Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: $3050-3060$

Several Hardy-type inequalities with weights related to Baouendi-Grushin operators

Abdullah YENER* ${ }^{\text {(b) }}$
Department of Mathematics, Faculty of Science, İstanbul Commerce University, İstanbul, Turkey

| Received: 07.02.2018 | Accepted/Published Online: 03.10 .2018 | Final Version: 27.11 .2018 |
| :--- | :--- | :--- | :--- |

Abstract

In this paper we shall prove several weighted L^{p} Hardy-type inequalities associated to the Baouendi-Grushintype operators $\Delta_{\gamma}=\Delta_{x}+|x|^{2 \gamma} \Delta_{y}$, where Δ_{x} and Δ_{y} are the classical Laplace operators in the variables $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{k}$, respectively, and γ is a positive real number.

Key words: Baouendi-Grushin operator, weighted Hardy inequality

1. Introduction

The well-known Hardy inequality in $\mathbb{R}^{n}, n \geq 3$, asserts that for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x \geq\left(\frac{n-2}{2}\right)^{2} \int_{\mathbb{R}^{n}} \frac{u^{2}}{|x|^{2}} d x \tag{1.1}
\end{equation*}
$$

Though the constant $\left(\frac{n-2}{2}\right)^{2}$ is sharp, equality in (1.1) is never achieved by any function $u \in H_{0}^{1}\left(\mathbb{R}^{n}\right)$. Hardy [13] originally discovered this inequality in 1920 for the one-dimensional case. Since then it has attracted the attention of many mathematicians and has been comprehensively analyzed in several directions; see, for example, $[2,3,5,10,11,14,15,21]$ and the references therein.

The sharp Hardy inequality (1.1) arises very naturally in the study of degenerate elliptic differential operators and it was first extended in [9] by Garofalo to the Baouendi-Grushin vector fields

$$
X_{i}=\frac{\partial}{\partial x_{i}}, \quad i=1, \ldots, n, \quad Y_{j}=|x|^{\gamma} \frac{\partial}{\partial y_{j}}, \quad j=1, \ldots, k
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, y=\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{k}$ with $n, k \geq 1, \gamma>0$. To be explicit, the author in [9] proved the following Hardy inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n+k}}\left|\nabla_{\gamma} u\right|^{2} d x d y \geq\left(\frac{Q-2}{2}\right)^{2} \int_{\mathbb{R}^{n+k}} \frac{|x|^{2 \gamma}}{\rho^{2 \gamma}} \frac{u^{2}}{\rho^{2}} d x d y \tag{1.2}
\end{equation*}
$$

for every $u \in C_{0}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{k} \backslash\{(0,0)\}\right)$. Here, $Q=n+(1+\gamma) k$ is the homogeneous dimension, $\nabla_{\gamma}=$ $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{k}\right)$ is the subelliptic gradient, and $\rho=\left(|x|^{2(1+\gamma)}+(1+\gamma)^{2}|y|^{2}\right)^{\frac{1}{2(1+\gamma)}}$ is the gauge function

[^0]
YENER/Turk J Math

associated to the fundamental solution for the subelliptic operator $\Delta_{\gamma}=\Delta_{x}+|x|^{2 \gamma} \Delta_{y}$, where Δ_{x} and Δ_{y} are the Laplacians on \mathbb{R}^{n} and \mathbb{R}^{k}, respectively.

After the seminal work of Garofalo [9], much effort has been devoted to Hardy-type inequalities for the Baouendi-Grushin vector fields; see $[6-8,16-20]$. For instance, in [6], D'Ambrosio obtained a weighted L^{p} analogue of (1.2). Later, Niu et al. [19] considered various types of Hardy inequalities on some special domains in $\mathbb{R}^{n} \times \mathbb{R}^{k}$ via a Picone-type identity for the Baouendi-Grushin vector fields $\left\{X_{i}, Y_{j}\right\}$. In [16], Kombe proved weighted Hardy-type inequalities with remainder terms. On the other hand, Laptev et al. [18] recently established weighted Hardy inequalities for the quadratic form of the magnetic Baouendi-Grushin operator with Aharonov-Bohm-type magnetic field. More recently, Kombe and Yener [17] introduced a unified approach to the weighted Hardy inequalities related to Baouendi-Grushin operators.

In the literature, Hardy-type inequalities mostly involve the weights of the form $\rho^{\alpha}|x|^{\beta}$ for some real numbers α and β. Our goal in this paper is to prove several L^{p} Hardy-type inequalities with more general and nonstandard weights associated to the Baouendi-Grushin-type operators Δ_{γ}. For this goal we shall mainly use a technique developed in [17].

