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Abstract: In this paper we shall prove several weighted L? Hardy-type inequalities associated to the Baouendi—Grushin-
type operators Ay = A, + |:c|27 Ay, where A, and A, are the classical Laplace operators in the variables z € R™ and

y € R¥, respectively, and ~ is a positive real number.
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1. Introduction

The well-known Hardy inequality in R™, n > 3, asserts that for all u € C§° (R™)

2 n—2\2 u?
A |Vul” dx > 5 x—|2dx. (1.1)

Though the constant (”7_2)2 is sharp, equality in (1.1) is never achieved by any function u € Hj (R™). Hardy

[13] originally discovered this inequality in 1920 for the one-dimensional case. Since then it has attracted
the attention of many mathematicians and has been comprehensively analyzed in several directions; see, for
example, [2, 3, 5, 10, 11, 14, 15, 21] and the references therein.
The sharp Hardy inequality (1.1) arises very naturally in the study of degenerate elliptic differential
operators and it was first extended in [9] by Garofalo to the Baouendi-Grushin vector fields
0 0

— ':1... R Y: 777 .:1,...,k,
8.131'7 1 y , 3J |£L'| ay] J

X

where © = (21,...,2,) € R", y = (y1,...,yx) € R* with n,k > 1, v > 0. To be explicit, the author in [9]
proved the following Hardy inequality

2 2y ,,2
2 Q-2 |2 u
/R,LM |V ul*dzdy > (2) /RHM R p—zdxdy (1.2)

for every u € CZ°(R™ x RF \ {(0,0)}). Here, @ = n + (1 + 7)k is the homogeneous dimension, V., =

1
X1,..., X0, Y1,...,Y3) is the subelliptic gradient, and p = (|22 4+ (1 +4)2|y[?) > is the gauge function
P
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associated to the fundamental solution for the subelliptic operator A, = A, + |z|*YA,, where A, and A, are
the Laplacians on R™ and R*, respectively.

After the seminal work of Garofalo [9], much effort has been devoted to Hardy-type inequalities for
the Baouendi-Grushin vector fields; see [6-8, 16-20] . For instance, in [6], D’Ambrosio obtained a weighted
L? analogue of (1.2). Later, Niu et al. [19] considered various types of Hardy inequalities on some special
domains in R" x R¥ via a Picone-type identity for the Baouendi-Grushin vector fields {X;,Y;}. In [16], Kombe
proved weighted Hardy-type inequalities with remainder terms. On the other hand, Laptev et al. [18] recently
established weighted Hardy inequalities for the quadratic form of the magnetic Baouendi—Grushin operator with
Aharonov-Bohm-type magnetic field. More recently, Kombe and Yener [17] introduced a unified approach to
the weighted Hardy inequalities related to Baouendi—Grushin operators.

In the literature, Hardy-type inequalities mostly involve the weights of the form p® \J;|6 for some real
numbers « and 3. Our goal in this paper is to prove several LP Hardy-type inequalities with more general and
nonstandard weights associated to the Baouendi-Grushin-type operators A, . For this goal we shall mainly use

a technique developed in [17].

2. Preliminaries and notations
In this section we shall introduce some notations and preliminary facts. Let RY be split in z = (z,y) € R® x R*

with n,k > 1 and N = n+ k. We denote by |z| and |y| the usual Euclidean norms in R” and R”, respectively.
The corresponding vector field is

Vy= (X1, ., Xo, Y1, %) = (Vo |2]7Vy),

where
0 0
= i=1,... Y, = |x|" — i=1,....k 2.1
81'2‘7 ? 9 2 J |(E| 82/]7 J ) 9 ( )

X;

and ~y is a positive real number. The Baouendi—Grushin operator is of the form
n k
N 33 2D 3 CHUNL SUNSFOW
i=1 j=1

Here, A, and A, stand for the usual Laplace operators in the variables + € R® and y € R*, respectively. The
operator A, was first studied by Baouendi [1] and Grushin [12] when ~ is a positive integer. We note that if
<y is not an even positive integer, then A, is not a sum of squares of C'*° vector fields satisfying Hérmander’s

condition:
rank Lie [Xy,..., X, Y1,...,Ys] = N.

