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Abstract: We introduce the notion of a generalized metric n-Leibniz algebra and show that there is a one-to-one corre-
spondence between generalized metric n-Leibniz algebras and faithful generalized orthogonal representations of metric
Lie algebras (called Lie triple datas). We further show that there is also a one-to-one correspondence between generalized
orthogonal derivations (resp. generalized orthogonal automorphisms) on generalized metric n-Leibniz algebras and Lie

triple data.
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1. Introduction

Ternary Lie algebras (3-Lie algebras) or more generally n-ary Lie algebras are the natural generalization of
Lie algebras. They were introduced and studied by Filippov in [13] and can be traced back to Nambu [22].
See [15-17, 23] and the review article [9] for more details. This type of algebras appeared also in the algebraic
formulation of Nambu mechanics [22] and generalizing Hamiltonian mechanics by considering two Hamiltonians;
see [14, 24]. Moreover, 3-Lie algebras appeared in string theory and M-theory. In [3], Basu and Harvey suggested
replacimg the Lie algebra appearing in the Nahm equation by a 3-Lie algebra for the lifted Nahm equations.
Furthermore, in the context of the Bagger-Lambert—Gustavsson model of multiple M2-branes, Bagger and
Lambert managed to construct, using a ternary bracket, an N = 2 supersymmetric version of the world volume
theory of the M-theory membrane; see [1]. These metric 3-Leibniz algebras (generalized 3-Lie algebras) have
many applications; see [6, 7, 12, 20] for more details. Metric 3-Lie algebras and metric n-Lie algebras were
further studied in [2, 21, 25].

The notion of an n-Leibniz algebra was introduced in [5] as a generalization of an n-Lie algebra and
a Leibniz algebra [18, 19]. See also [10] for more results. Through fundamental objects one may represent an
n-Leibniz algebra by a Leibniz algebra [8]. Motivated by the work in [11], where the authors established a
one-to-one correspondence between metric 3-Leibniz algebras and faithful orthogonal representation of metric
Lie algebras, it is natural to investigate the n-ary case. However, for the usual metric n-Leibniz algebras, where
n > 3, one cannot use the method provided in [11]. We overcome this difficulty by introducing the notion of

a generalized metric n-Leibniz algebra, where the “metric” is a symmetric nondegenerate (n — 1)-linear form

*Correspondence: songln@jlu.edu.cn

2010 AMS Mathematics Subject Classification: 17B10, 17B40, 17B99
Research supported by NSFC (11471139) and NSF of Jilin Province (20170101050JC).

3061

0 This work is licensed under a Creative Commons Attribution 4.0 International License.



https://orcid.org/0000-0001-9310-982X
https://orcid.org/0000-0002-6296-0475

SONG and TANG/Turk J Math

satisfying some compatibility conditions. We also introduce the notion of a generalized orthogonal representation
of a Lie algebra and show that there is a one-to-one correspondence between generalized metric n-Leibniz
algebras and faithful generalized orthogonal representation of metric Lie algebras. We also lift this one-to-one
correspondence to the level of generalized orthogonal derivations and generalized orthogonal automorphisms.

The paper is organized as follows. In Section 2, we give a review of n-Leibniz algebras and metric Lie
algebras. In Section 3, we construct a faithful generalized orthogonal representation of a metric Lie algebra from
a generalized metric n-Leibniz algebra. In Section 4, we construct a generalized metric n-Leibniz algebra from
a faithful generalized orthogonal representation of a metric Lie algebra. In Section 5, we show that there is a
one-to-one correspondence between generalized orthogonal derivations on generalized metric n-Leibniz algebras
and Lie triple data. In Section 6, we show that there is a one-to-one correspondence between generalized
orthogonal automorphisms on generalized metric n-Leibniz algebras and Lie triple data.

In this paper, we work over the real field R and all the vector spaces are finite-dimensional.

2. Preliminaries

Definition 2.1 ([5]) An n-Leibniz algebra is a wvector space V equipped with an n-linear map [-,--- -] :

VX xV =V such that for all uy, - ,up—1, v1, -+ ,0, €V, the following fundamental identity holds:
n
[uh o, Up—1, [vlv e 7”77,” = Z[vla e, Vi1, [uh T 7un717vi]7v’i+17 e avn]~ (]-)
i=1

In particular, if n = 2, we obtain the notion of a Leibniz algebra [18, 19]. If the n-linear map [, - ,]
is skew-symmetric, we obtain the notion of an n-Lie algebra [13]. In the sequel, when we say an n-Leibniz

algebra, we always assume that n > 3.