2. Preliminaries and notations

In this section we shall introduce some notations and preliminary facts. Let \mathbb{R}^{N} be split in $z=(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{k}$ with $n, k \geq 1$ and $N=n+k$. We denote by $|x|$ and $|y|$ the usual Euclidean norms in \mathbb{R}^{n} and \mathbb{R}^{k}, respectively. The corresponding vector field is

$$
\nabla_{\gamma}=\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{k}\right)=\left(\nabla_{x},|x|^{\gamma} \nabla_{y}\right)
$$

where

$$
\begin{equation*}
X_{i}=\frac{\partial}{\partial x_{i}}, \quad i=1, \ldots, n, \quad Y_{j}=|x|^{\gamma} \frac{\partial}{\partial y_{j}}, \quad j=1, \ldots, k \tag{2.1}
\end{equation*}
$$

and γ is a positive real number. The Baouendi-Grushin operator is of the form

$$
\Delta_{\gamma}=\sum_{i=1}^{n} X_{i}^{2}+\sum_{j=1}^{k} Y_{j}^{2}=\nabla_{\gamma} \cdot \nabla_{\gamma}=\Delta_{x}+|x|^{2 \gamma} \Delta_{y}
$$

Here, Δ_{x} and Δ_{y} stand for the usual Laplace operators in the variables $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{k}$, respectively. The operator Δ_{γ} was first studied by Baouendi [1] and Grushin [12] when γ is a positive integer. We note that if γ is not an even positive integer, then Δ_{γ} is not a sum of squares of C^{∞} vector fields satisfying Hörmander's condition:

$$
\operatorname{rank} \operatorname{Lie}\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{k}\right]=N
$$

The nonlinear p-degenerate subelliptic operator associated with the vector fields (2.1) is defined by

$$
\Delta_{\gamma, p} u=\nabla_{\gamma} \cdot\left(\left|\nabla_{\gamma} u\right|^{p-2} \nabla_{\gamma} u\right), \quad p>1
$$

The operator Δ_{γ} possesses a natural family of anisotropic dilations, namely

$$
\delta_{\lambda}(z)=\left(\lambda x, \lambda^{\gamma+1} y\right), \quad \lambda>0, \quad z=(x, y) \in \mathbb{R}^{N}
$$

It is easy to verify that

$$
d \delta_{\lambda}(x, y)=\lambda^{Q} d x d y=\lambda^{Q} d z
$$

where

$$
Q=n+(1+\gamma) k
$$

is the homogeneous dimension with respect to the dilation δ_{λ} and $d z=d x d y$ denotes the Lebesgue measure on \mathbb{R}^{N}. For $z=(x, y) \in \mathbb{R}^{N}$, define the distance between z and the origin of \mathbb{R}^{N} as follows:

$$
\rho=\rho(z)=\left(|x|^{2(1+\gamma)}+(1+\gamma)^{2}|y|^{2}\right)^{\frac{1}{2(1+\gamma)}}
$$

We remark that ρ is positive, smooth away from the origin, and symmetric.
A simple calculation shows that

$$
\nabla_{\gamma} \rho=\frac{|x|^{\gamma}}{\rho^{2 \gamma+1}}\left(|x|^{\gamma} x_{1}, \ldots,|x|^{\gamma} x_{n},(1+\gamma) y_{1}, \ldots,(1+\gamma) y_{k}\right)
$$

and hence

$$
\left|\nabla_{\gamma} \rho\right|=\frac{|x|^{\gamma}}{\rho^{\gamma}}
$$

A function u on \mathbb{R}^{N} is said to be radial when u has the form $u=u(\rho)$. If u is radial, then by a straightforward computation we have

$$
\left|\nabla_{\gamma} u(\rho)\right|=\left|\nabla_{\gamma} \rho\right|\left|u^{\prime}(\rho)\right|
$$

and

$$
\Delta_{\gamma} u(\rho)=\left|\nabla_{\gamma} \rho\right|^{2}\left[u^{\prime \prime}(\rho)+(Q-1) \frac{u^{\prime}(\rho)}{\rho}\right]
$$

In particular, when $u(\rho)=\rho^{\alpha}$ one gets

$$
\begin{equation*}
\left|\nabla_{\gamma} \rho^{\alpha}\right|=|\alpha|\left|\nabla_{\gamma} \rho\right| \rho^{\alpha-1} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{\gamma} \rho^{\alpha}=\alpha(Q+\alpha-2)\left|\nabla_{\gamma} \rho\right|^{2} \rho^{\alpha-2} \tag{2.3}
\end{equation*}
$$

with $\alpha \in \mathbb{R}$. Moreover, the gauge ρ is infinite harmonic in $\mathbb{R}^{N}-\{0\}$ (see [4]); that is, ρ is the solution of the following equation:

$$
\begin{equation*}
\nabla_{\gamma}\left(\left|\nabla_{\gamma} \rho\right|^{2}\right) \cdot \nabla_{\gamma} \rho=0 \tag{2.4}
\end{equation*}
$$

