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Abstract: In this paper we shall prove several weighted Lp Hardy-type inequalities associated to the Baouendi–Grushin-
type operators ∆γ = ∆x + |x|2γ ∆y, where ∆x and ∆y are the classical Laplace operators in the variables x ∈ Rn and
y ∈ Rk, respectively, and γ is a positive real number.
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1. Introduction
The well-known Hardy inequality in Rn, n ≥ 3, asserts that for all u ∈ C∞

0 (Rn)∫
Rn

|∇u|2 dx ≥
(
n− 2

2

)2 ∫
Rn

u2

|x|2
dx. (1.1)

Though the constant
(
n−2
2

)2 is sharp, equality in (1.1) is never achieved by any function u ∈ H1
0 (Rn) . Hardy

[13] originally discovered this inequality in 1920 for the one-dimensional case. Since then it has attracted
the attention of many mathematicians and has been comprehensively analyzed in several directions; see, for
example, [2, 3, 5, 10, 11, 14, 15, 21] and the references therein.

The sharp Hardy inequality (1.1) arises very naturally in the study of degenerate elliptic differential
operators and it was first extended in [9] by Garofalo to the Baouendi–Grushin vector fields

Xi =
∂

∂xi
, i = 1, . . . , n, Yj = |x|γ ∂

∂yj
, j = 1, . . . , k,

where x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yk) ∈ Rk with n, k ≥ 1, γ > 0. To be explicit, the author in [9]
proved the following Hardy inequality∫

Rn+k

|∇γu|2dxdy ≥
(
Q− 2

2

)2 ∫
Rn+k

|x|2γ

ρ2γ
u2

ρ2
dxdy (1.2)

for every u ∈ C∞
0 (Rn × Rk \ {(0, 0)}). Here, Q = n + (1 + γ)k is the homogeneous dimension, ∇γ =

(X1, . . . , Xn, Y1, . . . , Yk) is the subelliptic gradient, and ρ =
(
|x|2(1+γ) + (1 + γ)2|y|2

) 1
2(1+γ) is the gauge function
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associated to the fundamental solution for the subelliptic operator ∆γ = ∆x + |x|2γ∆y, where ∆x and ∆y are
the Laplacians on Rn and Rk, respectively.

After the seminal work of Garofalo [9], much effort has been devoted to Hardy-type inequalities for
the Baouendi–Grushin vector fields; see [6–8, 16–20] . For instance, in [6], D’Ambrosio obtained a weighted
Lp analogue of (1.2) . Later, Niu et al. [19] considered various types of Hardy inequalities on some special
domains in Rn×Rk via a Picone-type identity for the Baouendi–Grushin vector fields {Xi, Yj} . In [16], Kombe
proved weighted Hardy-type inequalities with remainder terms. On the other hand, Laptev et al. [18] recently
established weighted Hardy inequalities for the quadratic form of the magnetic Baouendi–Grushin operator with
Aharonov–Bohm-type magnetic field. More recently, Kombe and Yener [17] introduced a unified approach to
the weighted Hardy inequalities related to Baouendi–Grushin operators.

In the literature, Hardy-type inequalities mostly involve the weights of the form ρα |x|β for some real
numbers α and β. Our goal in this paper is to prove several Lp Hardy-type inequalities with more general and
nonstandard weights associated to the Baouendi–Grushin-type operators ∆γ . For this goal we shall mainly use
a technique developed in [17].

2. Preliminaries and notations
In this section we shall introduce some notations and preliminary facts. Let RN be split in z = (x, y) ∈ Rn×Rk

with n, k ≥ 1 and N = n+k. We denote by |x| and |y| the usual Euclidean norms in Rn and Rk, respectively.
The corresponding vector field is

∇γ = (X1, . . . , Xn, Y1, . . . , Yk) = (∇x, |x|γ∇y) ,

where

Xi =
∂

∂xi
, i = 1, . . . , n, Yj = |x|γ ∂

∂yj
, j = 1, . . . , k (2.1)

and γ is a positive real number. The Baouendi–Grushin operator is of the form

∆γ =

n∑
i=1

X2
i +

k∑
j=1

Y 2
j = ∇γ · ∇γ = ∆x + |x|2γ∆y.

