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Abstract: Let R be a ring and a, b, c ∈ R . We give a novel characterization of group inverses (resp. EP elements) by the
properties of right (resp. left ) c -regular inverses of a and discuss the relation among the strongly left (b, c) -invertibility
of a , the right ca -regularity of b , and the (b, c) -invertibility of a . Finally, we investigate the sufficient and necessary
condition for a ring to be a strongly left min-Abel ring by means of the (b, c) -inverse of a .
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1. Introduction
Let S be a semigroup and a, b, c ∈ S . Then a is said to be (b, c) -invertible [4] if there exists y ∈ bSy ∩ ySc

such that yab = b and cay = c . Such an y is called a (b, c) -inverse of a , which is always unique if it exists,
denoted by a||(b,c) .

In [5], Drazin considered the following problem: in any semigroup S (or any associative ring ) with unit
element 1 , and for any given a ∈ S , the properties 1 ∈ Sa (1 ∈ aS ) of left (right) invertibility are often useful as
weaker versions of ordinary two-sided invertibility, and it is natural to seek corresponding one-sided versions for
at least some types of generalized invertibility. Hence, Drazin in [5] introduced the left (b, c) -inverse as follows:
let S be any semigroup and let a, b, c ∈ S . Then a is said to be left (b, c) -invertible if b ∈ Scab , or equivalently
if there exists x ∈ Sc such that xab = b , in which case any such x will be called a left (b, c) -inverse of a . The
left (b, c) -inverse of a is not unique [5, Example 3.4]. Dually, a is said to be right (b, c) -invertible if c ∈ cabS ,
or equivalently if there exists z ∈ bS such that caz = c , and any such z will be called a right (b, c) -inverse of
a . Related studies of the one-sided (b, c) -inverse can be found in [7] and [12]. The main purpose of this article
is to do some further research on the left (right) (b, c) -inverse of a . Therefore, the following concepts need to
be introduced.

Let R be a ring and a, c ∈ R . If there exists b ∈ R such that a = abca (a = acba), then we say that
a is right (left) c -regular and b is a right (left) c -regular inverse of a . We denote by a−c (ca− ) the set of all
right (left) c-regular inverses of a .

In [1], an element a of a ring R is said to be group invertible if there is a# ∈ R such that

aa#a = a , a#aa# = a# , aa# = a#a .
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Denote by R# the set of all group invertible elements of R . An element a ∈ R is group invertible if and only
if a ∈ a2R ∩Ra2 [3, 6]. Clearly, a ring R is strongly regular if and only if R = R# .

An involution a 7−→ a∗ in a ring R is an antiisomorphism of degree 2 ; that is,

(a∗)∗ = a , (a+ b)∗ = a∗ + b∗ , (ab)∗ = b∗a∗ .

A ring R with an involution ∗ is called a ∗ -ring. An element p ∈ R is called a projection if p2 = p = p∗ .
An element a† in a ∗ -ring R is called the Moore–Penrose inverse (or MP-inverse) [9] of a , if

aa†a = a , a†aa† = a† , aa† = (aa†)∗ , a†a = (a†a)∗ .

In this case, we say a is MP-invertible in R . The set of all MP-invertible elements of R is denoted by R† .
In [2], an element a of a ∗ -ring R is said to be EP if a ∈ R† and a†a = aa† , which is equivalent to

a ∈ R# ∩R† and a# = a† . Denote by REP the set of all EP-invertible elements of R .
An idempotent e ∈ R is called a left minimal idempotent if Re is a minimal left ideal of R . We denote

by MEl(R) the set of all left minimal idempotents of R , and e is said to be left (right) semicentral if ae = eae

(ea = eae) for each a ∈ R . A ring R is said to be (strongly) left min-Abel [10] if either MEl(R) = ∅ or every
element e of MEl(R) is (right) left semicentral.

In this paper, we first study the right (left) c-regular elements by means of left and right (b, c) -inverses
of a . Next, with the help of right (left) c -regular elements, we characterize group invertible elements, MP-
invertible elements, and EP elements. Finally, we give some new characterizations of directly finite rings, left
min-Abel rings, and strongly left min-Abel rings.