3. Weighted Hardy-type inequalities

For the convenience of the reader, we begin by quoting a known result from [17].
Theorem 3.1 Let $\vartheta \in C^{1}\left(\mathbb{R}^{N}\right)$ and $w \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$ be nonnegative functions and $f \in C^{\infty}\left(\mathbb{R}^{N}\right)$ be a positive function such that

$$
\begin{equation*}
-\nabla_{\gamma} \cdot\left(\vartheta\left|\nabla_{\gamma} f\right|^{p-2} \nabla_{\gamma} f\right) \geq w f^{p-1} \tag{3.1}
\end{equation*}
$$

YENER/Turk J Math

almost everywhere in \mathbb{R}^{N}. Then for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and $p>1$, one has

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \vartheta\left|\nabla_{\gamma} u\right|^{p} d z \geq \int_{\mathbb{R}^{N}} w|u|^{p} d z \tag{3.2}
\end{equation*}
$$

Remark 3.2 Let $\epsilon>0$ be given. Define

$$
\rho_{\epsilon}:=\left(|x|_{\epsilon}^{2(1+\gamma)}+(1+\gamma)^{2}|y|^{2}\right)^{\frac{1}{2(1+\gamma)}}
$$

where $|x|_{\epsilon}:=\left(\epsilon^{2}+\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$. In the proof of the following theorems, if the functions ϑ and f are not smooth enough, by standard argument one can consider ρ_{ϵ} a regularization of ρ and after the computation takes the limit as $\epsilon \longrightarrow 0$. However, for the sake of simplicity we will proceed formally.

Recall that the following weighted Hardy-type inequalities in the Euclidean setting were proved by Ghoussoub and Moradifam [10]: Let $a, b>0$ and α, β, m be real numbers.

- If $\alpha \beta>0$ and $m \leq \frac{n-2}{2}$, then for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\left(a+b|x|^{\alpha}\right)^{\beta}}{|x|^{2 m}}|\nabla u|^{2} d x \geq\left(\frac{n-2 m-2}{2}\right)^{2} \int_{\mathbb{R}^{n}} \frac{\left(a+b|x|^{\alpha}\right)^{\beta}}{|x|^{2 m+2}} u^{2} d x \tag{3.3}
\end{equation*}
$$

- If $\alpha \beta<0$ and $2 m-\alpha \beta \leq n-2$, then for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\left(a+b|x|^{\alpha}\right)^{\beta}}{|x|^{2 m}}|\nabla u|^{2} d x \geq\left(\frac{n+\alpha \beta-2 m-2}{2}\right)^{2} \int_{\mathbb{R}^{n}} \frac{\left(a+b|x|^{\alpha}\right)^{\beta}}{|x|^{2 m+2}} u^{2} d x \tag{3.4}
\end{equation*}
$$

We now generalize and improve the above inequalities (3.3) and (3.4) to the L^{p} case for the BaouendiGrushin operator Δ_{γ} by specializing the choice of functions ϑ and f in the differential inequality (3.1). Here is the first result in this direction.

Theorem 3.3 Let $a, b>0$ and $\alpha, \beta, m \in \mathbb{R}$. If $\alpha \beta>0$ and $1<p \leq Q-p m$, then for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ one has

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}}\left|\nabla_{\gamma} u\right|^{p} d z \geq & C_{Q, p, m}^{p} \int_{\mathbb{R}^{N}} \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m+p}}\left|\nabla_{\gamma} \rho\right|^{p}|u|^{p} d z \\
& +C_{Q, p, m}^{p-1} \alpha \beta b \int_{\mathbb{R}^{N}} \frac{\left(a+b \rho^{\alpha}\right)^{\beta-1}}{\rho^{p m+p-\alpha}}\left|\nabla_{\gamma} \rho\right|^{p}|u|^{p} d z
\end{aligned}
$$

where $C_{Q, p, m}=\left(\frac{Q-p m-p}{p}\right)$.
Proof Set $\vartheta=\frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}}$ and $f=\rho^{-\left(\frac{Q-p m-p}{p}\right)}$ in Theorem 3.1. Clearly,

$$
\nabla_{\gamma} f=-\left(\frac{Q-p m-p}{p}\right) \rho^{-\left(\frac{Q-p m}{p}\right)} \nabla_{\gamma} \rho
$$

YENER/Turk J Math

Noting that $1<p \leq Q-p m$, one gets

$$
\left|\nabla_{\gamma} f\right|^{p-2}=\left(\frac{Q-p m-p}{p}\right)^{p-2} \rho^{-\left(\frac{Q-p m}{p}\right)(p-2)}\left|\nabla_{\gamma} \rho\right|^{p-2}
$$

