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Abstract: In this paper, we will discuss a newly constructed subclass of bi-starlike functions. Furthermore, we establish
bounds for the coefficients and get the second Hankel determinant for the class SΣ(α, β).
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1. Introduction
Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z : |z| < 1} , and let S be the subclass of A consisting of the
form (1), which are also univalent in U.

Among the most famous subclasses of univalent functions are the class S⋆ (β) of starlike functions of
order β . By definition, we have

S⋆ (β) =

{
f ∈ S : ℜ

(
zf ′(z)

f(z)

)
> β

}
(0 ≤ β < 1, z ∈ U) .

The Koebe one-quarter theorem [9] states that the image of U under every function f from S contains
a disk of radius 1

4 . Thus, every such univalent function has an inverse f−1 that satisfies

f−1 (f (z)) = z (z ∈ U)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥

1

4

)
,

where
f−1 (w) = w − a2w

2 +
(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · .
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A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U. Let Σ denote
the class of bi-univalent functions defined in the unit disk U.

For a brief history and interesting examples in the class Σ, see [26]. Examples of functions in the class
Σ are

z

1− z
, − log(1− z),

1

2
log
(
1 + z

1− z

)
,

and so on. However, the familiar Koebe function is not a member of Σ. Other common examples of functions
in S such as

z − z2

2
and z

1− z2

are also not members of Σ (see [26]).
Lewin [16] studied the class of bi-univalent functions, obtaining the bound 1.51 for modulus of the second

coefficient |a2| . Subsequently, Brannan and Clunie [5] conjectured that |a2| ≤
√
2 for f ∈ Σ. Later, Netanyahu

[19] showed that max |a2| = 4
3 if f (z) ∈ Σ. Brannan and Taha [6] introduced certain subclasses of the bi-

univalent function class Σ similar to the familiar subclasses, S⋆ (β) and K (β) of starlike and convex function
of order β (0 ≤ β < 1) , respectively (see [19]). The classes S⋆

Σ (β) and KΣ (β) of bi-starlike functions of order α

and bi-convex functions of order β, corresponding to the function classes S⋆ (β) and K (β) , were also introduced
analogously. For each of the function classes S⋆

Σ (β) and KΣ (β) , they found nonsharp estimates on the
initial coefficients. Recently, many authors investigated bounds for various subclasses of bi-univalent functions
[1, 4, 11, 17, 25–27]. Not much is known about the bounds on the general coefficient |an| for n ≥ 4. In the
literature, there are only a few works determining the general coefficient bounds |an| for the analytic bi-univalent
functions [2, 7, 13, 15]. The coefficient estimate problem for each of |an| ( n ∈ N\ {1, 2} ; N = {1, 2, 3, ...}) is
still an open problem.

The Fekete–Szegö functional
∣∣a3 − µa22

∣∣ for normalized univalent functions

f(z) = z + a2z
2 + · · ·

is well known for its rich history in the theory of geometric functions. Its origin was in the disproof by Fekete
and Szegö of the 1933 conjecture of Littlewood and Paley that the coefficients of odd univalent functions are
bounded by unity (see [10]). The functional has since received great attention, particularly in many subclasses
of the family of univalent functions. Nowadays, it seems that this topic had become a point of interest among
researchers (see, for example, [3, 18, 22, 28]).

In 1976, Noonan and Thomas [20] defined the qth Hankel determinant of f for n ≥ 0 and q ≥ 1 , defined
by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1).

This determinant has also been considered by several authors. For example, Noor [21] determined the rate of
growth of Hq(n) as n → ∞ for functions f given by (1) with bounded boundary. In particular, sharp upper
bounds on H2(2) were obtained by the authors of articles [14, 21] for different classes of functions.
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Note that

H2(1) =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ = a3 − a22

and

H2(2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23.

The Hankel determinant H2(1) = a3−a22 is well known as the Fekete-Szegö functional. Very recently, the upper
bounds of H2(2) for some classes were discussed by Deniz et al. [8] (see also [23]).