Here, ∆x and ∆y stand for the usual Laplace operators in the variables x ∈ Rn and y ∈ Rk , respectively. The
operator ∆γ was first studied by Baouendi [1] and Grushin [12] when γ is a positive integer. We note that if
γ is not an even positive integer, then ∆γ is not a sum of squares of C∞ vector fields satisfying Hörmander’s
condition:

rank Lie [X1, . . . , Xn, Y1, . . . , Yk] = N.

The nonlinear p -degenerate subelliptic operator associated with the vector fields (2.1) is defined by

∆γ,pu = ∇γ ·
(
|∇γu|p−2 ∇γu

)
, p > 1.

The operator ∆γ possesses a natural family of anisotropic dilations, namely

δλ(z) = (λx, λγ+1y), λ > 0, z = (x, y) ∈ RN .
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It is easy to verify that
dδλ(x, y) = λQdxdy = λQdz,

where
Q = n+ (1 + γ)k

is the homogeneous dimension with respect to the dilation δλ and dz = dxdy denotes the Lebesgue measure
on RN . For z = (x, y) ∈ RN , define the distance between z and the origin of RN as follows:

ρ = ρ(z) =
(
|x|2(1+γ) + (1 + γ)2|y|2

) 1
2(1+γ)

.

We remark that ρ is positive, smooth away from the origin, and symmetric.
A simple calculation shows that

∇γρ =
|x|γ

ρ2γ+1
(|x|γx1, . . . , |x|γxn, (1 + γ)y1, . . . , (1 + γ)yk)

and hence

|∇γρ| =
|x|γ

ργ
.

A function u on RN is said to be radial when u has the form u = u(ρ). If u is radial, then by a straightforward
computation we have

|∇γu (ρ)| = |∇γρ| |u′ (ρ)|

and

∆γu (ρ) = |∇γρ|2
[
u′′ (ρ) + (Q− 1)

u′ (ρ)

ρ

]
.

In particular, when u(ρ) = ρα one gets

|∇γρ
α| = |α| |∇γρ| ρα−1 (2.2)

and
∆γρ

α = α (Q+ α− 2) |∇γρ|2 ρα−2 (2.3)

with α ∈ R. Moreover, the gauge ρ is infinite harmonic in RN − {0} (see [4]); that is, ρ is the solution of the
following equation:

∇γ(|∇γρ|2) · ∇γρ = 0. (2.4)

3. Weighted Hardy-type inequalities

For the convenience of the reader, we begin by quoting a known result from [17].

Theorem 3.1 Let ϑ ∈ C1
(
RN
)

and w ∈ L1
loc
(
RN
)

be nonnegative functions and f ∈ C∞ (RN
)

be a positive
function such that

−∇γ ·
(
ϑ |∇γf |p−2 ∇γf

)
≥ wfp−1 (3.1)
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almost everywhere in RN . Then for all u ∈ C∞
0

(
RN
)

and p > 1, one has∫
RN

ϑ |∇γu|p dz ≥
∫
RN

w |u|p dz. (3.2)

Remark 3.2 Let ϵ > 0 be given. Define

ρϵ :=
(
|x|2(1+γ)

ϵ + (1 + γ)2|y|2
) 1

2(1+γ)

,

where |x|ϵ :=
(
ϵ2 +

∑n
i=1 x

2
i

)1/2
. In the proof of the following theorems, if the functions ϑ and f are not smooth

enough, by standard argument one can consider ρϵ a regularization of ρ and after the computation takes the
limit as ϵ −→ 0. However, for the sake of simplicity we will proceed formally.