Hence,

$$
\begin{align*}
-\Delta_{\gamma, p, \vartheta} f & :=-\nabla_{\gamma} \cdot\left(\vartheta\left|\nabla_{\gamma} f\right|^{p-2} \nabla_{\gamma} f\right) \\
& =C_{Q, p, m}^{p-1} \nabla_{\gamma} \cdot\left(\frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}} \rho^{-\left(\frac{Q-p m}{p}\right)(p-1)}\left|\nabla_{\gamma} \rho\right|^{p-2} \nabla_{\gamma} \rho\right) \tag{3.5}
\end{align*}
$$

where $C_{Q, p, m}:=\left(\frac{Q-p m-p}{p}\right)$. Using the identities (2.3) and (2.4), a direct calculation yields

$$
\begin{align*}
\nabla_{\gamma}\left(\frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}}\right) & =\frac{\alpha \beta b \rho^{\alpha+p m-1}\left(a+b \rho^{\alpha}\right)^{\beta-1} \nabla_{\gamma} \rho-p m \rho^{p m-1}\left(a+b \rho^{\alpha}\right)^{\beta} \nabla_{\gamma} \rho}{\rho^{2 p m}} \\
& =\alpha \beta b\left(a+b \rho^{\alpha}\right)^{\beta-1} \rho^{\alpha-p m-1} \nabla_{\gamma} \rho-p m\left(a+b \rho^{\alpha}\right)^{\beta} \rho^{-p m-1} \nabla_{\gamma} \rho \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
\nabla_{\gamma} \cdot\left(\rho^{-\left(\frac{Q-p m}{p}\right)(p-1)}\left|\nabla_{\gamma} \rho\right|^{p-2} \nabla_{\gamma} \rho\right)= & -\left(\frac{Q-p m}{p}\right)(p-1) \rho^{-\left(\frac{Q-p m}{p}\right)(p-1)-1}\left|\nabla_{\gamma} \rho\right|^{p} \\
& +\rho^{-\left(\frac{Q-p m}{p}\right)(p-1)}\left(\nabla_{\gamma}\left(\left|\nabla_{\gamma} \rho\right|^{p-2}\right) \cdot \nabla_{\gamma} \rho+\left|\nabla_{\gamma} \rho\right|^{p-2} \Delta_{\gamma} \rho\right) \tag{3.7}\\
= & \left(\frac{Q-p m-p}{p}+p m\right) \rho^{\frac{Q-p m-p}{p}-Q+p m}\left|\nabla_{\gamma} \rho\right|^{p} .
\end{align*}
$$

It therefore follows from (3.5), (3.6), and (3.7) that

$$
\left.\left.\begin{array}{rl}
-\Delta_{\gamma, p, \vartheta} f= & C_{Q, p, m}^{p-1} \nabla_{\gamma}\left(\frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}}\right) \cdot\left(\rho^{-\left(\frac{Q-p m}{p}\right)(p-1)}\left|\nabla_{\gamma} \rho\right|^{p-2} \nabla_{\gamma} \rho\right) \\
& +C_{Q, p, m}^{p-1} \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}} \nabla_{\gamma} \cdot\left(\rho^{-\left(\frac{Q-p m}{p}\right)(p-1)}\left|\nabla_{\gamma} \rho\right|^{p-2} \nabla_{\gamma} \rho\right) \\
= & C_{Q, p, m}^{p-1} \alpha \beta b\left(a+b \rho^{\alpha}\right)^{\beta-1} \rho^{\frac{Q-p m-p}{p}-Q+\alpha}\left|\nabla_{\gamma} \rho\right|^{p} \\
& -C_{Q, p, m}^{p-1} p m\left(a+b \rho^{\alpha}\right)^{\beta} \rho^{\frac{Q-p m-p}{p}-Q}\left|\nabla_{\gamma} \rho\right|^{p} \\
& +C_{Q, p, m}^{p-1}\left(\frac{Q-p m-p}{p}+p m\right)\left(a+b \rho^{\alpha}\right)^{\beta} \rho^{\frac{Q-p m-p}{p}}-Q \\
p
\end{array} \nabla_{\gamma} \rho\right|^{p}\right)\left(C_{Q, p, m}^{p}\left(a+b \rho^{\alpha}\right)^{\beta} \rho^{\frac{Q-p m-p}{p}-Q}\left|\nabla_{\gamma} \rho\right|^{p} .\right.
$$

Since

$$
f^{p-1}=\rho^{\frac{Q-p m-p}{p}-Q+p m+p},
$$

one can put

$$
w=C_{Q, p, m}^{p} \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m-p}}\left|\nabla_{\gamma} \rho\right|^{p}+C_{Q, p, m}^{p-1} \alpha \beta b \frac{\left(a+b \rho^{\alpha}\right)^{\beta-1}}{\rho^{p m+p-\alpha}}\left|\nabla_{\gamma} \rho\right|^{p}
$$

Hence, by Theorem 3.1 we complete the proof.

Theorem 3.4 Let $a, b>0$ and $\alpha, \beta, m \in \mathbb{R}$. If $\alpha \beta<0$ and $1<p \leq Q+\alpha \beta-p m$, then for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ one has

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}}\left|\nabla_{\gamma} u\right|^{p} d z \geq & C_{Q, p, m, \alpha, \beta}^{p} \int_{\mathbb{R}^{N}} \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m+p}}\left|\nabla_{\gamma} \rho\right|^{p}|u|^{p} d z \\
& -C_{Q, p, m, \alpha, \beta}^{p-1} \alpha \beta a \int_{\mathbb{R}^{N}} \frac{\left(a+b \rho^{\alpha}\right)^{\beta-1}}{\rho^{p m+p}}\left|\nabla_{\gamma} \rho\right|^{p}|u|^{p} d z
\end{aligned}
$$

where $C_{Q, p, m, \alpha, \beta}=\left(\frac{Q+\alpha \beta-p m-p}{p}\right)$.