Definition 1 A function f ∈ Σ is said to be in the class SΣ(α, β) if the following conditions holds:

ℜ

{
1

2

(
zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

) 1
α

)}
> β, (0 ≤ β < 1, 0 < α ≤ 1, z ∈ U)

and

ℜ

{
1

2

(
wg′(w)

g(w)
+

(
wg′(w)

g(w)

) 1
α

)}
> β, (0 ≤ β < 1, 0 < α ≤ 1, w ∈ U) ,

where g = f−1.

In this paper, we get the upper bound for the functional H2(2) = a2a4 − a23 for functions f belonging to
the class SΣ(α, β).

2. Preliminary results

Let P be the class of functions with positive real part consisting of all analytic functions p : U → C satisfying
p(0) = 1 and Rep(z) > 0.

Lemma 2 [24] If the function p ∈ P,

|pn| ≤ 2 (n ∈ N = {1, 2, . . .})

and ∣∣∣∣p2 − p21
2

∣∣∣∣ ≤ 2− |p1|2

2
.

Lemma 3 [12] If the function p ∈ P , then

2p2 = p21 + x(4− p21)

4p3 = p31 + 2(4− p21)p1x− p1(4− p21)x
2 + 2(4− p21)(1− |x|2)z

for some x, z with |x| ≤ 1 and |z| ≤ 1.
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3. Main results
Theorem 4 Let f given by (1) be in the class SΣ(α, β), 0 < α ≤ 1 and 0 ≤ β < 1. Then

∣∣a2a4 − a23
∣∣ ≤



16α2

3(α+1)2
(1− β)

2

[
8(6α3+2α2+3α+1)

3(α+1)3
(1− β)

2
+ 1

]
,

β ∈
[
0, 1− 9α(α+1)2+(α+1)

√
81α2(α+1)2+192(α+1)(6α3+2α2+3α+1)

32(6α3+2α2+3α+1)

]
4α2

(α+1)2
(1− β)

2
{
1− 9{2α(1−β)+(α+1)}2(α+1)

32(6α3+2α2+3α+1)(1−β)2−36α(α+1)2(1−β)−15(α+1)3

}
β ∈

[
1− 9α(α+1)2+(α+1)

√
81α2(α+1)2+192(α+1)(6α3+2α2+3α+1)

32(6α3+2α2+3α+1) , 1

)
.

.

Proof Let f ∈ B(α, β). Then

1

2

(
zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

) 1
α

)
= β + (1− β)p(z) (2)

1

2

(
wg′(w)

g(w)
+

(
wg′(w)

g(w)

) 1
α

)
= β + (1− β)q(z) (3)

where p, q ∈ P and g = f −1.

It follows from (2) and (3) that
α+ 1

2α
a2 = (1− β) p1, (4)

α+ 1

2α

(
2a3 − a22

)
+

1− α

4α2
a22 = (1− β) p2, (5)

α+1
2α

(
3a4 + a32 − 3a2a3

)
+ 1−α

2α2

(
2a2a3 − a32

)
+ (1−α)(1−2α)

12α3 a32 = (1− β) p3 (6)

−α+ 1

2α
a2 = (1− β) q1, (7)

α+ 1

2α

(
3a22 − 2a3

)
+

1− α

4α2
a22 = (1− β) q2 (8)

−α+1
2α

(
3a4 + 10a32 − 12a2a3

)
− 1−α

2α2 (3a
3
2 − 2a2a3)− (1−α)(1−2α)

12α3 a32 = (1− β)q3. (9)

From (4) and (7) we obtain
p1 = −q1 (10)

and

a2 =
2α

α+ 1
(1− β) p1. (11)

2879



ALTINKAYA and YALÇIN/Turk J Math

Subtracting (5) from (8), we have

a3 =
4α2

(α+ 1)
2 (1− β)

2
p21 +

α

2 (α+ 1)
(1− β) (p2 − q2) . (12)

Also, subtracting (6) from (9), we have

a4 = 12α3+16α2−3α−1
18α2(α+1)