The nonlinear p-degenerate subelliptic operator associated with the vector fields (2.1) is defined by
Ay u=V,- (|V,yu|pf2 V7u> , p>1
The operator A, possesses a natural family of anisotropic dilations, namely
on(z) = Az, N ly), A >0, z=(z,y) RN,

3051



YENER/Turk J Math

It is easy to verify that
dox(z,y) = A9dzdy = \9dz,

where
Q=n+(14+7)k

is the homogeneous dimension with respect to the dilation §, and dz = dxdy denotes the Lebesgue measure

on RY. For z = (x,y) € RV, define the distance between z and the origin of RY as follows:

1
(T+7)
p=p(z) = (o207 4+ (1+4)2ly2) 7 .

We remark that p is positive, smooth away from the origin, and symmetric.

A simple calculation shows that

2]
Voo = gy (e, e, (L ) (L))

and hence
||
Vol = o
A function u on R¥ is said to be radial when u has the form u = u(p). If u is radial, then by a straightforward

computation we have
IVyu(p)l = [Vaplu' (p)]

and
Ayulp) = [Vl [ () + @ - 1) L
In particular, when u(p) = p® one gets
V0| = la V0 p (2.2)
and
Anp® =a(Q+a—2) |V, po2 (2.3)

with a € R. Moreover, the gauge p is infinite harmonic in RY — {0} (see [4]); that is, p is the solution of the

following equation:

V(1Y) - V0 = 0. (2.4)

3. Weighted Hardy-type inequalities

For the convenience of the reader, we begin by quoting a known result from [17].

Theorem 3.1 Let ¥ € C* (RN) and w € L} (RN) be nonnegative functions and f € C™ (RN) be a positive

loc

function such that

=V (19 |vvf|p72 v“/f) > wfp_l (3.1)
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almost everywhere in RN . Then for all u € C§° (RN) and p > 1, one has
/ P |Vyul’ dz 2/ w ulf dz. (3.2)
RN RN
Remark 3.2 Let € > 0 be given. Define
1
pei= (|22 + (L9 ?) T

where |z 1= (e +yr ) . In the proof of the following theorems, if the functions ¥ and f are not smooth

enough, by standard argument one can consider pe a regularization of p and after the computation takes the

limit as € — 0. However, for the sake of simplicity we will proceed formally.

Recall that the following weighted Hardy-type inequalities in the Euclidean setting were proved by
Ghoussoub and Moradifam [10]: Let a,b > 0 and «, 5, m be real numbers.

o If af >0 and m < "=, then for all u € C§°(R")

a\ B 2 ay B
(a+blz|™) 2 n—2m—2 (a+blz|™)
o If af <0 and 2m — aff <n — 2, then for all u € C§°(R™)
(@a+blz|™" _ . n+aB—2m—2\> [ (a+blz|®)’ ,

We now generalize and improve the above inequalities (3.3) and (3.4) to the LP case for the Baouendi-
Grushin operator A, by specializing the choice of functions ¥ and f in the differential inequality (3.1). Here

is the first result in this direction.

Theorem 3.3 Let a,b >0 and o, 3,m €R. If af >0 and 1 < p < Q — pm, then for all u € C(RYN) one

has

b bo® B
/ (a+ppp) VyulP dz > €8 / (a:pmip) V., pl? |ulPdz
RN RN

bpo
+C5l a ﬁb/ (atbp?)” |V7p\p lulPdz,

ppm+p e
where CQ.p.m (7Q pm p)

Q—pm—p

and f = p_( =) in Theorem 3.1. Clearly,

o)\ B
Proof Set ¥ = M

ppm

Vo foo (Q—I;m—p) p (),
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Noting that 1 < p < @ — pm, one gets

_ Q—pm—p\'™" _(a-pmy,_ _
v, 2:(p o ()02 |y -2,

Hence,
Ay pof ==V, (19 |v"/f‘p_2 v'vf>
_ aerpa A _(Q—pm _ _
= ChpmVr <(ppm)p (552) =1 |7 P QVW), (3.5)
where Cg p.m (W) . Using the identities (2.3) and (2.4), a direct calculation yields
v (a—l—bpa)ﬁ B aﬁbpa+pm_l (a—‘rbpa)ﬁil va_pmppm—l ((l-i—bpa)ﬁ vvp
v pPm - p2pm
_ a\B-1 a—pm—1 a\B —pm—1
=aBb(a+bp™)" " p Vyp—pm(a+bp™)"p Vyp (3.6)
and
_(Q=pm\(p_ _ Q—pm _(Q=pm\(p_1)_
Vo (p T v Qpr):—( > )(p—l)p (552) =011 ppp
+ o (FFm) - (V7 (|v7p|”‘2) Vop+|VypP 2 A,Yp) (3.7)