Definition 2.2 ([5]) A derivation on an n-Leibniz algebra (V,[-,---,:]) is a linear map dy € gl(V), such
that for all uy,--- ,u, €V the following equality holds:

n

dV[U]_,"' ,’U,n] = Z[ula' T 7ui717dvui7ui+1;"' aun]- (2>
i=1

Define D : @™~V — gl(V) by

D(Ul, e aun—l)un = [Ul, oty Up—1, un}v vula o, Up—1,Un S V (3)
Then the fundamental identity (1) is the condition that D(uj,--- ,u,—1) is a derivation on the n-Leibniz
algebra (V,[-,---,]).
On ®"~ 1V, one can define a new bracket operation [, ]¢ by
n—1
U, V]e = Zvl ® @ Vim1 ® [U1,* , Up—1,0i] @ Vip1 @+ @ V1, (4)
i=1

foral U=u; @ @Up_1, V=01@ - @v,_1 € Q" V. It is proved in [8] that (®" !V, [-,]¢) is a Leibniz
algebra. The fundamental identity (1) is equivalent to

(D), D(V)] = D([U, VIe). (®)

Thus, we obtain that D is a Leibniz algebra homomorphism from @™~V to gl(V).
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Definition 2.3 ([4, Definition 2]) Let (A,-) be a nonassociative algebra and w a mondegenerate symmetric

bilinear form on A.
(i) If w(z-y,2) =w(z,y-2), then we say that w is associative-invariant;
(ii) If w(z-y,2) = —w(y,z - 2), then we say that w is (left) ad-invariant;
(iii) If w(z - y,2) = —w(x,z - y), then we say that w is (right) ad-invariant.

A nondegenerate symmetric bilinear form w satisfies at least two of the preceding definitions if and only
if (4,-) is an anticommutative algebra. Since a Lie bracket is skew-symmetric, we obtain that left ad-invariant,
right ad-invariant, and associative-invariant nondegenerate symmetric bilinear forms on a Lie algebra are the
same. See [4] for more details.

Recall that a Lie algebra (g, [-,]) is a said to be metric if it is equipped with a symmetric nondegenerate
bilinear form w that is (left) ad-invariant, i.e.:

w([a:,y],z) = *W(y, [I,Z]), vxayvz €g. (6)

Moreover, there is a natural notion of orthogonal derivations and automorphisms on metric Lie algebras.

Definition 2.4 Let (g,[,],w) be a metric Lie algebra. A derivation dy on the Lie algebra (g,[-,-]) is called
orthogonal if the following equality holds:

w(dgz,y) +w(z,dgy) = 0. (7)

Definition 2.5 Let (g,[,-],w) be a metric Lie algebra. An automorphism ®, on the Lie algebra (g,[-,]) is
called orthogonal if the following equality holds:

W((I)gx’q)gy) = w(z,y). (8)

3. Construction of Lie triple data from a generalized metric n-Leibniz algebra

Let V be a vector space and V* its dual space. Denote by Symk(V*) the vector space of symmetric tensors of

order k on V*. Any ¢ € Sym”*(V*) induces a linear map ¢! : ¥ — Sym" 1 (V*) by
¢ﬁ(u)(v1, e 7vk’—1) = ¢(uavla e 7vk—1)7 VU,’Ul, cre L, Ukg—1 € V.

¢ € Sym®(V*) is said to be nondegenerate if the induced map ¢f : V — Sym* ' (V*) is nondegenerate; that
is, ¢*(u) = 0 if and only if u = 0.

Definition 3.1 A generalized metric n-Leibniz algebra is an n-Leibniz algebra (V,[-,--- ,]) equipped with
a symmetric nondegenerate (n—1) -tensor S € Sym™ ™ *(V*) satisfying the following azioms for all ui,--- ,Un_1,
U1, ,Up—1 € V:

(a) The unitarity condition
n—1
Z S(Ula e, Vi1, [Ul, o, Up—1, Ui]7vi+17 e ;Unfl) = 07 (9)
i=1

3063



SONG and TANG/Turk J Math

(b) The symmetry condition
S([ulvu% e ,unflvvl}vvb e avnfl) = S([Ulv crt,Un—1, 'Uzl},UQ, e aun71)~ (10)
We denote a generalized metric n-Leibniz algebra by (W, [, -+ ,],9).

Remark 3.2 When n = 3 in Definition 3.1, we obtain the notion of a generalized metric 3-Leibniz algebra,
which is the same as the generalized metric Lie 3-algebra introduced in [11, Definition 1]. See [11] for more

applications of generalized metric Lie 3-algebras in the BLG theory.