2. c-Regular inverses

Recall that an element a of a ring R is said to be regular if there exists b ∈ R such that a = aba . Such a b is
called an inner inverse of a . Clearly, if b is an inner inverse of a , then so is bab . We denote by a− the set of
all inner inverses of a .

Let R be a ring. For any a, c ∈ R , if there exists b ∈ R such that a = abca (a = acba), then we say that
a is right (left) c-regular and b is right (left) c -regular inverse of a . Obviously, if a is right c-regular, then a

is regular, but the converse is not true from the following example.

Example 2.1 Let R = T2(Z2) =

{(
x y
0 z

) ∣∣∣∣x, y, z ∈ Z2

}
. It is easy to check that A =

(
1 1
0 0

)
is regular.

Take C =

(
0 1
0 0

)
. Then CA = 0 . Consequently, we obtain that ABCA ̸= A , for any B ∈ R . That is, A

is not right C -regular.

In order to study the (b, c) -inverse of a in the next section, we first discuss right (left) c -regular inverses
of a in this section.

Remark 2.2 Let R be a ring. For each a, b, c ∈ R , if b is a right c-regular inverse of a , so is bcab . In fact,
a(bcab)ca = (abca)bca = abca = a . If a is right (left) c-regular, then we denote by a−c (ca

− ) the set of all
right (left) c-regular inverses of a .

3079



ZHAO et al./Turk J Math

Example 2.3 Let a be a regular element of a ring R . If d ∈ a− , then a is right ad-regular and left da-regular.
In fact, a = ada = ad(ad)a = a(da)da , which implies d ∈ a−ad and d ∈da a− .

If a is regular and b ∈ a− , then b ∈ a−ab ∩ baa
− . Conversely, if a is regular and b ∈ R satisfying

b ∈ a−ab ∩ baa
− , then b ∈ a− ?

From the following example, we know that the above question is not true.

Example 2.4 Let R = T2(Z3) =

{(
x y
0 z

) ∣∣∣∣x, y, z ∈ Z3

}
. Write A =

(
1 1
0 0

)
, B =

(
2 1
0 0

)
∈ R . It

is easy to check that ABA =

(
2 2
0 0

)
̸= A and ABABA = A . Therefore, B ∈ A−

AB ∩ BAA
− , but B /∈ A− .

Proposition 2.5 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) ab is right c-regular and Rb = Rab ;
(2) ab is right c-regular and Rb = Rcab ;
(3) cab is regular and Rb = Rcab .

Proof (1) ⇒ (2) Since ab is right c-regular, we get ab = ab(ab)−c cab . This clearly forces Rb = Rab =

Rab(ab)−c cab ⊆ Rcab ⊆ Rab . That is, Rb = Rcab .
(2) ⇒ (3) Since ab is right c -regular, we have ab = ab(ab)−c cab . Premultiplying by c , we have

cab = cab(ab)−c cab . Hence, cab is regular.
(3) ⇒ (1) Since Rb = Rcab , b = vcab for some v ∈ R . From the hypothesis that cab is regular, we

have b = vcab(cab)−cab = b(cab)−cab . Premultiplying by a , we get ab = ab(cab)−cab . Therefore, ab is right
c -regular, and (cab)− ⊆ (ab)−c . 2

Corollary 2.6 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) ab is right c-regular, and Rb = Rab ;
(2) b ∈ bRcab ;
(3) b is right ca-regular.

Proof (1) ⇒ (2) Write b = vab . We deduce that

b = vab = vab(ab)−c cab = b(ab)−c cab ∈ bRcab.

(2) ⇒ (3) It is obvious.
(3) ⇒ (1) Since b = bb−cacab , we obtain that ab = abb−cacab . Hence, ab is right c -regular and b−ca ⊆ (ab)−c .

Moreover, we have Rb = Rbb−cacab ⊆ Rab ⊆ Rb . That is, Rb = Rab . 2

Proposition 2.7 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) b ∈ bRcab ;
(2) r(ca) ∩ bR = 0 , and b is right ca-regular;
(3) r(ab) = r(b) , and ab is right c-regular.
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Proof (1) ⇒ (2) Set b = bvcab . Then b is right ca -regular. Assume that t ∈ r(ca)∩ bR . Writing t = bs , we
get cabs = cat = 0 . Moreover, we get bs = bvcabs = 0 . This means that t = 0 .

