rate.

4. Numerical experiment

For the numerical experiment, globally continuous piecewise linear finite element functions based on the qua-
siuniform triangulation described in Section 2 are used. The mesh generation and computation are done with
FreeFEM++ [9].

Example 4.1 We discuss the result of a two-dimensional nonlinear parabolic interface problem in the domain
Ω = (−1, 1) × (−1, 1) , where Ω1 is a circle centered at (0, 0) with radius r =

√
x2 + y2 = 0.5 , Ω2 = Ω \ Ω1

and the interface Γ is a circle of radius 0.5 and therefore Γ ̸= Γh .
On Ω× (0, 50] , we consider the nonlinear problem (1.1)−(1.3) whose exact solution is

u =


1

8
(1− 4r2) sin(t) in Ω1 × (0, 50]

1

4
(1− x2)(1− y2)(1− 4r2) sin(2t) in Ω2 × (0, 50].

The source function f , interface function g , and initial data u0 are determined from the choice of u with

a =


u2

1 + u2
in Ω1 × (0, 50]

1

1 + u2
in Ω2 × (0, 50].
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Table 1. Error estimates in L2 -norm for Example 4.1.

h Error (k = 0.04)
0.181985 9.47053× 10−3

0.0950432 2.33584× 10−3

0.0475216 5.62814× 10−4

k Error (h = 0.0950432)
0.016 4.62950× 10−3

0.008 2.33580× 10−3

0.004 2.335798× 10−4

Table 2. Error estimates in L2 -norm for Example 4.2.

h Error (k = 0.03125)
0.108621 2.55671× 10−2

0.055215 6.26186× 10−3

0.0273063 1.58762× 10−3

k Error (h = 0.055215)
0.125 6.75108× 10−3

0.0625 6.27771× 10−3

0.03125 6.26186× 10−3

Errors in L2 -norm at t = 12 for various step sizes h and time steps k are presented in Table 1. The data
indicate that

∥Error∥L2(Ω) = O

(
k3.954 + h1.991

(
1 +

1

| logh|

))
.

These numerical results match the convergence rate as given in Theorem 3.1.

Example 4.2 We consider (1.1)−(1.3) on the domain Ω = (−1, 1) × (−1, 1) , where Ω1 is the ellipse 4x2 +

16y2 < 1 , Ω2 = Ω \ Ω1 , and the interface Γ is the ellipse 4x2 + 16y2 = 1 and therefore Γ ̸= Γh .
For the exact solution, we choose

u =


1

8
(1− 4x2 − 16y2)t exp(sin t) in Ω1 × (0, 10]

1

2
(1− x2)(1− y2)(4x2 + 16y2 − 1) sin t in Ω2 × (0, 10].

The source function f , interface function g , and initial data u0 are determined from the choice of u with

a =


5 in Ω1 × (0, 10]

1

1 + u2
in Ω2 × (0, 10].

Errors in L2 -norm at t = 5 for various step sizes h and time steps k are presented in Table 2. The data
indicate that

∥Error∥L2(Ω) = O

(
k4.900 + h1.982

(
1 +

1

| logh|

))
.

These numerical results match the convergence rates as given in Theorem 3.1.
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