Proposition 3.3 Let (V,[-,---,],S) be a generalized metric n-Leibniz algebra. Then we have
n—1
E ['Ui,’Ul,"‘ avi—17ﬁiavi+1;"' ,'Un_l,'l)n]:(), vvl;"' 7vn€V'
i=1
Proof For all vy, -+ ,v,, %1, " ,Up_2, We have
S([Ul7v27 o 7'Unflyvn]7u17 e ;un72)
(10)
= S([U'ﬂ:ula"' ,un—ngl],UZ,"' avn—l)
© n—1
= - § S([’U’I’Hul?“' ,un72,vi]7'l}1,v27"' 7vi717ﬁi7vi+17“' 7/UTL71)
i=2
(10) n—1
- - E S([@i,vl,'UQ,"' 7vi7176i;vi+17”‘ ,'Unfl,'UnLUl,"' ;un72)~
i=2

Since S is nondegenerate, we have

n—1
[vi, 02, Vp—1,vp] = —Z[Uz‘,vl,"' s Vi1, 035 Vig 1, 5 Un—1, Unl,
i=2
which finishes the proof. O
Definition 3.4 Let (V,[,---,-],S) be a generalized metric n-Leibniz algebra. A derivation dy on the n-
Leibniz algebra (V,[,--- ,-]) is called generalized orthogonal if the following equality holds:
n—1
ZS(U17"'7dVUia"'aUn71):Oa (11>
i=1
forall vy, -+ ,vp_1 € V.
Definition 3.5 Let (V,[-, - ,:],S) be a generalized metric n-Leibniz algebra. An automorphism ®y on the
n-Leibniz algebra (V,[-,--- ,-]) is called generalized orthogonal if the following equality holds:
S(‘vala"' 7(I)an—1) :S(Ula"' 7vn—1)7 (12)
for all vy, ,v,_1 € V.
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Definition 3.6 Let g be a Lie algebra and V a vector space equipped with a symmetric nondegenerate (n—1)-

tensor S € Sym"il(v*). A representation p : g — gl(V) is called generalized orthogonal if the following
equality holds:

n—1
D S(wr,e e wiy, pla)wi, wiga, - wa 1) =0, (13)
=1

forall x € g and wy,wa,- -+ ,wWp_1 € V.

We denote a generalized orthogonal representation by (p,V,S). When n = 3, we recover the usual notion
of an orthogonal representation of a Lie algebra.

We introduce the notion of Lie triple data, which is the main object in this paper.
Definition 3.7 Lie triple data consist of the following structure:
(i) a metric Lie algebra (g, [, ],w);
(ii) a vector space V equipped with a symmetric nondegenerate (n — 1) -tensor S € Sym"_l(V*) ;
(iii) a faithful generalized orthogonal representation p: g — gl(V).

We will denote a Lie triple data by (g,V, p).

3.1. From an n-algebra to a Lie algebra

Let (W, [,---,],S) be a generalized metric n-Leibniz algebra. Let g = ImD C gl(V), where D is given by (3).
Proposition 3.8 (g,[, ]c) s a Lie subalgebra of gl(V), where [-,-]c denotes the commutator Lie bracket on
gl(V).

Proof By the fundamental identity (1), we have

D(U]," : ,'U/n_l)(D('Ul,"' 7Un—1)vn) _D(U17"' ,’Un_]_)(D(U/l,"' 7un—1)vn)

n—1
= Z D('Ula cr Vi1, D(Ul, e 7un71)vi»vi+17 te avnfl)vn-
i=1

Hence, we have

n—1
[D(u1, - un—1), D(v1,- -+ ,vp-1)lc = ZD(’Uh"' Vi1, D(ua, o un—1)vi, Vg1, vnm1) €9, (14)
=1
which shows that [g,g]lc C g. The proof is finished. O

Furthermore, we claim that g is a metric Lie algebra; that is, there is a symmetric nondegenerate ad-

invariant bilinear form w on g. Actually, this bilinear form is defined by*

W(D(Ul,' t aun—l)vD(Uh' t 7Un—1)) - S(D(Ul, aun—l)vlav%"' avn—1)~ (15)
*By D(u1,--- ,un—1) =0, for all v € V, we have
D(u1,-++ ,un—1)v = [u1, -+ ,uUn—1,v] = 0.

Thus, the definition of w is well defined.
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Proposition 3.9 The bilinear form w on g defined by (15) is symmetric, nondegenerate, and ad-invariant.

Consequently, (g,w) is a metric Lie algebra.

Proof By the symmetry condition (10) of a generalized metric n-Leibniz algebra, we have

w(D(u, - yup—1), D1, ,vp—1)) = S(D(ur, -+ ,Up_1)01,02, " ,Vp_1)
S([Ul,"' 7un—1av1]77)27"' 7”71—1)
= S(['Ul»aUZ,"' 71}"71,“]1]71@7... 711/7171)
= w(D(vy, - ,vp-1),D(u1, -+ ,un-1))-

Thus, the bilinear form w is symmetric.

To prove nondegeneracy, let « € g C gl(V) be such that w(x, D(ug, -+ ,up—1)) =0 forall ug,--- ,up_1 €
V. Thus, we have

S(x(uy),ug, -+ up—1) =0.

By the nondegeneracy of S, we have x(u;) =0 for all w; € V, which implies that = = 0.