Recall that the following weighted Hardy-type inequalities in the Euclidean setting were proved by
Ghoussoub and Moradifam [10]: Let a, b > 0 and α, β,m be real numbers.

• If αβ > 0 and m ≤ n−2
2 , then for all u ∈ C∞

0 (Rn)

∫
Rn

(a+ b |x|α)β

|x|2m
|∇u|2 dx ≥

(
n− 2m− 2

2

)2 ∫
Rn

(a+ b |x|α)β

|x|2m+2 u2dx. (3.3)

• If αβ < 0 and 2m− αβ ≤ n− 2, then for all u ∈ C∞
0 (Rn)

∫
Rn

(a+ b |x|α)β

|x|2m
|∇u|2 dx ≥

(
n+ αβ − 2m− 2

2

)2 ∫
Rn

(a+ b |x|α)β

|x|2m+2 u2dx. (3.4)

We now generalize and improve the above inequalities (3.3) and (3.4) to the Lp case for the Baouendi–
Grushin operator ∆γ by specializing the choice of functions ϑ and f in the differential inequality (3.1) . Here
is the first result in this direction.

Theorem 3.3 Let a, b > 0 and α, β,m ∈ R . If αβ > 0 and 1 < p ≤ Q− pm, then for all u ∈ C∞
0 (RN ) one

has ∫
RN

(a+ bρα)
β

ρpm
|∇γu|p dz ≥ Cp

Q,p,m

∫
RN

(a+ bρα)
β

ρpm+p
|∇γρ|p |u|pdz

+ Cp−1
Q,p,mαβb

∫
RN

(a+ bρα)
β−1

ρpm+p−α
|∇γρ|p |u|pdz,

where CQ,p,m =
(

Q−pm−p
p

)
.

Proof Set ϑ =
(a+ bρα)

β

ρpm
and f = ρ−(

Q−pm−p
p ) in Theorem 3.1. Clearly,

∇γf = −
(
Q− pm− p

p

)
ρ−(

Q−pm
p )∇γρ.
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Noting that 1 < p ≤ Q− pm, one gets

|∇γf |p−2
=

(
Q− pm− p

p

)p−2

ρ−(
Q−pm

p )(p−2) |∇γρ|p−2
.

Hence,

−∆γ,p,ϑf :=−∇γ ·
(
ϑ |∇γf |p−2 ∇γf

)
= Cp−1

Q,p,m∇γ ·

(
(a+ bρα)

β

ρpm
ρ−(

Q−pm
p )(p−1) |∇γρ|p−2 ∇γρ

)
, (3.5)

where CQ,p,m :=
(

Q−pm−p
p

)
. Using the identities (2.3) and (2.4) , a direct calculation yields

∇γ

(
(a+ bρα)

β

ρpm

)
=

αβbρα+pm−1 (a+ bρα)
β−1 ∇γρ− pmρpm−1 (a+ bρα)

β ∇γρ

ρ2pm

= αβb (a+ bρα)
β−1

ρα−pm−1∇γρ− pm (a+ bρα)
β
ρ−pm−1∇γρ (3.6)

and

∇γ ·
(
ρ−(

Q−pm
p )(p−1) |∇γρ|p−2 ∇γρ

)
=−

(
Q− pm

p

)
(p− 1) ρ−(

Q−pm
p )(p−1)−1 |∇γρ|p

+ ρ−(
Q−pm

p )(p−1)
(
∇γ

(
|∇γρ|p−2

)
· ∇γρ+ |∇γρ|p−2

∆γρ
)

(3.7)

=

(
Q− pm− p

p
+ pm

)
ρ

Q−pm−p
p −Q+pm |∇γρ|p .