(2) ⇒ (3) For any y ∈ r(ab) , we have aby = 0 . Premultiplying by c , we get caby = 0 . It follows
that by ∈ r(ca) ∩ bR = 0 . Thus, y ∈ r(b) . This gives r(b) ⊇ r(ab) . However, r(b) ⊆ r(ab) is clear. Hence,
r(b) = r(ab) . Moreover, we get that ab is right c -regular, because b = bb−cacab .

(3) ⇒ (1) Since ab = ab(ab)−c cab , we obtain that 1−(ab)−c cab ∈ r(ab) = r(b) . Therefore, b = b(ab)−c cab ∈
bRcab . 2

Next, we give some characterizations of group invertible elements, MP-invertible elements, and EP-
elements with c-regular inverses.

Proposition 2.8 Let R be a ring and a ∈ R# . Then a−
a# = {x ∈ R|a#a = axa#} .

Proof Since a ∈ R# , a# exists and a = a(a#a)a#a . It follows that a is right a# -regular and a#a ∈ a−
a# .

Thus, a−
a# is not empty. For any x ∈ a−

a# , we have a = axa#a . This gives aa# = axa#aa# = axa# . That
is, x ∈ {x ∈ R|a#a = axa#} . Conversely, if x ∈ {x ∈ R|a#a = axa#} , then a = a#a2 = axa#a . Therefore,
x ∈ a−

a# . 2

Proposition 2.9 Let R be a ring and a be a regular element of R . Then a ∈ R# if and only if there exists
b ∈ R such that b ∈ a−ba ∩ aba

− .

Proof Assume that a ∈ R# . Then a# exists. Write b = a# ∈ R . Then we have

ab(ba)a = aa#(a#a2) = aa#a = a ,
a(ab)ba = a2a#a#a = aa#a = a ,

which imply b ∈ a−ba ∩ aba
− .

Conversely, since b ∈ a−ba ∩ aba
− , we get ab(ba)a = a = a(ab)ba , which yields a ∈ a2R ∩Ra2 . Therefore,

a ∈ R# . 2

Proposition 2.10 Let R be a ring and a ∈ R . Then the following conditions are equivalent:

(1) a ∈ R# ;
(2) there exist x ∈ R and d ∈ xa

− , such that xa
− = a−x is not empty and dxa = axd .

Proof (1) ⇒ (2) Assume that a ∈ R# . Then a# exists and a#a ∈ a−
a# ∩a#a− . Thus, a−

a# and a#a− are not
empty. Set y ∈ a#a− . We get a = aa#ya . Premultiplying by a , we have a2 = a2a#ya = aya . We conclude
from the above equality that a#a = aa# = a2(a#)2 = aya(a#)2 = aya# , which gives y ∈ a−

a# , and hence that

a#a− ⊆ a−
a# . In the same manner we can see that a−

a# ⊆ a#a− , and so a#a− = a−
a# . Since a#a ∈ a#a− , we

have (a#a)a#a = a#a = aa# = aa#(aa#) = aa#(a#a) . Thus, the conclusion is proved by writing x = a#

and d = a#a .
(2) ⇒ (1) Let x ∈ R satisfy xa

− = a−x , which is not empty, and let d ∈ xa
− satisfy dxa = axd . Then

a = axda = adxa . Write y = dxaxd . We get
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aya = adxaxda = axda = a ,
yay = dxaxdadxaxd = dxadxaxd = dxaxd = y ,
ya = dxaxda = dxa = axd = adxaxd = ay .

Consequently, a ∈ R# and a# = y = dxaxd . 2

Proposition 2.11 Let R be a ring and a ∈ R . Then the following conditions are equivalent:

(1) a ∈ R† ;
(2) there exists x ∈ a−ax such that ax and xa are projections.

Proof (1) ⇒ (2) From the hypothesis that a ∈ R† , a† exists. Write x = a† . It is easy to check that the
element x satisfies condition (2).

(2) ⇒ (1) Assume that there exists x ∈ a−ax such that ax and xa are projections. Then we get
ax(ax)a = a , ax = axax = (ax)∗ , and xa = xaxa = (xa)∗ . Thus, axa = (axax)a = a . Take b = xax . Then
we obtain

ab = axax = ax = (ax)∗ = (ab)∗ ,
ba = xaxa = xa = (xa)∗ = (ba)∗ ,

aba = axa = a , bab = (xax)(ax) = xax = b .