8α3

(α+1)3
(1− β)

3
p31 +

5α2

2(α+1)2
(1− β)

2
p1 (p2 − q2) +

α
3(α+1) (1− β) (p3 − q3) . (13)

Then we can establish that

∣∣a2a4 − a23
∣∣ = ∣∣∣− (6α3+2α2+3α+1)

18α2(α+1)
16α4

(α+1)4
(1− β)

4
p41 +

α3

(α+1)3
(1− β)

3
p21 (p2 − q2)

+ 2α2

3(α+1)2
(1− β)

2
p1 (p3 − q3)− α2

4(α+1)2
(1− β)

2
(p2 − q2)

2
∣∣∣ . (14)

According to Lemma 2 and (10), we write

2p2 = p21 + x(4− p21)
2q2 = q21 + y(4− q21)

}
⇒ p2 − q2 =

4− p21
2

(x− y) (15)

and

4p3 = p31 + 2(4− p21)p1x− p1(4− p21)x
2 + 2(4− p21)(1− |x|2)z

4q3 = q31 + 2(4− q21)q1y − q1(4− q21)y
2 + 2(4− q21)(1− |y|2)w

p3 − q3 =
p31
2

+
p1(4− p21)

2
(x+ y)− p1(4− p21)

4
(x2 + y2) +

4− p21
2

[
(1− |x|2)z − (1− |y|2)w

]
. (16)

Then, using (15) and (16), in (14),

∣∣a2a4 − a23
∣∣ = ∣∣∣∣− (6α3+2α2+3α+1)

18α2(α+1)
16α4

(α+1)4
(1− β)

4
p41 +

α3

(α+1)3
(1− β)

3
p21

(4−p2
1)

2 (x− y)

+α2(1−β)2

3(α+1)2 p41 +
2α2(1−β)2

3(α+1)2
p21

(4−p2
1)

2 (x+ y)− 2α2(1−β)2

3(α+1)2
p21

(4−p2
1)

4 (x2 + y2)

+ 2α2(1−β)2

3(α+1)2
p1

(4−p2
1)

2

[(
1− |x|2

)
z −

(
1− |y|2

)
w
]
− α2(1−β)2

4(α+1)2
(4−p2

1)
2

4 (x− y)2
∣∣∣ .

≤ (6α3+2α2+3α+1)
18α2(α+1)

16α4

(α+1)4
(1− β)

4
p41 +

α2

3(α+1)2
(1− β)

2
p41 +

2α2

3(α+1)2
(1− β)

2
p1(4− p21)

+

[
α3

(α+1)3
(1− β)

3
p21

(4−p2
1)

2 + 2α2

3(α+1)2
(1− β)

2
p21

(4−p2
1)

2

]
(|x|+ |y|)

+
[
2α2(1−β)2

3(α+1)2
p21

(4−p2
1)

4 − 2α2(1−β)2

3(α+1)2
p1

(4−p2
1)

2

]
(|x|2 + |y|2) + α2(1−β)2

4(α+1)2
(4−p2

1)
2

4 (|x|+ |y|)2.

(17)
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Since p ∈ P, |p1| ≤ 2. Letting |p1| = p , we may assume without restriction that p ∈ [0, 2] . For η = |x| ≤ 1

and µ = |y| ≤ 1, we get

∣∣a2a4 − a23
∣∣ ≤ T1 + (η + µ)T2 +

(
η2 + µ2

)
T3 + (η + µ)

2
T4 = G(η, µ)

where

T1 = T1(p) =
α2

3 (α+ 1)
2 (1− β)

2
[(

8(6α3+2α2+3α+1)

3(α+1)3
(1− β)

2
+ 1
)
p4 − 2p3 + 8p

]
≥ 0

T2 = T2(p) =
α2

(α+ 1)
2 (1− β)

2
p2

(4− p2)

2

[
α

α+ 1
(1− β) + 2

3

]
≥ 0

T3 = T3(p) =
α2

3 (α+ 1)
2 (1− β)

2 (4− p2)

2
p(p− 2) ≤ 0

T4 = T4(p) =
α2

4 (α+ 1)
2 (1− β)

2 (4− p2)2

4
≥ 0.