Proof Choose $\vartheta=\frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}}$ and $f=\rho^{-\left(\frac{Q+\alpha \beta-p m-p}{p}\right)}$, where $a, b>0, \alpha \beta<0$ and $1<p \leq Q+\alpha \beta-p m$. One easily sees

$$
\nabla_{\gamma} f=-\left(\frac{Q+\alpha \beta-p m-p}{p}\right) \rho^{-\left(\frac{Q+\alpha \beta-p m}{p}\right)} \nabla_{\gamma} \rho
$$

and

$$
\begin{align*}
-\Delta_{\gamma, p, \vartheta} f & =-\nabla_{\gamma} \cdot\left(\vartheta\left|\nabla_{\gamma} f\right|^{p-2} \nabla_{\gamma} f\right) \\
& =C_{Q, p, m, \alpha, \beta}^{p-1} \nabla_{\gamma} \cdot\left(\frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m}} \rho^{-\left(\frac{Q+\alpha \beta-p m}{p}\right)(p-1)}\left|\nabla_{\gamma} \rho\right|^{p-2} \nabla_{\gamma} \rho\right), \tag{3.8}
\end{align*}
$$

where $C_{Q, p, m, \alpha, \beta}=\left(\frac{Q+\alpha \beta-p m-p}{p}\right)$. By a similar computation as in the proof of Theorem 3.3, we derive

$$
\begin{equation*}
\nabla_{\gamma} \cdot\left(\rho^{-\left(\frac{Q+\alpha \beta-p m}{p}\right)(p-1)}\left|\nabla_{\gamma} \rho\right|^{p-2} \nabla_{\gamma} \rho\right)=\left(\frac{Q+\alpha \beta-p m-p}{p}+p m-\alpha \beta\right) \rho^{\frac{Q+\alpha \beta-p m-p}{p}-Q-\alpha \beta+p m}\left|\nabla_{\gamma} \rho\right|^{p} \tag{3.9}
\end{equation*}
$$

Combining (3.6) and (3.9) with (3.8), we deduce that

$$
\begin{aligned}
-\Delta_{\gamma, p, \vartheta} f= & C_{Q, p, m, \alpha, \beta}^{p-1} \alpha \beta b\left(a+b \rho^{\alpha}\right)^{\beta-1} \rho^{\frac{Q+\alpha \beta-p m-p}{p}}-Q-\alpha \beta+\alpha \\
& -\nabla_{\gamma, p, m, \alpha, \beta}^{p-1} p m\left(a+\left.b\right|^{p}\right)^{\beta} \rho^{\frac{Q+\alpha \beta-p m-p}{p}-Q-\alpha \beta}\left|\nabla_{\gamma} \rho\right|^{p} \\
& +C_{Q, p, m, \alpha, \beta}^{p-1}\left(\frac{Q+\alpha \beta-p m-p}{p}+p m-\alpha \beta\right) \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{Q+\alpha \beta}} \rho^{\frac{Q+\alpha \beta-p m-p}{p}}\left|\nabla_{\gamma} \rho\right|^{p} \\
= & C_{Q, p, m, \alpha, \beta}^{p}\left(a+b \rho^{\alpha}\right)^{\beta} \rho^{\frac{Q+\alpha \beta-p m-p}{p}-Q-\alpha \beta}\left|\nabla_{\gamma} \rho\right|^{p} \\
& +C_{Q, p, m, \alpha, \beta}^{p-1}\left(\alpha \beta b \rho^{\alpha}-\alpha \beta\left(a+b \rho^{\alpha}\right)\right) \frac{\left(a+b \rho^{\alpha}\right)^{\beta-1}}{\rho^{Q+\alpha \beta}} \rho^{\frac{Q+\alpha \beta-p m-p}{p}}\left|\nabla_{\gamma} \rho\right|^{p} \\
= & C_{Q, p, m, \alpha, \beta}^{p} \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{Q+\alpha \beta}} \rho^{\frac{Q+\alpha \beta-p m-p}{p}}\left|\nabla_{\gamma} \rho\right|^{p} \\
& -C_{Q, p, m, \alpha, \beta}^{p-1} \alpha \beta a \frac{\left(a+b \rho^{\alpha}\right)^{\beta-1}}{\rho^{Q+\alpha \beta}} \rho^{\frac{Q+\alpha \beta-p m-p}{p}}\left|\nabla_{\gamma} \rho\right|^{p} .
\end{aligned}
$$

This shows that one can put

$$
w=C_{Q, p, m, \alpha, \beta}^{p} \frac{\left(a+b \rho^{\alpha}\right)^{\beta}}{\rho^{p m+p}}\left|\nabla_{\gamma} \rho\right|^{p}-C_{Q, p, m, \alpha, \beta}^{p-1} \alpha \beta a \frac{\left(a+b \rho^{\alpha}\right)^{\beta-1}}{\rho^{p m+p}}\left|\nabla_{\gamma} \rho\right|^{p}
$$

and hence finishes the proof.