Finally, we prove the ad-invariance of the bilinear form w:

w(D(ug, -+ yup—1), [DW1,+ yUn-1), D(w1, -+ ,wn—1)]c)

n—1
(14)
= w(D(ur, -+, un—1), Z D(wi, -+ w1, D(v1, -+, Un—1)Ws, Wi1, + , Wp—1))
i=1
n—1
= W(D(ula e 7un—1)a D(w17 o, Wi, D(Ulv e 7vn—1)wi7wi+17 e 7wn—1))

1=1

= S(D(U], 7un71)(D(U17"' 71}”71)'[,0]_),?1]2,"' aw’nfl)
n—1

+ZS(D(U1,"' s Un—1)W1, W2, 5 Wi—1, D(V1, 0y 1) Wi, Wiy, Wo—1)
=2

= S((D(Ul, au’n—l) OD(UI7"' avn—l) _D(’U17"' 7'Un_1)OD(U1,"' )un—l))wlana"' 7w77,—1)>

= w([D(ulv e 7u’n71)7 D(Ulv e 7vn71)]07 -D(wh T 7wn71))~
Therefore, the bilinear form w on g is symmetric, nondegenerate, and ad-invariant. The proof is finished. O

It is obvious that V is a faithful representation of the Lie algebra g. Furthermore, we have:

Proposition 3.10 V is a faithful generalized orthogonal representation of the Lie algebra g.
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Proof By the unitarity condition (9) of a generalized metric n-Leibniz algebra, we have

S(D(ulv 7un—1)w17w2,"' awn—l)
= S([ulv'“ 7un,1,w1],w2,-~- 7wn71)
n—1
= _Zs(wh'" S Wiy ULy 5 Un 1, Wil Wi 1, *+ o Wyo1)
=2
n—1

= _Zs(wlv"' s Wie1, D(ur, U 1) Wi, Wig1, -+ s Wy1).
=2

Thus, V is a faithful generalized orthogonal representation of g. O

Summarizing the above discussion, we have:

Theorem 3.11 Let (V,[-,---,-],S) be a generalized metric n-Leibniz algebra. Then (g,V,1d) is Lie triple

data, i.e. (g,w) is a metric Lie algebra and (1d,V, S) is its faithful generalized orthogonal representation.

Example 3.12 ([11, Example 4]) Consider the 4-dimensional 3-Lie algebra A, on R* with the standard

Euclidean inner product (-,-). With respect to an orthogonal basis {e1, €3, e3,e4}, the 3-Lie bracket is given by
[e1,e0,e3] = eq, [ea,€3,€4] = —e1, [e1,€3,e4] = €2, [e1,€2,e4] = —e3.
It is a generalized metric 3-Leibniz algebra. It is obvious that A2R* is 6-dimensional and generated by
eprNea, eypNes, epNeqg, es/Nesz, eaxNeqg, e3/ey.

Denote D(e; Aej) by D;j. We have

00 0 0 00 0 O 0 0 00
00 0 0 00 0 —1 0 0 1 0
De=14990 0 1['P3=loo00 o |"Pe=]0 -1 00|
00 -1 0 010 0 0 0 00
0 0 0 1 00 -1 0 0 1 0 0
0 0 0 0 00 0 0 -1 0 0 0
Das = 0 000 |"Pu=|109 0 o Pu= 0 0 0 0
-1 0 0 0 00 0 0 0 0 0 0

It is obvious that {D;j, i < j} are the basis of s0(4). Therefore, Im(D) = so0(4) = {4 € R4 AT = —A}.

Next we consider the induced nondegenerate bilinear form w on so(4). The nonzero ones are given by
w(Di2, D34) =1, w(D13, Das) = =1, w(D1a, Da3) = 1,

which implies that w is not positive definite, but has signature (3,3). Thus, we obtain that (so(4),R* Id) is
Lie triple data.
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3.2. From the Leibniz algebra to Lie algebra

Let (V,[-,--+,],S) be a generalized metric n-Leibniz algebra. In the middle of the n-Leibniz algebra
(V,[-,---,]) and the Lie algebra g, we have the Leibniz algebra (®"~V,[.,-]¢). Moreover, D is a Leib-
niz algebra epimorphism from ®"~!'V to g. In this section, we analyze the metric structure on the Leibniz
algebra (®@"1V, [, ]¢). We define a bilinear form B on ®@"~'V by

B(ul R QUp—1,11 Q@ ’Unfl) = S([Ul, o ,Unfl,’l)l], V2, avnfl)‘ (16)
Proposition 3.13 The bilinear form B on @™~V defined by (16) is symmetric and associative-invariant.
Proof By the symmetry condition (10) of a generalized metric n-Leibniz algebra, we have

Bui® - @uUp-1,01 @ @vp_1) = S([ur, -, un—1,v1],v2, - ,Vp_1)
= S([U17U27"' 7U7L—15U1}7u27“' aun—l)