It therefore follows from (3.5) , (3.6) , and (3.7) that

−∆γ,p,ϑf = Cp−1
Q,p,m∇γ

(
(a+ bρα)

β

ρpm

)
·
(
ρ−(

Q−pm
p )(p−1) |∇γρ|p−2 ∇γρ

)

+ Cp−1
Q,p,m

(a+ bρα)
β

ρpm
∇γ ·

(
ρ−(

Q−pm
p )(p−1) |∇γρ|p−2 ∇γρ

)

= Cp−1
Q,p,mαβb (a+ bρα)

β−1
ρ

Q−pm−p
p −Q+α |∇γρ|p

− Cp−1
Q,p,mpm (a+ bρα)

β
ρ

Q−pm−p
p −Q |∇γρ|p

+ Cp−1
Q,p,m

(
Q− pm− p

p
+ pm

)
(a+ bρα)

β
ρ

Q−pm−p
p −Q |∇γρ|p

= Cp
Q,p,m (a+ bρα)

β
ρ

Q−pm−p
p −Q |∇γρ|p

+ Cp−1
Q,p,mαβb (a+ bρα)

β−1
ρ

Q−pm−p
p −Q+α |∇γρ|p .

Since
fp−1 = ρ

Q−pm−p
p −Q+pm+p,
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one can put

w = Cp
Q,p,m

(a+ bρα)
β

ρpm−p
|∇γρ|p + Cp−1

Q,p,mαβb
(a+ bρα)

β−1

ρpm+p−α
|∇γρ|p .

Hence, by Theorem 3.1 we complete the proof. 2

Theorem 3.4 Let a, b > 0 and α, β,m ∈ R . If αβ < 0 and 1 < p ≤ Q+ αβ − pm, then for all u ∈ C∞
0 (RN )

one has

∫
RN

(a+ bρα)
β

ρpm
|∇γu|p dz ≥ Cp

Q,p,m,α,β

∫
RN

(a+ bρα)
β

ρpm+p
|∇γρ|p |u|pdz

− Cp−1
Q,p,m,α,βαβa

∫
RN

(a+ bρα)
β−1

ρpm+p
|∇γρ|p |u|pdz,

where CQ,p,m,α,β =
(

Q+αβ−pm−p
p

)
.

Proof Choose ϑ =
(a+ bρα)

β

ρpm
and f = ρ−(

Q+αβ−pm−p
p ), where a, b > 0, αβ < 0 and 1 < p ≤ Q+ αβ − pm.

One easily sees

∇γf = −
(
Q+ αβ − pm− p

p

)
ρ−(

Q+αβ−pm
p )∇γρ

and

−∆γ,p,ϑf = −∇γ ·
(
ϑ |∇γf |p−2 ∇γf

)
= Cp−1

Q,p,m,α,β∇γ ·

(
(a+ bρα)

β

ρpm
ρ−(

Q+αβ−pm
p )(p−1) |∇γρ|p−2 ∇γρ

)
, (3.8)

where CQ,p,m,α,β =
(

Q+αβ−pm−p
p

)
. By a similar computation as in the proof of Theorem 3.3, we derive

∇γ ·
(
ρ−(

Q+αβ−pm
p )(p−1) |∇γρ|p−2 ∇γρ

)
=

(
Q+ αβ − pm− p

p
+ pm− αβ

)
ρ

Q+αβ−pm−p
p −Q−αβ+pm |∇γρ|p .

(3.9)
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Combining (3.6) and (3.9) with (3.8) , we deduce that

−∆γ,p,ϑf = Cp−1
Q,p,m,α,βαβb (a+ bρα)

β−1
ρ

Q+αβ−pm−p
p −Q−αβ+α |∇γρ|p

− Cp−1
Q,p,m,α,βpm (a+ bρα)

β
ρ

Q+αβ−pm−p
p −Q−αβ |∇γρ|p

+ Cp−1
Q,p,m,α,β

(
Q+αβ−pm−p

p + pm− αβ
) (a+ bρα)

β

ρQ+αβ
ρ

Q+αβ−pm−p
p |∇γρ|p

= Cp
Q,p,m,α,β (a+ bρα)

β
ρ

Q+αβ−pm−p
p −Q−αβ |∇γρ|p

+ Cp−1
Q,p,m,α,β (αβbρ

α − αβ (a+ bρα))
(a+ bρα)

β−1

ρQ+αβ
ρ

Q+αβ−pm−p
p |∇γρ|p

= Cp
Q,p,m,α,β

(a+ bρα)
β

ρQ+αβ
ρ

Q+αβ−pm−p
p |∇γρ|p

− Cp−1
Q,p,m,α,βαβa

(a+ bρα)
β−1

ρQ+αβ
ρ

Q+αβ−pm−p
p |∇γρ|p .