Consequently, a ∈ R† and a† = b = xax . 2

Proposition 2.12 Let R be a ring and a ∈ R . Then the following conditions are equivalent:

(1) a ∈ REP ;
(2) a ∈ R† , a†a− = a−

a† , and there exists d ∈ a†a− , such that da†a = aa†d = aa† .

Proof (1) ⇒ (2) Suppose that a ∈ REP . Then a ∈ R# ∩ R† . From the proof of Proposition 2.10, we
know that a#a− = a−

a# and there exists d ∈ a#a− such that da#a = aa#d = aa# . Accordingly, we have

d ∈ a†a− = a−
a† , which satisfies da†a = aa†d = aa† .

(2) ⇒ (1) Let d ∈ a†a− satisfy da†a = aa†d = aa† . Then a = aa†da = ada†a follows from
d ∈ a†a− = a−

a† . Write x = da†d . Then we get

axa = ada†da = ada†aa†da = aa†da = a ,
xax = da†dada†d = d(a†aa†)dada†d = da†(aa†da)da†d = da†ada†d = da†ad(a†aa†)d = da†(ada†a)a†d =

da†aa†d = da†d = x ,
ax = ada†d = ad(a†aa†)d = aa†d = da†a = da†(aa†da) = d(a†aa†)da = da†da = xa .

Thus, we deduce that a ∈ R# and a# = x = da†d . Premultiplying by a , we obtain that aa# = ada†d =

aa†d = aa† . That is, a ∈ REP by [8, Theorem 7.3]. 2

Recall that a ring R is quasinormal [11] if eR(1− e)Re = 0 for each e2 = e ∈ R . The following theorem
gives a new characterization of quasinormal rings. At the end of this section, we study the quasinormal rings
and the directly finite rings by means of c-regular inverses.
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Theorem 2.13 Let R be a ring and e be an idempotent of R . Then the following conditions are equivalent:

(1) R is a quasinormal ring;
(2) if there exists an idempotent g ∈ R such that e−eg ̸= ∅ , then e−eg = e−ge .

Proof ⇒ Assume that R is quasinormal and e2 = e, g2 = g ∈ R with e−eg ̸= ∅ . Choose x ∈ e−eg . Then
e = exege . Note that R is quasinormal. Then ex(1−e)ge ∈ eR(1−e)Re = 0 , and it follows that exge = exege .
Hence, e = exge = ex(ge)e , which implies that x ∈ e−ge , so e−eg ⊆ e−ge . Conversely, assume that y ∈ e−ge , and
then e = ey(ge)e = eyge . Since R is quasinormal, eyge = eyege = ey(eg)e , one obtains that y ∈ e−eg . Hence,
e−ge ⊆ e−eg .

⇐ Assume that e2 = e ∈ R . For any a, b ∈ R , write g = e + (1 − e)ae, f = e + eb(1 − e) . Then
eg = e = fe, ge = g, ef = f, g2 = g , and f2 = f . Note that e = ef(eg)e . Then f ∈ e−eg , by hypothesis, and we
have e−eg = e−ge . Hence, f ∈ e−ge ; that is, e = ef(ge)e = fg = e+ eb(1− e)ae , and we have eb(1− e)ae = 0 for
any a, b ∈ R . Therefore, eR(1− e)Re = 0 , and so R is quasinormal. 2

Proposition 2.14 Let R be a ring. Then the following conditions are equivalent:

(1) R is a directly finite ring;
(2) if ab = 1 for a, b ∈ R , then a−b = {1} .

Proof (1) ⇒ (2) Assume that ab = 1 . Then we get a = a(ba)ba . That is, ba ∈ a−b . Since R is a directly
finite ring, we see that ba = 1 . It follows that a and b are invertible and 1 ∈ a−b . For any x ∈ a−b , we conclude
that a = axba = ax . Thus, x = 1 . Hence, a−b = {1} .

(2) ⇒ (1) Let a, b ∈ R satisfy ab = 1 . By the hypothesis, we know a−b = {1} . As ba ∈ a−b , we have
ba = 1 . Consequently, R is a directly finite ring. 2

Proposition 2.15 Let R be a ring. Then the following conditions are equivalent:

(1) R is a directly finite ring;
(2) if ab = 1 for a, b ∈ R , then a−b = b−a .