Remark 3.5 Note that if $\alpha=0$ or $\beta=0$ in the above two inequalities, then they reduce to Hardy-type inequalities with classical weights. Therefore, we are interested in the case where $\alpha \beta \neq 0$.

Even though the literature has mostly focused on power radial weights $\rho^{\alpha}|x|^{\beta}$ for some $\alpha, \beta \in \mathbb{R}$, we now establish L^{p} Hardy-type inequalities with nonradial weights related to Baouendi-Grushin operator Δ_{γ}. Here is the first result in this direction.

Theorem 3.6 For any $u \in C_{0}^{\infty}(\Omega)$ and $p>1$, one has

$$
\begin{equation*}
\int_{\Omega}\left(\frac{y_{1}}{|x|^{\gamma}}\right)^{p-2} \log x_{1}\left|\nabla_{\gamma} u\right|^{p} d z \geq \int_{\Omega} \frac{|x|^{2 \gamma} \log x_{1}}{y_{1}^{2} \log ^{p-1} y_{1}}|u|^{p} d z \tag{3.10}
\end{equation*}
$$

where $\Omega=\left\{z=(x, y) \in \mathbb{R}^{N}: x_{1}>1, y_{1}>1\right\}$.
Proof Let us first set $\vartheta=\left(\frac{y_{1}}{|x|^{\gamma}}\right)^{p-2} \log x_{1}$ and $f=\log y_{1}$ in Theorem 3.1 with $x_{1}, y_{1}>1$. Observing that

$$
X_{i}\left(\log y_{1}\right)=\frac{\partial}{\partial x_{i}} \log y_{1}=0 \quad \forall i=1, \ldots, n
$$

and

$$
Y_{j}\left(\log y_{1}\right)=\left(|x|^{\gamma} \frac{\partial}{\partial y_{j}}\right)\left(\log y_{1}\right)= \begin{cases}\frac{|x|^{\gamma}}{y_{1}}, & \text { if } j=1 \\ 0, & \text { if } j \neq 1\end{cases}
$$

we immediately have

$$
\nabla_{\gamma} \log y_{1}=\left(0, \ldots, 0, \frac{|x|^{\gamma}}{y_{1}}, 0, \ldots, 0\right)
$$

It follows that

$$
\left|\nabla_{\gamma} \log y_{1}\right|^{p-2}=\left(\frac{|x|^{\gamma}}{y_{1}}\right)^{p-2}
$$

and therefore

$$
\begin{aligned}
-\nabla_{\gamma} \cdot\left(\vartheta\left|\nabla_{\gamma} f\right|^{p-2} \nabla_{\gamma} f\right) & =-\nabla_{\gamma} \cdot\left(0, \ldots, 0, \frac{|x|^{\gamma} \log x_{1}}{y_{1}}, 0, \ldots, 0\right) \\
& =-Y_{1}\left(\frac{|x|^{\gamma} \log x_{1}}{y_{1}}\right) \\
& =-|x|^{2 \gamma} \log x_{1} \frac{\partial}{\partial y_{1}}\left(\frac{1}{y_{1}}\right) \\
& =\frac{|x|^{2 \gamma} \log x_{1}}{y_{1}^{2}}
\end{aligned}
$$

This means that one can put

$$
w=\frac{|x|^{2 \gamma} \log x_{1}}{y_{1}^{2} \log ^{p-1} y_{1}}
$$

We have thus proved the inequality (3.10) .

Theorem 3.7 For any $u \in C_{0}^{\infty}(\Omega)$ and $p>1$, one has

$$
\begin{equation*}
\int_{\Omega} \cosh ^{\alpha} y_{1}\left|\nabla_{\gamma} u\right|^{p} d z \geq(p-1) \int_{\Omega} \frac{\cosh ^{\alpha} y_{1}}{x_{1}^{p} \log ^{p-1} x_{1}}|u|^{p} d z \tag{3.11}
\end{equation*}
$$

where $\Omega=\left\{z=(x, y) \in \mathbb{R}^{N}: x_{1}>1\right\}$ and $\alpha \in \mathbb{R}$.
Proof Let us now choose $\vartheta=\cosh ^{\alpha} y_{1}$ and $f=\log x_{1}$ with $x_{1}>1$ and $\alpha \in \mathbb{R}$. Then we directly compute

$$
X_{i}\left(\log x_{1}\right)=\frac{\partial}{\partial x_{i}} \log x_{1}=\left\{\begin{array}{cc}
\frac{1}{x_{1}}, & \text { if } i=1 \tag{3.12}\\
0, & \text { if } i \neq 1
\end{array}\right.
$$

and

$$
\begin{equation*}
Y_{j}\left(\log x_{1}\right)=\left(|x|^{\gamma} \frac{\partial}{\partial y_{j}}\right)\left(\log x_{1}\right)=0 \quad \forall j=1, \ldots, k \tag{3.13}
\end{equation*}
$$