We now need to maximize the function G(η, µ) on the closed square [0, 1] × [0, 1] . We must investigate the
maximum of G(η, µ) according to p ∈ (0, 2), p = 0 and p = 2 , taking into account the sign of Gηη.Gµµ−(Gηµ)

2
.

First, let p ∈ (0, 2). Since T3 < 0 and T3 + 2T4 > 0 for p ∈ (0, 2), we conclude that

Gηη.Gµµ − (Gηµ)
2
< 0.

Thus, the function G cannot have a local maximum in the interior of the square. Now we investigate the
maximum of G on the boundary of the square.

For η = 0 and 0 ≤ µ ≤ 1 (similarly µ = 0 and 0 ≤ η ≤ 1), we obtain

G(0, µ) = H(µ) = (T3 + T4)µ
2 + T2µ+ T1.

i. The case T3 + T4 ≥ 0 : In this case for 0 < µ < 1 and any fixed p with 0 ≤ p < 2 , it is clear that
H ′(µ) = 2(T3+T4)µ+T2 > 0 ; that is, H(µ) is an increasing function. Hence, for fixed p ∈ [0, 2) , the maximum
of H(µ) occurs at µ = 1 , and

maxH(µ) = H(1) = T1 + T2 + T3 + T4.

ii. The case T3 + T4 < 0 : Since T2 + 2(T3 + T4) ≥ 0 for 0 < µ < 1 and any fixed p with 0 ≤ p < 2 , it is clear
that T2 + 2(T3 + T4) < 2(T3 + T4)µ+ T2 < T2 and so H ′(µ) > 0 . Hence, for fixed p ∈ [0, 2) , the maximum of
H(µ) occurs at µ = 1 .

Also, for p = 2 , we obtain

G(η, µ) =
16α2

3 (α+ 1)
2 (1− β)

2

[
8(6α3+2α2+3α+1)

3(α+1)3
(1− β)

2
+ 1

]
. (18)

Taking into account value (18), and cases i and ii, for 0 ≤ µ ≤ 1 and any fixed p with 0 ≤ p ≤ 2 ,

maxH(µ) = H(1) = T1 + T2 + T3 + T4.
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For η = 1 and 0 ≤ µ ≤ 1 (similarly µ = 1 and 0 ≤ η ≤ 1), we obtain

G(1, µ) = F (µ) = (T3 + T4)µ
2 + (T2 + 2T4)µ+ T1 + T2 + T3 + T4.

Similarly to the above cases of T3 + T4 , we get that

maxF (µ) = F (1) = T1 + 2T2 + 2T3 + 4T4.

Since H(1) ≤ F (1) for p ∈ [0, 2] , maxG(η, µ) = G(1, 1) on the boundary of the square. Thus, the maximum
of G occurs at η = 1 and µ = 1 in the closed square.

Let K : [0, 2] → R .

K(p) = maxG(η, µ) = G(1, 1) = T1 + 2T2 + 2T3 + 4T4. (19)

Substituting the values of T1, T2, T3 , and T4 in the function K defined by (19) yields

K(p) =
α2

(α+ 1)
2 (1− β)

2

{(
8(6α3+2α2+3α+1)

9(α+1)3
(1− β)

2 − α
α+1 (1− β)− 5

12

)
p4

+
(

4α
α+1 (1− β) + 2

)
p2 + 4

}
.

Assuming that K(p) has a maximum value in an interior of p ∈ [0, 2] , by elementary calculation

K ′(p) =
2α2

(α+ 1)
2 (1− β)

2

{(
16(6α3+2α2+3α+1)

9(α+1)3
(1− β)

2 − 2α
α+1 (1− β)− 5

6

)
p3

+
(

4α
α+1 (1− β) + 2

)
p
}
.

