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Abstract: In this paper, a boundary value problem consisting of a delay differential equation of the Sturm–Liouville
type with eigenparameter-dependent boundary conditions is investigated. The asymptotic behavior of eigenvalues is
studied and the parameter of delay is determined by eigenvalues. Then we obtain the connection between the potential
function and the canonical form of the characteristic function.
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1. Introduction
Delay differential equations have multiple applications in science and engineering and are used as models for
a variety of phenomena in physics, chemistry, technology, life sciences, etc. Therefore, this field of differential
equations may be of interest for applied mathematics, multidisciplinary audiences, computational scientists, and
engineers [1,3,6,13]. Moreover, boundary value problems with eigenparameters in boundary conditions appear
in such problems of mathematical physics or mathematical chemistry [12,14].

In this paper, we consider the boundary value problem L := L(q(x), α) consisting of the following
second-order differential equation of Sturm–Liouville type,

y′′(x) + q(x)y(α(x− a)) + λ2y(x) = 0, (1)

on the finite interval [a, b] , together with the following boundary conditions, which depend on the spectral
parameter λ > 0 :

y′(a) + λr1y(a) = 0, (2)

y′(b)− λr2y(b) = 0, (3)

y(h(x, α)) = y(a)ψ(h(x, α)), h(x, α) < a, (4)

where α ∈ (0, 1] is the delay coefficient, 0 < r1 < r2 ≤ 2r1 , h(x, α) = (1− α)a+ αx , q(x) is a real continuous
function on [a, b] , and ψ(x) is an initial function that is continuous and satisfies ψ(a) = 1 .

Boundary value problems consisting of (1) with α = 1 without eigenparameters in boundary conditions
have been studied since the 1930s (for example, see [2,9–11,17,18], and for more details see also [4,7]). In [8,15],
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inverse Sturm–Liouville problems with boundary conditions depending on an eigenparameter without delay
parameter were investigated. Furthermore, in the special case r1 = r2 = 0 , problem (1)–(3) was studied in
[5,16].

In this paper, the asymptotic behavior of positive eigenvalues of delay boundary value problem L are
investigated by the characteristic function associated with L . Then we will answer the following question:
“Which spectral characteristics of L uniquely determine the parameter of delay α?” Furthermore, we obtain
the connection between the potential q and infinite product representation of the characteristic function.

2. Preliminary results

We consider the boundary value problem L = L(q(x), α) of the form (1)–(4). Let ζ(x, λ) be the unique solution
of (1) on [a, b] , satisfying (4) and the following initial conditions:

ζ(a, λ) = 1, ζ ′(a, λ) = −λr1 . (5)

Equation (1) with the conditions (5) is equivalent to the following integral equation:

ζ(x, λ) = cosλr1(x− a)− sinλr1(x− a)− 1

λr1

∫ x

a

q(t) sinλr1(x− t)ζ(h(t, α), λ)dt. (6)

Now we consider ζ(h(x, α), λ) ≡ ψ(h(x, α)) while h(x, α) < a . Therefore, we have the following theorem.

Theorem 1 The eigenvalues of the boundary value problem L are simple.

Proof Let λ0 be an eigenvalue of L and let y(x, λ0) be an eigenfunction corresponding to λ0 . It follows from
(2) and (5) that the Wronskian of y(x, λ0) and ζ(x, λ0) is zero, so y(x, λ0) and ζ(x, λ0) are linearly dependent
on [a, b] , i.e. ζ(x, λ0) is an eigenfunction corresponding to λ0 . This completes the proof. 2

According to Theorem 1, the nontrivial solution ζ(x, λ) satisfies condition (4) at the left point. Moreover,
from (3), the characteristic function of L is obtained as follows:

C(λ) ≡ ζ ′(b, λ)− λr2ζ(b, λ). (7)

Thus, the eigenvalue set of L coincides with the set of real zeros of C(λ) . Put c0 = (1 − α)(b − a) and

qb =
∫ b

a
|q(t)|dt . Assume that ψ(x) is extended to the interval [a− c0, a] continuously.