It follows from (3.12) and (3.13) that

$$
\nabla_{\gamma} \log x_{1}=\left(\frac{1}{x_{1}}, 0, \ldots, 0\right), \quad\left|\nabla_{\gamma} \log x_{1}\right|^{p-2}=x_{1}^{2-p}
$$

Therefore,

$$
\begin{aligned}
-\nabla_{\gamma} \cdot\left(\vartheta\left|\nabla_{\gamma} f\right|^{p-2} \nabla_{\gamma} f\right) & =-\nabla_{\gamma} \cdot\left(\frac{\cosh ^{\alpha} y_{1}}{x_{1}^{p-1}}, 0, \ldots, 0\right) \\
& =-X_{1}\left(\frac{\cosh ^{\alpha} y_{1}}{x_{1}^{p-1}}\right) \\
& =-\cosh ^{\alpha} y_{1} \frac{\partial}{\partial x_{1}}\left(x_{1}^{1-p}\right) \\
& =(p-1) \frac{\cosh ^{\alpha} y_{1}}{x_{1}^{p} \log ^{p-1} x_{1}} f^{p-1}
\end{aligned}
$$

By Theorem 3.1, the inequality (3.11) is deduced.
Finally, we now prove the following L^{p} Hardy-type inequality including the power of the hyperbolic sine function of ρ as a weight.

Theorem 3.8 Let $\alpha \in \mathbb{R}, \beta \geq 0$ and $Q+\alpha+\beta>p>1$. Then the following inequality holds:

$$
\int_{\mathbb{R}^{N}} \rho^{\alpha} \sinh ^{\beta} \rho\left|\nabla_{\gamma} u\right|^{p} d z \geq\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p} \int_{\mathbb{R}^{N}} \rho^{\alpha} \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p} \frac{|u|^{p}}{\rho^{p}} d z
$$

for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$.
Proof Letting $\vartheta=\rho^{\alpha} \sinh ^{\beta} \rho$ and $f=\rho^{-\left(\frac{Q+\alpha+\beta-p}{p}\right)}$ in Theorem 3.1 with $\beta \geq 0$ and $Q+\alpha+\beta>p>1$, we have

$$
\nabla_{\gamma} f=-\left(\frac{Q+\alpha+\beta-p}{p}\right) \rho^{-\left(\frac{Q+\alpha+\beta}{p}\right)} \nabla_{\gamma} \rho
$$

and

$$
\left|\nabla_{\gamma} f\right|^{p-2}=\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p-2} \rho^{-\left(\frac{Q+\alpha+\beta}{p}\right)(p-2)}\left|\nabla_{\gamma} \rho\right|^{p-2}
$$

It therefore follows that

$$
\begin{align*}
-\Delta_{\gamma, p, \vartheta} f & =-\nabla_{\gamma} \cdot\left(\vartheta\left|\nabla_{\gamma} f\right|^{p-2} \nabla_{\gamma} f\right) \\
& =\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p-1} \nabla_{\gamma} \cdot\left(\rho^{-\left(\frac{Q+\alpha+\beta}{p}\right)(p-1)+\alpha} \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p-2} \nabla_{\gamma} \rho\right) \tag{3.14}
\end{align*}
$$

From the identities (2.3) and (2.4), it is not hard to see that

$$
\begin{equation*}
\nabla_{\gamma} \cdot\left(\left|\nabla_{\gamma} \rho\right|^{p-2} \nabla_{\gamma} \rho\right)=(Q-1) \frac{\left|\nabla_{\gamma} \rho\right|^{p}}{\rho} \tag{3.15}
\end{equation*}
$$

On the other hand, using the formula (2.2), one can readily obtain

$$
\begin{align*}
\nabla_{\gamma}\left(\rho^{-\left(\frac{Q+\alpha+\beta}{p}\right)(p-1)+\alpha} \sinh ^{\beta} \rho\right)= & \left(\frac{Q+\alpha+\beta}{p}-Q-\beta\right) \rho^{\frac{Q+\alpha+\beta}{p}-Q-\beta-1} \sinh ^{\beta} \rho \nabla_{\gamma} \rho \\
& +\beta \rho^{\frac{Q+\alpha+\beta}{p}-Q-\beta} \sinh ^{\beta-1} \rho \cosh \rho \nabla_{\gamma} \rho \tag{3.16}
\end{align*}
$$