Q—pm—p Q=pm=p (4
:( o Tem)p QEIT pf.
It therefore follows from (3.5

.5), (3.6), and (3.7) that

- a—|—bp0‘ 7 _(Q=pm\(p_ _
~Dpaf = Cpn Ve <(ppm)> : (P (552)@-1 17l 2V7p>

+ Op—l (a’ + bpa)ﬁ

_(Q—pm
Q,p,nLTVw'(P (55

)(p—1) V.02 V7p>

_ 1 Q—pm-—-p__
= C L aBb(a+bp®) T p BT R vl

_1 Q-pm—p _
—cp ) om(a+0p™)’ p 7 OV,

_ Q—pm—p o Q-pm—p _
+ Cg,pl,m <p +pm | (a+bp )ﬁ p " N IVol?

@ Q—pm—p
= Cl o (atbp™)p 2 T2Vl

_ a\B— Q—pm—p
+ Ol B (a+bp) T p TG P
Since

—1 __ Q-pm—p_Qipm+
frl=p Q+p 3
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one can put

B B—1
(a +bp) = (a + bp®)
W= Cpm—mp |Vl O maBb e IVl
Hence, by Theorem 3.1 we complete the proof. 0

Theorem 3.4 Let a,b>0 and o,3,meR. If aB <0 and 1 <p < Q+ aB — pm, then for all u € C(RYN)

one has

a+bp*)° a+ bp®)’
L 9 o2 s [ 19,0
RN RN

pPm ppm+p

(a+bp™)"

-1
O B | IVl P

RN

where Cg pm,a,8 = (%) .
bp™ p aB—pm—p
Proof Choose 9 = LEW) g f— p=(252552) yhere 0,450, B <0 and 1<p < Q+af —pm.

One easily sees

Q+af—pm—p\ _(Qteb—pm
p( )va

7.po - (200 ,,

and

~Dopaf ==V, (919, £72 V. f)

B
1 (a+bp*)” _(Qtap—pmy,_ 9
= Cg,p,m,a,ﬁv"/ : ( ppm p ( P )(p 2 |V7p|p V'yp ) (38)
Q+aB—pm—p

where Cg pm.a.8 = ( - ) . By a similar computation as in the proof of Theorem 3.3, we derive

v, (pi(Q+ag—pmr)(p,1) |V7p|p_2 V«,p) _ <Q +af ; pm—p +pm— Oé,@) pQ+aﬁ;pm—P,Q7(xﬂ+pm |V7p|p )
(3.9)
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Combining (3.6) and (3.9) with (3.8), we deduce that

_ QtaB—pm—p Q

_ 1 _O—
Aypof = Cg?yplym,a,ﬁaﬁb (a+ bpa)ﬂ P v afte IVpl?

Jé; Q+aﬁ pm—p —Q-

—1
= CQpm.apbm(a+bo")"p Il

a+ bpo‘)ﬁ Qtap—pm-p
- - I3

- o (
+ Coimas (w Tome aﬂ) pQ+aB Vapl”

_ Cp Jé; Q+aﬁ pm— P_Q

Q,p,m,a,B ( o ‘v'yp‘p

a+bp*)" p

o o (@ bp)f 1 Qtap—pm=p p
"'Cmea/a(aﬁbP —af(a+bp ))WP Vel

e (a+bp™)? Qtap-pm=p

Qrmas jatap P IVol”

B-1
(a+ bp™) Qtap-pm=p
Cp pmaﬂ B pQ+O"3 P ‘V’Yp|p

This shows that one can put

B a)B—1
_ P (a+bp°‘) P p—1 (aerp ) P
w= CQJ?JTL’O(:B pp’m-‘rp |v7p| o CQanmyaﬁOéﬂa ppm-‘rp | ’Yp|

and hence finishes the proof. O

Remark 3.5 Note that if « = 0 or § = 0 in the above two inequalities, then they reduce to Hardy-type

inequalities with classical weights. Therefore, we are interested in the case where af # 0.

Even though the literature has mostly focused on power radial weights p“ \x|6 for some «,f € R, we
now establish LP Hardy-type inequalities with nonradial weights related to Baouendi-Grushin operator A.,.

Here is the first result in this direction.