= Bn1® - Q@Up_1,u1 @ - @ Up_1).
Moreover, we prove the associative-invariance of the bilinear form B:

Bui ® - @Up—1,[v1 @ - @Up_1, W1 ® -+ @ Wn_1]F)

n—1
= B(w ®"'®Un—1yzw1 @ wim1 @ (U1, Ve 1, W] © Wig1 -+ @ Wp—1))
i=1

(16)
= S([ul7 o, Un—1, [U17 e avn717wl”7w27 e 7wn71)
n—1
+ Z S([u17 tee 7u’n717w1]3w27 s, Wi—1, [Ulv tee avnflawi]7wi+17 Tt 7w’n71)
=2
©
= S([ulv cot 5, Un—1, [Uh to ,vn_l,wl]],wg, te awn—l)
—S([Ul, Cee L Up_1, [Ula R 7un_1’w1]]7w27 R 7wn—1)
@
= B([Ul ®- Up—1,01 R Un—l]Fﬂl)l & ®wn,1).
Therefore, the bilinear form B on ®" 'V is symmetric and associative-invariant. The proof is finished. O

Remark 3.14 For a skew-symmetric multiplication, being associative-invariant and ad-invariant are the same.
See Definition 2.3 and its explanation. The bilinear form B defined by (16) is not ad -invariant in general since

the bracket operation [-,-]g in the Leibniz algebra (@™ "1V,[-,-J¢) is not skew-symmetric.

Proposition 3.15 The bilinear form B on @™~V is nondegenerate if and only if ker D = 0.

Proof Let V=3 v 1® --vin_1 € ®"~ 1V be such that B(V,w;®---®@w,_1) = 0 for all wy,wa, -+ ,w,_1 €

V. Therefore, we have
S([M U}l],ﬂ]Q, e 7wn71) =0.

Since S is nondegenerate, we have [V,wq] =0 for all w; € V and hence V' € ker D. The proof is finished. O
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Proposition 3.16 The Leibniz algebra morphism D : @™~V —s g preserves the metric.

Proof For all uy, - ,up—1,v1, -+ ,vp—1 € V, we have

w(D(ur, -+ un—1), D(vi, -+ ,vp-1)) S([ur, - up—1,v1),02- - ,Up—1)

= B(Ul®"'®Un—1,vl®"'®vn—1)~

Thus, D preserves the metric.

4. Construction of a generalized metric n-Leibniz algebra from Lie triple data

Let (g,[,],w) be a metric Lie algebra and (p,V,S) a faithful generalized orthogonal representation of g as

defined in Definition 3.6. We start by defining an (n — 1)-linear map D : V X --- xV — g, by transposing the

g-action. That is, for given vy, ,v,—1 € V, define D(vy, -+ ,v,—1) € g by
w(@, D(v1, -+ ,vp-1)) = S(p(x)v1,v2, -+ ,vn-1), Vz € g.

Proposition 4.1 With the above notations, for all vi,ve, - ,v,-1 € V, we have

n—1
E D(vi,v1,- -+ ,0i—1, 05, Vig1, - ,Un—1) = 0.
1=1

Proof Since (p,V,S) is a generalized orthogonal representation of g, we have

w(va(’Ula"' 7’U’n71)) = S(p(x)vlav27"' avnfl)

n—1

(13)
= _ZS(Ulv"' 7’Ui—17p('r)viavi+17"' 7vn—1)
=2

n—1
- Z S(p(x)vivvh U1, ’U},’Ui.t,.]_, o aUn—l)
=2

n—1
= - E UJ(Q?,D(UZ‘,’Uh"' Jviflaﬁ%vi#»ly"' 7/Un71))-
=2
By the nondegeneracy of w, we have
n—1
D(vh V2, ;'Unfl) = - E D(Ui,vh C U1, Vg, Vig 1, ,Un71)~
i=2

Thus, the proof is finished.

Proposition 4.2 The (n — 1)-linear map D :V x --- XV — g is surjective.

Proof We denote by (ImD)* the orthogonal compliment space of ImD, i.e.

(ImD)* := {x € glw(z,y) =0, Vy € ImD}.

(17)
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Let x € (ImD)*. Then for all vy,---,v,_1 €V, we have
w(z,D(vy,- - ,0p—-1)) = 0.

Therefore, by (17) we obtain S(p(x)vy,va,: - ,vn—1) = 0. The nondegeneracy of S implies that p(z)v; = 0
for all v;1 € V, which in turn implies that = = 0 since the representation of g on V is faithful. Therefore,

(ImD)* =0 and D is surjective. O

We define an n-linear map [-,---,-]: Vx---xV = V by

[V1,- s Up—1,0,] = p(D(v1, "+ ,Vn—1))Un. (18)

By Proposition 4.1, it is straightforward to obtain the following.