Combining (3.15) and (3.16) with (3.14) leads to

$$
\begin{aligned}
&-\Delta_{\gamma, p, \vartheta} f=\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p-1}\left(\frac{Q+\alpha+\beta}{p}-Q-\beta\right) \rho^{\frac{Q+\alpha+\beta}{p}-Q-\beta-1} \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p} \\
&+\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p-1} \beta \rho^{\frac{Q+\alpha+\beta}{p}-Q-\beta} \sinh ^{\beta-1} \rho \cosh \rho\left|\nabla_{\gamma} \rho\right|^{p} \\
&+\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p-1}(Q-1) \rho^{\frac{Q+\alpha+\beta}{p}}-Q-\beta-1 \\
& \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p} \\
&=\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p} \rho^{\frac{Q+\alpha+\beta}{p}-Q-\beta-1} \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p} \\
&+\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p-1}\left(\rho \frac{\cosh \rho}{\sinh \rho}-1\right) \beta \rho^{\frac{Q+\alpha+\beta}{p}-Q-\beta-1} \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p} \\
& \geq\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p} \rho^{\frac{Q+\alpha+\beta}{p}-Q-\beta-1} \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p},
\end{aligned}
$$

where we have used the fact that $\rho \operatorname{coth} \rho \geq 1$. Hence,

$$
-\nabla_{\gamma} \cdot\left(\vartheta\left|\nabla_{\gamma} f\right|^{p-2} \nabla_{\gamma} f\right) \geq\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p} \rho^{\alpha-p} \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p} f^{p-1}
$$

that is, according to the assumption in Theorem 3.1, we can put

$$
w=\left(\frac{Q+\alpha+\beta-p}{p}\right)^{p} \rho^{\alpha-p} \sinh ^{\beta} \rho\left|\nabla_{\gamma} \rho\right|^{p}
$$

This ends the proof.

References

[1] Baouendi MS. Sur une classe d'opérateurs elliptiques dégénérés. Bull Soc Math France 1967; 95: 45-87 (in French).
[2] Baras P, Goldstein JA. The heat equation with a singular potential. T Am Math Soc 1984; 284: 121-139.
[3] Barbatis G, Filippas S, Tertikas A. A unified approach to improved L^{p} Hardy inequalities with best constants. T Am Math Soc 2004; 356: 2169-2196.
[4] Bieske T. Viscosity solutions on Grushin-type planes. Illinois J Math 2002; 46: 893-911.
[5] Brezis H, Vázquez JL. Blow-up solutions of some nonlinear elliptic problems. Rev Mat Univ Complutense Madrid 1997; 10: 443-469.
[6] D'Ambrosio L. Hardy inequalities related to Grushin type operators. P Am Math Soc 2004; 132: 725-734.
[7] D'Ambrosio L. Hardy type inequalities related to degenerate elliptic differential operators. Ann Sc Norm Super Pisa Cl Sci 2005; 4: 451-486.
[8] Dou J, Guo Q, Niu P. Hardy inequalities with remainder terms for the generalized Baouendi-Grushin vector fields. Math Inequal Appl 2010; 13: 555-570.
[9] Garofalo N. Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J Differential Equations 1993; 104: 117-146.
[10] Ghoussoub N, Moradifam A. Bessel pairs and optimal Hardy and Hardy-Rellich inequalities. Math Ann 2011; 349: 1-57.
[11] Goldstein JA, Hauer D, Rhandi A. Existence and nonexistence of positive solutions of p-Kolmogorov equations perturbed by a Hardy potential. Nonlinear Anal 2016; 131: 121-154.
[12] Grushin V. A certain class of hypoelliptic operators. Mat Sb (NS) 1970; 12: 458-476.
[13] Hardy GH. Note on a theorem of Hilbert. Math Z 1920; 6: 314-317.
[14] Hauer D, Rhandi A. A weighted Hardy inequality and nonexistence of positive solutions. Arch Math (Basel) 2013; 100: 273-287.
[15] Kombe I. The linear heat equation with a highly singular, oscillating potential. P Am Math Soc 2004; 132: 26832691.
[16] Kombe I. Hardy and Rellich-type inequalities with remainders for Baouendi-Grushin vector fields. Houston J Math 2015; 41: 849-874.
[17] Kombe I, Yener A. General weighted Hardy type inequalities related to Baouendi-Grushin operators. Complex Var Elliptic Equ 2018; 63: 420-436.
[18] Laptev A, Ruzhansky M, Yessirkegenov N. Hardy inequalities for Landau Hamiltonian and for Baouendi-Grushin operator with Aharonov-Bohm type magnetic field. Part I. arXiv:1705.00062.
[19] Niu P, Chen Y, Han Y. Some Hardy type inequalities for the generalized Baouendi-Grushin operators. Glasgow Math J 2004; 46: 515-527.
[20] Su D, Yang Q. Improved Hardy inequalities in the Grushin plane. J Math Anal Appl 2012; 393: 509-516.
[21] Vazquez JL, Zuazua E. The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse square potential. J Funct Anal 2000; 173: 103-153.

[^0]: *Correspondence: ayener@ticaret.edu.tr
 2010 AMS Mathematics Subject Classification: 26D10, 35H10, 46E35