As a result of some calculations we can do the following: 2

Case 1. Let
(

16(6α3+2α2+3α+1)

9(α+1)3
(1− β)

2 − 2α
α+1 (1− β)− 5

6

)
≥ 0. Therefore,

β ∈
[
0, 1− 9α(α+1)2+(α+1)

√
81α2(α+1)2+120(α+1)(6α3+2α2+3α+1)

16(6α3+2α2+3α+1)

]
and K ′(p) > 0 for p ∈ (0, 2) . Since K is an

increasing function in the interval (0, 2) , the maximum point of K must be on the boundary of p ∈ [0, 2] ; that
is, p = 2 . Thus, we have

maxK(p) = K(2) =
16α2

3 (α+ 1)
2 (1− β)

2

[
8(6α3+2α2+3α+1)

3(α+1)3
(1− β)

2
+ 1

]
.

Case 2. Let
(

16(6α3+2α2+3α+1)

9(α+1)3
(1− β)

2 − 2α
α+1 (1− β)− 5

6

)
< 0; that is,

β ∈
(
1− 9α(α+1)2+(α+1)

√
81α2(α+1)2+120(α+1)(6α3+2α2+3α+1)

16(6α3+2α2+3α+1) , 1

)
. Then K ′(p) = 0 implies the real critical

points p01 = 0 or

p02 =

√
−36{2α(1−β)+(α+1)}(α+1)2

32(6α3+2α2+3α+1)(1−β)2−36α(α+1)2(1−β)−15(α+1)3
.
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When

β ∈

[
1− 9α(α+1)2+(α+1)

√
81α2(α+1)2+120(α+1)(6α3+2α2+3α+1)

16(6α3+2α2+3α+1) ,

1− 9α(α+1)2+(α+1)
√

81α2(α+1)2+192(α+1)(6α3+2α2+3α+1)

32(6α3+2α2+3α+1)

]
we observe that p02 ≥ 2 ; that is, p02 is out of the interval (0, 2) . Therefore, the maximum value of K(p) occurs
at p01 = 0 or p = p02 , which contradicts our assumption of having the maximum value at the interior point
of p ∈ [0, 2]. Since K is an increasing function in the interval (0, 2) , the maximum point of K must be on the
boundary of p ∈ [0, 2] ; that is, p = 2 . Thus, we have

maxK(p) = K(2) =
16α2

3 (α+ 1)
2 (1− β)

2

[
8(6α3+2α2+3α+1)

3(α+1)3
(1− β)

2
+ 1

]
.

When β ∈
(
1− 9α(α+1)2+(α+1)

√
81α2(α+1)2+192(α+1)(6α3+2α2+3α+1)

32(6α3+2α2+3α+1) , 1

)
we observe that p02 < 2 ; that is, p02

is the interior of the interval [0, 2] . Since K ′′(p02) < 0 , the maximum value of K(p) occurs at p = p02 . Thus,
we have

K(p02) =
4α2

(α+ 1)
2 (1− β)

2
{
1− 9{2α(1−β)+(α+1)}2(α+1)

32(6α3+2α2+3α+1)(1−β)2−36α(α+1)2(1−β)−15(α+1)3

}
.

This completes the proof.

Remark 5 Putting α = 1 in Theorem 4 we have the second Hankel determinant for the well-known class
S∗
Σ(β) as in [8].

Corollary 6 (see [8]) Let f given by (1) be in the class S∗
Σ(β) and 0 ≤ α < 1. Then

∣∣a2a4 − a23
∣∣ ≤


4(1−β)2

3

(
4β2 − 8β + 5

)
β ∈

[
0, 29−

√
137

32

)
(1− β)2

(
13β2−14β−7
16β2−26β+5

)
β ∈

(
29−

√
137

32 , 1
) .

Remark 7 For β = 0 and α = 1, Theorem 4 readily yields the following coefficient estimates for bi-starlike
functions.

Corollary 8 (see [8]) Let f given by (1) be in the class S∗
Σ . Then

∣∣a2a4 − a23
∣∣ ≤ 20

3
.