Lemma 4.3 For all vy, -+ ,v, €V, there holds
n—1
Z[’Ui,?fly"' $Vie1, 035 Vit 1,7+, Un—1, Un) = 0.
i=1

Remark 4.4 For n =3, we obtain that the 3-bracket is skew-symmetric in the first two entries.

The following theorem says that the converse of Theorem 3.11 also holds. Thus, there is a one-to-one cor-
respondence between generalized metric n-Leibniz algebras and faithful generalized orthogonal representations

of metric Lie algebras.

Theorem 4.5 Let (p,V,S) be a faithful generalized orthogonal representation of a metric Lie algebra (g, [-, ], w).
Then (V,[-,--+,],S) is a generalized metric n-Leibniz algebra, where the n-bracket [-,--- -] is defined by (18).

Proof For all z,y € g and uy, -+ ,up_1 € V, we have

©

w([D(ug, -+ un—1),2],9) w(D(ut, - up-1), 2, y])

= w([z,y), D(ur, - ,tn_1))

= S(p(lz,yDur, ug, -+ un—1)
= S(p(x)p(y)ur,ug, -+ un—1) = S(p(y)p(z)u, ug, -+, un—1)

n—1

13
(:) *ZS(P(Z/)UhUzw" JUi—1,5 P(X) Uiy Wi 1, 5 Up—1)
i=2

_S(p(y)p(x)ulu Ug, - - 7un71)

= —Zw(y,D(ul,u2,~- s Ui 1, P(T) Uiy Wit 1, 5 Un—1))
i=2

—w(y, D(p(z)ur, ug, - ,up—1)).

By the nondegeneracy of the bilinear form w on g, we have
n—1
[z, D(u1, -+ s up—1)] = ZD(M,"' s Wim1, P(T) Uiy Wi 1,y Un—1).
i=1
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By substituting « = D(v1,- - ,v,—1) and applying both sides of the above equation to wu, , we have
[Ulv 5y Un—1, [ula e 7un—1aunﬂ - [uh N ) [Ulv e avn—lvun“
n—1
= Z[u17 s, Us—1, [Ula e 7vn717ui]aui+1a e 7un71aun]-
i=1
Thus, (V,[-,--+,]) is an n-Leibniz algebra.

By (13), we have

n—1

Z S(’Ula cer Vi1, [ula e 7un—lavi]7vi+17 o 'U’rb—l)
i=1

n—1
= ZS(Ul,"' s Vie1, p(D(ur,  Up—1) )iy Vi1, -+ Un—1)
i=1

= 0.

Thus, the unitarity condition in Definition 3.1 holds.

Since the bilinear form w on g is symmetric, we have
S(fur, - s un—1,v1),02, yvn—1) = S(p(D(u1, -+ ,up_1))v1,v2, ,Vp_1)

= w(D(ula"' 7un71)aD<vlaU2a"' 7vn71)>

= w(D(UlaU27"' avn—l)aD(uly"' aun—l))

= S(p(D(vlﬂUQa"' avn—l))uhUZ,"' aun—l)

= S(['Ul,'UQ,"‘ 7vn717u1}7u2a"' 7un71)7

which implies that the symmetry condition in Definition 3.1 holds.
Thus, (V,[-,--+,],S) is a generalized metric n-Leibniz algebra. The proof is finished. O

5. Generalized orthogonal derivations

In this section, we introduce the notion of a generalized orthogonal derivation on Lie triple data and show that
there is a one-to-one correspondence between generalized orthogonal derivations on generalized metric n-Leibniz
algebras and Lie triple data.

Definition 5.1 A generalized orthogonal derivation on Lie triple data (g,V,p) is a pair (dg,dy), where dg s

an orthogonal derivation on the metric Lie algebra (g,[-,],w) and dy € gl(V) is a linear map satisfying the

following conditions:
dy o p(z) = p(dg(2)) + p(z) 0 dy, (19)
n—1
Zs(wla"’ 7d\)wia"' 7wn—1):0a (20)
i=1

forall x € g and wi,wa, -+ ;w1 €V.
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Example 5.2 Consider the Lie triple data (so(4),R* Id) given in Example 3.12. For any A € so(4), define
ads € gl(so(4)) by adaB =: [A,B]c for all B € so(4). Then (dsou) = ada,drs = A) is a generalized
orthogonal derivation on (so(4),R* 1d).

Let (V,[-,---,],5) be a generalized metric n-Leibniz algebra with a generalized orthogonal derivation

dy. Let (g,[,]c,w) be the corresponding metric Lie algebra given in Proposition 3.9. Define dg : g — g by

n—1

dg(D(wla"' awnfl)) = ZD(wla 7dei7"' 7wn71)- (21)
=1

Equivalently,
dg (D(wla e 7wn—1)) - [dV7D(w1a o 7wn—1)]c-

Proposition 5.3 Let dy be a generalized orthogonal derivation on a generalized metric n-Leibniz algebra
WV, [+ 51,S). Then (dg,dy) is a generalized orthogonal derivation on the Lie triple data (g,V,1d) given by
Theorem 3.11.