Proof (1) ⇒ (2) Suppose that R is a directly finite ring and ab = 1 . Then we could find a−b = {1} by
Proposition 2.14. Since ba = 1 , we have b−a = {1} by Proposition 2.14. Hence, a−b = b−a .

(2) ⇒ (1) Let a, b ∈ R satisfy ab = 1 . Then a−b = b−a follows from the hypothesis. We have ba ∈ a−b =

b−a , because a = a(ba)ba . That is, b = b(ba)ab = b2a . This clearly forces 1 = ab = ab2a = (ab)(ba) = ba .
Therefore, R is a directly finite ring. 2

3. Characterizations of the (b, c)-inverse of a

Let R be a ring. For each a, b, c ∈ R , a is said to be strongly left (b, c) -invertible if there exists x ∈ bRc such
that b = xab . Such an x is called a strongly left (b, c) -inverse of a . Clearly, if x is a strongly left (b, c) -inverse

of a , then so is xax . Denote by a
s∥(b,c)
l the set of all strongly left (b, c) -inverses of a .
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In this section, we will consider the relation among the strongly left (b, c) -invertibility of a , the right
ca -regularity of b , and the (b, c) -invertibility of a .

In the following, we give an example in which the strongly left (b, c) -inverse of a is not unique.

Example 3.1 Let R = M2(Z2) . Write a = x2 =

(
1 1
0 0

)
, b = x1 =

(
1 0
0 0

)
, c =

(
1 1
1 0

)
,

v =

(
1 0
0 1

)
, and u =

(
0 1
0 0

)
. It is obvious that x1 = buc ∈ bRc , x2 = bvc ∈ bRc , and x1ab = b = x2ab .

This gives x1, x2 ∈ a
s∥(b,c)
l , but x1 ̸= x2 .

Proposition 3.2 Let R be a ring and a, b, c ∈ R . If a is strongly left (b, c)-invertible and x ∈ a
s∥(b,c)
l , then

we have:

(1) x ∈ bRx ∩ xRc ;
(2) xax = x ;
(3) cax is left ab-regular;
(4) xR = bR ;
(5) r(c) ⊆ r(x) .

Proof It follows from x ∈ a
s∥(b,c)
l that x ∈ bRc and b = xab . Write x = bvc . Then we get xax = xabvc =

bvc = x . This gives bvcax = xax = x = bvc = xabvc . Thus, x ∈ bRx ∩ xRc . Furthermore, we have

cax = caxax = cabvcax = ca(xab)vcax = cax(ab)vcax.

Hence, cax is left ab -regular. We have xR = bR , because xR = bvcR ⊆ bR = xabR ⊆ xR . Finally, for any
d ∈ r(c) , we have cd = 0 . Premultiplying by bv , we get xd = bvcd = 0 . That is, d ∈ r(x) . 2

We first give some equivalent conditions for an element to be strongly left (b, c) -invertible.

Corollary 3.3 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) a is strongly left (b, c)-invertible;

(2) there exists x ∈ R , such that xax = x , l(x) = l(b) , Rx ⊆ Rc , and xR ⊆ bR . In this case, x ∈ a
s∥(b,c)
l .

Proof (1) ⇒ (2) Fix x ∈ a
s∥(b,c)
l . It follows from Proposition 3.2 that

xax = x , xR = bR , Rx ⊆ Rc , and l(x) = l(b) .

(2) ⇒ (1) Since 1 − xa ∈ l(x) = l(b) , it follows that b = xab . Write x = vc = bs . Then we obtain

x = xax = (bs)a(vc) ∈ bRc . Hence, a is strongly left (b, c) -invertible. This means that x ∈ a
s∥(b,c)
l . 2

Corollary 3.4 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) a is strongly left (b, c)-invertible;
(2) there exists x ∈ R such that xax = x , xR = bR , and Rx ⊆ Rc .
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Proof (1) ⇒ (2) Let x ∈ a
s∥(b,c)
l . Then b = xab and x ∈ bRc . This gives that bR = xR and Rx ⊆ Rc .