This shows that one can put

w = Cp
Q,p,m,α,β

(a+ bρα)
β

ρpm+p
|∇γρ|p − Cp−1

Q,p,m,α,βαβa
(a+ bρα)

β−1

ρpm+p
|∇γρ|p

and hence finishes the proof. 2

Remark 3.5 Note that if α = 0 or β = 0 in the above two inequalities, then they reduce to Hardy-type
inequalities with classical weights. Therefore, we are interested in the case where αβ ̸= 0.

Even though the literature has mostly focused on power radial weights ρα |x|β for some α, β ∈ R, we
now establish Lp Hardy-type inequalities with nonradial weights related to Baouendi–Grushin operator ∆γ .

Here is the first result in this direction.

Theorem 3.6 For any u ∈ C∞
0 (Ω) and p > 1, one has

∫
Ω

(
y1
|x|γ

)p−2

logx1 |∇γu|p dz ≥
∫
Ω

|x|2γ logx1

y21 logp−1 y1
|u|p dz, (3.10)

where Ω =
{
z = (x, y) ∈ RN : x1 > 1, y1 > 1

}
.

Proof Let us first set ϑ =
(

y1

|x|γ

)p−2

logx1 and f = log y1 in Theorem 3.1 with x1, y1 > 1 . Observing that

Xi (log y1) =
∂

∂xi
log y1 = 0 ∀i = 1, . . . , n

and

Yj (log y1) =
(
|x|γ ∂

∂yj

)
(log y1) =

{
|x|γ
y1

, if j = 1,

0, if j ̸= 1,
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we immediately have

∇γ log y1 =

(
0, . . . , 0,

|x|γ

y1
, 0, . . . , 0

)
.

It follows that

|∇γ log y1|p−2
=

(
|x|γ

y1

)p−2

and therefore

−∇γ ·
(
ϑ |∇γf |p−2 ∇γf

)
=−∇γ ·

(
0, . . . , 0,

|x|γ logx1

y1
, 0, . . . , 0

)
=− Y1

(
|x|γ logx1

y1

)
=− |x|2γ logx1

∂

∂y1

(
1

y1

)

=
|x|2γ logx1

y21
.

This means that one can put

w =
|x|2γ logx1

y21 logp−1 y1
.

We have thus proved the inequality (3.10) . 2

Theorem 3.7 For any u ∈ C∞
0 (Ω) and p > 1, one has

∫
Ω

coshα y1 |∇γu|p dz ≥ (p− 1)

∫
Ω

coshα y1

xp
1 logp−1 x1

|u|p dz, (3.11)

where Ω =
{
z = (x, y) ∈ RN : x1 > 1

}
and α ∈ R.

Proof Let us now choose ϑ = coshα y1 and f = logx1 with x1 > 1 and α ∈ R . Then we directly compute

Xi (logx1) =
∂

∂xi
logx1 =

{
1
x1
, if i = 1,

0, if i ̸= 1
(3.12)

and

Yj (logx1) =

(
|x|γ ∂

∂yj

)
(logx1) = 0 ∀j = 1, . . . , k. (3.13)

It follows from (3.12) and (3.13) that

∇γ logx1 =

(
1

x1
, 0, . . . , 0

)
, |∇γ logx1|p−2

= x2−p
1 .
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Therefore,

−∇γ ·
(
ϑ |∇γf |p−2 ∇γf

)
=−∇γ ·

(
coshα y1

xp−1
1

, 0, . . . , 0

)

=−X1

(
coshα y1

xp−1
1

)

=− coshα y1
∂

∂x1

(
x1−p
1

)
= (p− 1)

coshα y1

xp
1 logp−1 x1

fp−1.