Proof For all uy, - ,up_1,v1, - ,0n_1 € V, we have

dg[D(u1,- -+ ,un—1),D(v1, - ,vn-1)]c
[dy, [D(us, -+ un-1), D(v1, -+ ,vn-1)lclo

([dy, D(u1, -+ un—1)]c, D(v1, -+ s vn—1)lc + [D(u1, -+ sun—1),[dy, D(v1, -+ ,vn-1)]cle
= [dg(D(“lv"' >Un71))aD(U1a"' ;Un—1)lc + [D(uy, -+ aunfl)adg(D@)la"' 7Un71))]c,

which implies that dy is a derivation of the Lie algebra (g, [-,-]c).

Since dy is generalized orthogonal, for all D(uq,- - ,up—1),D(v1, -+ ,vn—1) € g, we have

w(ng(ula T ,’U,n_l), D(Ula T 7vn—1)) + W(D(ula T 7un—1)a ng(’Ulv e ,Un_l))

n—1
fd Z S([u17 oo ,dvui7 [N 7un_17vl}7v27 [N 7U7L—1) + S([ul’ N 7un_1’ dvvl]’ UQ, e 71}71—1)
i=1
n—1
+ Z S([Ul, e ,Un_l,Ul],’UQ, e 7dvvi7 T avn—l)
i=2
n—1
= S(dV[U]_, oty Up—1, U]_],UQ, e ,’Un,]_> + Z S([ula oty Up—1, U]_],UQ, e adVUi7 e ,’Unfl)
i=2
= 0.
Thus, dg is an orthogonal derivation on the metric Lie algebra (g, [-,-]c,w).
Moreover, for all D(uy, -+ ,u,—1) € g, we have
dg(D(ulv"' 7un71))+D(u17"' 7un71)odv = [dV7D(u17"' 7un71)]C+D(u17"' 7un71)odv

= dVoD(u1,~~~ ,Un_l).
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Thus, equality (19) holds. Furthermore, (20) holds automatically. The proof is finished. O

The converse of the above result also holds.

Proposition 5.4 Let (dg,dy) be a generalized orthogonal derivation on the Lie triple data (g,V,p). Then dy
is a generalized orthogonal derivation on the corresponding generalized metric n-Leibniz algebra (V,[-,--- ,-],5)

given in Theorem 4.5.

Proof We only need to prove that dy is a derivation on the n-Leibniz algebra (V,[-,---,:]). For all
V1,--- ,Up—1 € V and x € g, we have
n—1
w(ng(vlv e 71}77,71) - Z D(vla e 7dvvi7 e 71]77471)7!%)
i=1
n—1
™
- 7w(D(v1a e 7vn—1)7d91’) - Z S(p(l')vlav% e advvi, o avn—l) - S(p(l‘)(dv’ul),UQ, e avn—l)
i=2
(20)

= _S(p(dgx)vlav27"' 7Un—1) —|—S(dv(p(ac)v1),v2,--- s Uiyttt 7vn—l)
_S(p(x)(dvvl)av27"' ;Unfl)

W .

Thus, we have

n—1

daD(vr, - ,va1) = 3 D(vr,- -+ o dyvi, -+ var1). (22)
=1

For all vy,--- ,v,,u1, " ,Un_o €V, we have

n

S(dV[Ula"’ 7Un] *Z[vla"' advvia"’ 7Un];ula"' 7un—2)

=1

= S(dV(P(D(Ula 7vn71))vn))u17“' aun72)
n—1

7ZS(p(D(’U1, advvia"' 7Un_1))’l}n,U1,"' 7un—2)

i=1

—S(p(D(v1, -+ yvp—1))(dyvp),ut,- -, Un—2)

19
(:) S(p(ng(Ulv 77}”_1))7]7““1,"' 7un—2)

n—1
- Z S(p(D(vlﬂ T adVU’ia e 7U7L—1))vna Uy, - 7un—2)
=1
(22) 0.

Therefore, dy is a derivation of the n-Leibniz algebra (V,[-,---,]). O
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6. Generalized orthogonal automorphisms

In this section, we introduce the notion of a generalized orthogonal automorphism on Lie triple data and show
that there is a one-to-one correspondence between generalized orthogonal automorphisms on generalized metric
n-Leibniz algebras and Lie triple datas.

Definition 6.1 A generalized orthogonal automorphism on the Lie triple data (g,V,p) is a pair (®q, Py),
where ®y is an orthogonal automorphism on the metric Lie algebra (g, [-,-],w) and ®y € gl(V) is an invertible

linear map satisfying the following conditions:

Py (p(z)w) = p(Pq(2))(Pyw), (23)
S(@ywi, -+, Pywy_1) = S(wy, -+, wn_1), (24)
forall x € g and w,wi,wa, -+ ,wy_1 € V.