Theorem 3.6 For any u € C§° () and p > 1, one has

v \"* |9C|2 10g9€1
/ () logzy [VyulPdz > | ——=—|ulP d2 (3.10)
o

|| y3log? ™"y

where ) = {z: (r,y) RN 12y > 1,91 > 1}.

p—2
Proof Let us first set 9 = (%) logz; and f =logy; in Theorem 3.1 with z1,y; > 1. Observing that

i1ogy1:O Vi=1,....n

Xi(logy) = 7 -

and

) lal” g i =g
Y; (logyn) = ( |l logy) =4 !
o) = (Jef" 5 ) o) { A,

3056



YENER/Turk J Math

we immediately have
||
Vylogy1 =1(0,...,0,—,0,...,0].
Y1

It follows that

¥\ P2
IV, logy: [P~% = ('x )
U1

and therefore

_ z|7 logx
Vo (WINPT, S) == Vs (o,...,o,"glm,...m)

(7A1
=-Y <CL'|W 10g$1>
Y1

0 (1
= — |z[* logx ()
|| ) You

_ |z logz,
vt
This means that one can put
|z log 2y
ylog” ' yr
We have thus proved the inequality (3.10). O

Theorem 3.7 For any u € C§° () and p > 1, one has

cosh® y;

/ cosh® yy |VoulP dz > (p — 1)/ lul’ dz, (3.11)
Q Q

2P log? 'y
where Q@ = {z = (z,y) e RN : 21 > 1} and a € R.

Proof Let us now choose ¥ = cosh®y; and f =logz; with 1 > 1 and a € R. Then we directly compute

0 Looifi=1,
X; (logzy) = oz, logz; = { 0, ifif1 (3.12)
and
0 .
Y; (logz1) = |x|7@ (logz1) =0 Vj=1,...,k. (3.13)
J

It follows from (3.12) and (3.13) that
V., logz; = ( e
~logz = m—,O,...,O , |V log x| =z .
1
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Therefore,

= — cosh® ylaixl (m}fp)

cosh® yq

p—1

p—1
- .
z7 log

=(@-1

T

By Theorem 3.1, the inequality (3.11) is deduced. O

Finally, we now prove the following LP Hardy-type inequality including the power of the hyperbolic sine

function of p as a weight.

Theorem 3.8 Let « € R, >0 and Q+ a+ B >p > 1. Then the following inequality holds:

—p\P p
p®sinh” p |V, ul? dz > Qfatf-p p®sinh” p |V, p|” Mdz
RN P RN pp

for all u € Cg°(RN).

Proof Letting 9 = p® sinhﬁp and f = p_(QM;ﬁip) in Theorem 3.1 with >0 and Q +a+8>p > 1, we
have
Q+a+8—p\ _(@tats
V’Yf = — ( p ( P )V,\/p
p
and

_ Q+a+pB—p P2 giatsy_ _
Vo fIP ? = (p P (4555w 2)|vaf’|p 2

It therefore follows that

Do ==Yy (V9P V4 )

_ p—1 a
_ <Q+0‘;5P> V- (o (D00 g (7,072 9.,0) (3.14)

From the identities (2.3) and (2.4), it is not hard to see that

V. (9272 90) = (@ -1 2L (3.15)
On the other hand, using the formula (2.2), one can readily obtain
v, (p_(Q+:+B)(:D—1)+a sinh? p) _ (QJFZW _0- 5) pEEE Q1 G
+ BpQJrzc:Hj ~@ P sinh” ! pcosh pV, p. (3.16)
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Combining (3.15) and (3.16) with (3.14) leads to

Q+a+ﬁ—p> (M ~

_A,ﬂf:<
v,P P P

QtatB _~H_B_1 .
Q—ﬁ)p v 9 ik p |V, pf

P

+ <Q+a+ﬂp> Bp™ 7P sinh 1 peosh p |V, pf”
p

— p—l o
(LRI (@t [

- <Q+a+ﬁ—p>p 2t Qg1
p

sinh? p |V, p|?

Q+a+p—p p-1 cosh p QtotB _H_g_q1 .
+<p Pamnp L) PP Q= sinh” p |V, )"

Q+a+p—p\P etess o 5.1 .
2:(19 p v 9P lsinhf p |V, pfP,

where we have used the fact that pcoth p > 1. Hence,

Q+a+pB—p

p
P ) p* P sinh” p [V, p|? fP;

—Vy - (19 |V7f|p_2 vvf) 2> (

that is, according to the assumption in Theorem 3.1, we can put

+a+B8-p\" .\
w = <M> p*~Psinh” p|V,p|” .
p
This ends the proof. O
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