References

[1] Altınkaya Ş, Yalçın S. Initial coefficient bounds for a general class of bi-univalent functions. Int J Anal 2014; 2014:
867871.

[2] Altınkaya Ş, Yalçın S. Coefficient bounds for a subclass of bi-univalent functions. TWMS J Pure Appl Math 2015;
6: 180-185.

2883



ALTINKAYA and YALÇIN/Turk J Math

[3] Altınkaya Ş, Yalçın S. Fekete-Szegö inequalities for certain classes of bi-univalent functions. International Scholarly
Research Notices 2014; 2014: 327962.

[4] Altınkaya Ş, Yalçın S. Coefficient estimates for two new subclasses of bi-univalent functions with respect to
symmetric points. J Funct Spaces 2015; 2015: 145242.

[5] Brannan DA, Clunie JG, editors. Aspects of Comtemporary Complex Analysis. Proceedings of the NATO Advanced
Study Institute Held at Durham University. New York, NY, USA: Academic Press, 1980.

[6] Brannan DA, Taha TS. On some classes of bi-univalent functions. Stud Univ Babeş-Bolyai Math 1986; 32: 70-77.
[7] Bulut S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. C

R Acad Sci Paris Ser I 2014; 352: 479-484.
[8] Deniz E, Çağlar M, Orhan H. Second Hankel determinant for bi-starlike and bi-convex functions of order β . Appl

Math Comput 2015; 271: 301-307.
[9] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften. New York, NY, USA: Springer,

1983.
[10] Fekete M, Sezegö G. Eine Bemerkung Über Ungerade Schlichte Funktionen. J London Math Soc 1933; 2: 85-89 (in

German).
[11] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Appl Math Lett 2011; 24: 1569-1573.
[12] Grenander U, Szegö G. Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences.

Berkeley, CA, USA: University of California Press, 1958.
[13] Hamidi SG, Jahangiri JM. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions C R Acad

Sci Paris Ser I 2014; 352: 17-20.
[14] Hayami T, Owa S. Generalized Hankel determinant for certain classes. Int J Math Anal 2010; 52: 2473-2585.
[15] Jahangiri JM, Hamidi SG. Coefficient estimates for certain classes of bi-univalent functions. Int J Math Math Sci

2013; 2013: 190560.
[16] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
[17] Magesh N, Yamini J. Coefficient bounds for a certain subclass of bi-univalent functions. Int Math Forum 2013; 8:

1337-1344.
[18] Magesh N, Yamini J. Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions.

arXiv:1508.07462v2, 2015.
[19] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent

function in |z| < 1. Arch Ration Mech Anal 1969; 32: 100-112.
[20] Noonan JW, Thomas DK. On the second Hankel determinant of areally mean p -valent functions. T Am Math Soc

1976; 223: 337-346.
[21] Noor KI. Hankel determinant problem for the class of functions with bounded boundary rotation. Rev Roum Math

Pures Et Appl 1983; 28: 731-739.
[22] Orhan H, Magesh N, Balaji VK. Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions. Afr

Math 2016; 27: 889-897.
[23] Orhan H, Magesh N, Yamini J. Bounds for the second hankel determinant of certain bi-univalent functions. Turk

J Math 2016; 40: 679-687.
[24] Pommerenke C. Univalent Functions. Göttingen, Germany: Vandenhoeck & Ruprecht, 1975.
[25] Srivastava HM, Bulut S, Çağlar M, Yağmur N. Coefficient estimates for a general subclass of analytic and bi-

univalent functions. Filomat 2013; 27: 831-842.
[26] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math

Lett 2010; 23: 1188-1192.
[27] Xu QH, Gui YC, Srivastava HM. Coefficient estimates for a certain subclass of analytic and bi-univalent functions.

Appl Math Lett 2012; 25: 990-994.
[28] Zaprawa Z. On Fekete-Szegö problem for classes of bi-univalent functions. Bull Belg Math Soc Simon Stevin 2014;

21: 169-178.

2884


	Introduction
	Preliminary results
	Main results