Example 6.2 Consider the Lie triple data (so(4),R* Id) given in Example 3.12. For any A € so0(4), define
Ad.a € gl(s0(4)) by Ad.aB =: eABe ™ for all B € s0(4). Then (®40(4) = Adoa, Pps = ) is a generalized

orthogonal automorphism on (s0(4),R* 1d).

Let (V,[-,---,],S) be a generalized metric n-Leibniz algebra with a generalized orthogonal auto-
morphism ®y,. Let (g,[,]c,w) be the corresponding metric Lie algebra given in Proposition 3.9. Define
®,:9— g by

¢Q(D(w1,~~ ,wn_l)) :D((I)le,"' 7@\)10”_1). (25)
Equivalently,

Dy (D(wr, + ,wn—1)) = Ly o D(wy, -+ ,wy—1) 0 B

Proposition 6.3 Let @y be a generalized orthogonal automorphism on a generalized metric n-Leibniz algebra
V[ ,:1,8). Then (g, Py) is a generalized orthogonal automorphism on the Lie triple data (g,V,1d) given
by Theorem 3.11.

Proof For all wy, - ,up—1,v1, -+ ,vp—1 € V, we have

(bg[D(ul?”' 7u’ﬂ71);D(U13"' 7’Un71)]C
= ®yoD(uy, - ,up—1)oD(v1, + ,Up_1) o@l_;l
—®yoD(vy, -+ ,Up—1) 0 D(ug, -+ ,Up_1) o<I>;1

= [(I)QD(UI7"' 7un71);q)gD('Ul7"' 71}7’7,71)]0'
Thus, ®4 is an automorphism of the Lie algebra (g,[-,-]c). Since ®y is generalized orthogonal, for all
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D(uy, -+ ;up—1),D(v1,- -+ ,vp—1) € g, we have
w(®gD(u1, - ,Up-1), LgD(v1, -+ ,Un-1))
= S([Pyui,- -, Pyup—_1, Pyv1], Pyvg, -+, Ppv,_1)
= S(®yfug,--- ,up_1,01], Ppuvg, -+, Ppv,_q)
= S([Ul, ;Unflavl];vb"';vnfl)
= w(D(uy, - ,up-1),D(v1, -+ ,vp-1)).

Thus, @4 is an orthogonal automorphism on the metric Lie algebra (g, [+, ]c,w).

Moreover, for all D(uy, -+ ,u,—1) € g and w € V, we have

Py(D(ur, - s up—1)w) = [Pyur,---, Pyuy_1, Pyuw]

= (®gD(ur,- -, up-1))(Pyw).

Thus, equality (23) holds. Furthermore, (24) holds automatically. The proof is finished. O

The converse of the above result also holds.

Proposition 6.4 Let (®4, ) be a generalized orthogonal automorphism on a Lie triple date (g,V,p).

Then ®y is a generalized orthogonal automorphism on the corresponding generalized metric n-Leibniz algebra
WV, [+ ,+],8) given in Theorem 4.5.

Proof We only need to prove that @, is an automorphism on the n-Leibniz algebra (V,[-,---,-]). For all
V1, ,Up—1 € V and x € g, we have

w(égD(vla co 7vn—1) - D(vila v 7(I)an—1)ax)
= W(D(vh e avn—l)a (I)QII) - W(D((I)Vvlv e 7©an—1)7 ':C)

S(p(®g ' w)v1, vz, vn1) — S(p(x)(Pyuy), Pyvg, -+, Pyvn_1)
S(@y(p(Pg w)v1), ®yvg, -+, Pyvn_1) — S(p(z)(Pyvr), Pyvg, - -+, Pyv,_1)

= S(p(x)(Pyv1), Pyva, -+, Pyv,_1) — S(p(x)(Pyv1), Pyva, -+, Pyv,_1)
= 0.

Thus, we have

(I)QD(’Ul,"‘ ,’Un_l) = D(CD\)’Ul,"' ,q)v’l)n_l). (26)
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For all vy, -+ ,vp,u1, -+ ,upn—2 €V, we have

S((I)V[Uly e avn] - [‘I)Vvla o "I’Vviv e 7¢)VU7L]7u17 e 7un—2)
= S(@V(p(D(Ulf" avn—l))vn)aulv"' 7un—2)
_S(p(D(q)Vvl, Tty @Vviv e 7@\)”?7.71))@\/’07” Up, - 7un72)

= S(p(@gD(v1,- -+ ,vn—1))(Pyvn), U1, -, Un—2)
=S(p(D(Pyv1, -, Py, -+, Pyvp_1))(Pyvn ), ur, -+, Un—2)
.
Therefore, ®y is an automorphism of the n-Leibniz algebra (V,[,---,-]). O
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