Again, by Proposition 3.2 , we have that x = xax .
(2) ⇒ (1) Since xR = bR and Rx ⊆ Rc , one has that x = xax ∈ bRc . By 1− xa ∈ l(x) = l(b) , we get

that b = xab . Thus, a is strongly left (b, c) -invertible, and x ∈ a
s∥(b,c)
l . 2

Corollary 3.5 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) a is strongly left (b, c)-invertible;
(2) b ∈ bRcab .

Proof (1) ⇒ (2) It is clear from the definition of strongly left (b, c) -invertibility.
(2) ⇒ (1) Set b = bvcab and x = bvc . Then we get x ∈ bRc and b = xab . That is, a is strongly left

(b, c) -invertible. 2

Next, we discuss when a strongly left (b, c) -invertible element actually becomes a (b, c) -invertible element.

Proposition 3.6 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) a is (b, c)-invertible;

(2) a is strongly left (b, c)-invertible and caa
s∥(b,c)
l = c . In this case, a∥(b,c) ∈ a

s∥(b,c)
l .

Proof (1) ⇒ (2) Set y = a∥(b,c) . It is straightforward that

y ∈ bRy ∩ yRc , y = yay , yab = b , and cay = c .

Thus, y = yay ∈ (bRy)a(yRc) ⊆ bRc . Therefore, a is strongly left (b, c) -invertible, y ∈ a
s∥(b,c)
l , and cay = c .

Now, for each x ∈ a
s∥(b,c)
l , we get l(x) = l(b) = l(y) by Corollary 3.3. We conclude from 1 − xa ∈ l(x) = l(y)

that y = xay , and hence that c = cay = caxay and finally that 1− axay ∈ r(c) ⊆ r(x) by Corollary 3.3. We
thus get x = xaxay = xay = y . Hence, cax = cay = c .

(2) ⇒ (1) Since a is strongly left (b, c) -invertible, there exists x ∈ R such that

x = xax , l(x) = l(b) , Rx ⊆ Rc , xR ⊆ bR , and x ∈ a
s∥(b,c)
l .

It follows that cax = c . Write x = dc = bt . We have

x = xax = btax ∈ bRx , and x = xax = xadc ∈ xRc .

Namely, b = xab because 1 − xa ∈ l(x) = l(b) . Thus, a is (b, c) -invertible and a∥(b,c) = x . It is obvious that

a∥(b,c) = x ∈ a
s∥(b,c)
l . 2

Proposition 3.7 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) a is strongly left (b, c)-invertible and Rc ∩ l(ab) = 0 .

3085



ZHAO et al./Turk J Math

Proof (1) ⇒ (2) It follows from Proposition 3.6 that a is strongly left (b, c) -invertible. Now let a∥(b,c) = y .
Then y = yay , yab = b , and cay = c . Assume that z ∈ Rc ∩ l(ab) . Then we have z = dc and zab = 0 , where
d ∈ R . Thus, dcab = 0 . Set y = bs . Then z = dc = dcay = zay = zabs = 0 .

(2) ⇒ (1) Let x ∈ a
s∥(b,c)
l . Then by Proposition 3.2, we get xax = x , x = bvc , l(x) = l(b) , and

cax = caxaxax = caxa(bvc)ax . Hence, ca− caxabvca ∈ l(x) = l(b) . This gives cab = caxabvcab . We thus get
c− caxabvc ∈ l(ab) ∩ Rc = 0 . This yields that c = caxabvc = caxax = cax . By Proposition 3.6, we have that
a is (b, c) -invertible. 2

Corollary 3.8 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) a is strongly left (b, c)-invertible and l(c) = l(cab) .

Proof (1) ⇒ (2) Take any x ∈ l(cab) . We have xcab = 0 . Thus, xc ∈ Rc ∩ l(ab) = 0 by Proposition 3.7.
That is, x ∈ l(c) .

(2) ⇒ (1) For any y ∈ Rc∩l(ab) , we know that y = dc and yab = 0 , where d ∈ R . Thus, dcab = 0 . This
means that d ∈ l(cab) = l(c) . Therefore, y = dc = 0 . It follows from Proposition 3.7 that a is (b, c) -invertible.

2

Corollary 3.9 Let R be a ring and a, b, c ∈ R . Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) a is strongly left (b, c)-invertible and R = Rc⊕ l(ab) .