By Theorem 3.1, the inequality (3.11) is deduced. 2

Finally, we now prove the following Lp Hardy-type inequality including the power of the hyperbolic sine
function of ρ as a weight.

Theorem 3.8 Let α ∈ R, β ≥ 0 and Q+ α+ β > p > 1. Then the following inequality holds:∫
RN

ρα sinhβ ρ |∇γu|p dz ≥
(
Q+ α+ β − p

p

)p ∫
RN

ρα sinhβ ρ |∇γρ|p
|u|p

ρp
dz

for all u ∈ C∞
0 (RN ).

Proof Letting ϑ = ρα sinhβ ρ and f = ρ−(
Q+α+β−p

p ) in Theorem 3.1 with β ≥ 0 and Q+ α+ β > p > 1, we
have

∇γf = −
(
Q+ α+ β − p

p

)
ρ−(

Q+α+β
p )∇γρ

and

|∇γf |p−2
=

(
Q+ α+ β − p

p

)p−2

ρ−(
Q+α+β

p )(p−2) |∇γρ|p−2
.

It therefore follows that

−∆γ,p,ϑf = −∇γ ·
(
ϑ |∇γf |p−2 ∇γf

)
=

(
Q+ α+ β − p

p

)p−1

∇γ ·
(
ρ−(

Q+α+β
p )(p−1)+α sinhβ ρ |∇γρ|p−2 ∇γρ

)
. (3.14)

From the identities (2.3) and (2.4) , it is not hard to see that

∇γ ·
(
|∇γρ|p−2 ∇γρ

)
= (Q− 1)

|∇γρ|p

ρ
. (3.15)

On the other hand, using the formula (2.2) , one can readily obtain

∇γ

(
ρ−(

Q+α+β
p )(p−1)+α sinhβ ρ

)
=

(
Q+ α+ β

p
−Q− β

)
ρ

Q+α+β
p −Q−β−1 sinhβ ρ∇γρ

+ βρ
Q+α+β

p −Q−β sinhβ−1 ρ cosh ρ∇γρ. (3.16)
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Combining (3.15) and (3.16) with (3.14) leads to

−∆γ,p,ϑf =

(
Q+ α+ β − p

p

)p−1(
Q+ α+ β

p
−Q− β

)
ρ

Q+α+β
p −Q−β−1 sinhβ ρ |∇γρ|p

+

(
Q+ α+ β − p

p

)p−1

βρ
Q+α+β

p −Q−β sinhβ−1 ρ cosh ρ |∇γρ|p

+

(
Q+ α+ β − p

p

)p−1

(Q− 1) ρ
Q+α+β

p −Q−β−1 sinhβ ρ |∇γρ|p

=

(
Q+ α+ β − p

p

)p

ρ
Q+α+β

p −Q−β−1 sinhβ ρ |∇γρ|p

+

(
Q+ α+ β − p

p

)p−1(
ρ

cosh ρ

sinh ρ
− 1

)
βρ

Q+α+β
p −Q−β−1 sinhβ ρ |∇γρ|p

≥
(
Q+ α+ β − p

p

)p

ρ
Q+α+β

p −Q−β−1 sinhβ ρ |∇γρ|p ,

where we have used the fact that ρ coth ρ ≥ 1. Hence,

−∇γ ·
(
ϑ |∇γf |p−2 ∇γf

)
≥
(
Q+ α+ β − p

p

)p

ρα−p sinhβ ρ |∇γρ|p fp−1;

that is, according to the assumption in Theorem 3.1, we can put

w =

(
Q+ α+ β − p

p

)p

ρα−p sinhβ ρ |∇γρ|p .

This ends the proof. 2
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