Proof Assume that a is (b, c) -invertible. By Proposition 3.7, we know that Rc∩ l(ab) = 0 . Write a∥(b,c) = y .
Then we have y ∈ yRc and b = yab . Hence, ab = ayab . It follows that 1 − ay ∈ l(ab) . We thus get
1 ∈ Ry + l(ab) ⊆ Rc + l(ab) . Then R = Rc + l(ab) . That R = Rc ⊕ l(ab) follows from Proposition 3.7. The
converse is obvious. 2

Corollary 3.10 Let R be a ring and a, b, c ∈ R . If a is (b, c)-invertible, then R = Ra
s∥(b,c)
l ⊕ l(ab) .

Proof Since a is (b, c) -invertible, c = caa
s∥(b,c)
l by Proposition 3.6 and R = Rc ⊕ l(ab) by Corollary

3.9. Hence, R = Ra
s∥(b,c)
l + l(ab) . For any z ∈ Ra

s∥(b,c)
l ∩ l(ab) , we have z = ya

s∥(b,c)
l and zab = 0 ,

where y ∈ R . This gives ya
s∥(b,c)
l ab = 0 . Write a

s∥(b,c)
l = btc for t ∈ R . Since b = a

s∥(b,c)
l ab , we have

z = ya
s∥(b,c)
l = ybtc = ya

s∥(b,c)
l abtc = 0 . The result is Ra

s∥(b,c)
l ∩ l(ab) = 0 . Therefore, R = Ra

s∥(b,c)
l ⊕ l(ab) . 2

Naturally, is the converse of the Corollary 3.10 true? The problem has not yet been solved.

Question 3.11 If a is strongly left invertible and Ra
s∥(b,c)
l ⊕ l(ab) = R , then is a (b, c)-invertible?

4. Left min-Abel ring and (b, c)-inverse of a

This section is devoted to the study of left (resp. strongly left) min-Abel ring.
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Let R be a ring and e2 = e ∈ R . We denote by E(R) the set of all idempotents of R . If Re is a left
minimal ideal of R , then e is called a left minimal idempotent of R . Denote by MEl(R) the set of all left
minimal idempotents of R . If either MEl(R) is an empty set or every element of MEl(R) is left (resp. right)
semicentral in R , then R is called a left (resp. strongly left ) min-Abel ring.

We first give some conditions to ensure that a ring R is a left min-Abel ring, by means of left semicentral
elements and left (b, c) -invertible elements in R .

Lemma 4.1 Let R be a ring and e ∈ MEl(R) a left semicentral idempotent. If e = abe for a, b ∈ R , then
e = bae .

Proof Since e is left semicentral and e = abe , we have e = aebe . Thus, ae ̸= 0 . This gives Re = Rae .
Writing e = cae for c ∈ R , we can assert that ce = c(aebe) = (cae)be = ebe = be . It is obvious that
bae = beae = ceae = cae = e . 2

Proposition 4.2 Let R be a ring. Then the following conditions are equivalent:

(1) R is a left min-Abel ring;
(2) e−a ⊆ ae

− for any e ∈ MEl(R) and a ∈ R .

Proof (1) ⇒ (2) Assume that R is a left min-Abel ring, e ∈ MEl(R) , and a ∈ R . Fix x ∈ e−a . Then we
have e = (ex)ae . Since R is a left min-Abel ring, we deduce that e is left semicentral. That e = aexe = axe

follows from Lemma 4.1. Thus, e = eaxe . That is, x ∈ ae
− .

(2) ⇒ (1) For any e ∈ MEl(R) and a ∈ R , writing h = (1− e)ae , we can assert that he = h , eh = 0 ,
and h2 = 0 . If h ̸= 0 , then Rh = Re . Taking e = ch for c ∈ R , we get e = eche . That is, c ∈ e−h . From the
hypothesis, we obtain that e−h ⊆ he

− . It follows that c ∈ he
− . We thus get e = ehce = 0 . This contradicts

our assumption. From this, we see that h = 0 . It follows that (1 − e)ae = h = 0 for any a ∈ R . This gives
(1− e)Re = 0 . Consequently, R is a left min-Abel ring.

2

Proposition 4.3 Let R be a ring and k ∈ E(R) . Then the following conditions are equivalent:

(1) k is a left minimal idempotent of R ;
(2) if ak ̸= 0 for a ∈ R , then a is left (k, 1)-invertible.

Proof (1) ⇒ (2) Suppose that k is a left minimal idempotent of R and ak ̸= 0 . Then we get Rk = Rak . It
follows that a is left (k, 1) -invertible.

(2) ⇒ (1) Let 0 ̸= L be any left ideal of R contained in Rk . Then we get 0 ̸= y ∈ L ⊆ Rk . Write
y = ak . It follows that ak ̸= 0 . From the assumption, we know that a is left (k, 1) -invertible and k ̸= 0 . Then
it is easy to see that 0 ̸= Rk ⊆ R1ak = Ry ⊆ L . That is, Rk = L . Hence, Rk is a left minimal ideal of R . 2

Proposition 4.4 Let R be a ring. Then the following conditions are equivalent:

(1) R is a left min-Abel ring;
(2) if ae ̸= 0 for e ∈ MEl(R) and a ∈ R , then there exists c ∈ Re such that e = cae .
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Proof (1) ⇒ (2) Suppose that ae ̸= 0 . It follows from Proposition 4.3 that a is left (e, 1) -invertible. For each

x ∈ a
∥(e,1)
l , we get e = xae . Since R is a left min-Abel ring, we know that e is a left semicentral idempotent,

i.e. e = xeae . Taking c = xe ∈ Re , the result holds.
(2) ⇒ (1) For any e ∈ MEl(R) , if (1− e)Re ̸= 0 , then there exists a ∈ R such that h = (1− e)ae ̸= 0 .

By assumption, there exists c ∈ Re such that e = che for he = h ̸= 0 . Write c = te . It is easy to show that
e = tehe = te(1− e)ae = 0 . It is a contradiction, so we have (1− e)Re = 0 . Hence, R is a left min-Abel ring.
2

Motivated by Propositions 4.2–4.4, in the following, we give the main result for this section.

Theorem 4.5 Let R be a ring. Then the following conditions are equivalent:

(1) R is a strongly left min-Abel ring;
(2) if ea ̸= 0 for e ∈ MEl(R) and a ∈ R , then a is right (e, e)-invertible.

Proof (1) ⇒ (2) We first show that eR is a minimal right ideal of R . Assume that 0 ̸= K is an arbitrary
right ideal of R contained in eR . For every 0 ̸= x ∈ K , we know x = ex . Since R is a strongly left min-Abel
ring, e is a right semicentral idempotent. It follows that x = xe and 0 ̸= Rx = Rxe = Re . Write e = yx and
g = xy , where y ∈ R . It is clear that

g2 = xyxy = xey = xy = g , g = xy = exy = eg and e = (yx)(yx) = ygx .

Moreover, ge = ege = eg = g . It follows that 0 ̸= Rg = Rge ⊆ Re . That is, Rg = Re . Thus, g ∈ MEl(R) .
This means that g is also a right semicentral idempotent. Furthermore, we get

e = ygx = ygxg = eg = g , and eR = gR = xyR ⊆ xR ⊆ K ⊆ eR .

Thus, eR is a minimal right ideal of R .
Now we assume that ea ̸= 0 . Then we get eaR = eR and write e = eac for some c ∈ R . Since e is

central, we have e = eaec , which means that a is right (e, e) -invertible.
(2) ⇒ (1) Suppose that e ∈ MEl(R) . If eR(1 − e) ̸= 0 , then there exists some a ∈ R such that

h = ea(1− e) ̸= 0 . Since eh = h , we have that h is right (e, e) -invertible by (2). This clearly forces e ∈ eheR ,
so e = 0 , which is a contradiction. It follows that eR(1− e) = 0 . Hence, R is a strongly left min-Abel ring. 2

Corollary 4.6 Let R be a ring. Then the following conditions are equivalent:

(1) R is a strongly left min-Abel ring;
(2) for each e ∈ MEl(R) and x, y ∈ R , e = xy implies that e = yx .

Proof (1) ⇒ (2) The proof is straightforward from Theorem 4.5.
(2) ⇒ (1) For any a ∈ R , we denote g = e + ea(1 − e) . It follows that eg = g and ge = e . By

assumption, we get e = ge = eg = g . It is obvious that eR(1− e) = 0 . 2
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