Lemma 1 Let λr1 ≥ 2qb . Then,

|ζ(x, λ)| ≤ max{ψ0, 2
√
2}, x ∈ [a− c0, a],

where

ψ0 := max
a−c0≤x≤a

|ψ(x)|.

Proof Put ζλ = max |ζ(x, λ)| . Therefore, according to (4) and (6), we have one of the following inequalities:

ζλ ≤
√
2 +

1

λr1
ζλqb, ζλ ≤

√
2 +

1

λr1
ψ0qb,
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for every λ > 0 . Under the hypothesis of Lemma 1 we have ζλ ≤ max{ψ0, 2
√
2} . This together with (4)

completes the proof. 2

Theorem 2 The boundary value problem L has an infinite number of positive eigenvalues.

Proof According to (6), we have

ζ ′(x, λ) =
∂ζ

∂x
= −λr1 sinλr1(x− a)− λr1 cosλr1(x− a)

−
∫ x

a

q(t) cosλr1(x− t)ζ(h(t, α), λ)dt. (8)

Substituting (6) and (8) into (7), and dividing both of sides of equation by λr1 , we obtain

−λr2−r1{cosλr1(b− a)− sinλr1(b− a)− 1

λr1

∫ b

a

q(t) sinλr1(b− t)ζ(h(t, α), λ)dt} (9)

− sinλr1(b− a)− cosλr1(b− a)− 1

λr1

∫ b

a

q(t) cosλr1(b− t)ζ(h(t, α), λ)dt = 0.

Hence,

−λr2−r1{cosλr1(b− a)− sinλr1(b− a)}+O(1) = 0,

and consequently,

−λr2−r1 sin(π
4
− λr1(b− a)) +O(1) = 0. (10)

Put λr1 = η + π
4(b−a) . Then (10) can be written as follows:

η sin(η(b− a)) +O(1) = 0. (11)

Since equation (11) has an infinite number of zeros at large values of η , Theorem 2 is proved. 2

3. Main results
In this section, we examine the asymptotic behavior of the eigenvalues of the boundary value problem L for
sufficiently large λ . Also, the coefficient of delay α is uniquely determined by the given sequence of eigenvalues
of L , and we obtain the connection between the potential q and canonical form of the characteristic function
C(λ) .

According to Lemma 1 and Theorem 2, we have

ζ(x, λ) = O(1), a− c0 ≤ x ≤ b, (12)

and moreover, while λ < ∞ , ∂
∂λζ(x, λ) is continuous in a ≤ x ≤ b . Also, for a− c0 ≤ x ≤ a and arbitrary λ ,

ζ(x, λ) ≡ ψ(x) and ∂
∂λ (ζ(x, λ)) ≡ 0 .
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Lemma 2 For 0 < r1 ≤ 1 and a− c0 ≤ x ≤ b , the following equality is valid:

∂

∂λ
ζ(x, λ) = O(1). (13)

Proof Let us derive (6) with respect to λ , and then

∂ζ

∂λ
(x, λ) = − 1

λr1

∫ x

a

q(t) sinλr1(x− t)
∂ζ

∂λ
(h(t, α), λ)dt+ F (x, λ), (14)

where |F (x, λ)| ≤ F0 , and F0 is a constant. Take

τλ := max
a−c0≤x≤b

|∂ζ
∂λ

(x, λ)|.

Since ∂ζ
∂λ (x, λ) is continuous in [a− c0, b] , τλ exists. Relation (14) gives us

τλ ≤ 1

λr1
qbτλ + F0.

Now assume λr1 > 2qb . Therefore, τλ ≤ 2F0 , and we arrive at (13). 2

Notation 1 Let n be a large enough natural number. If |n2 − λr1 | < π
4(b−a) , then we say η is in proximity to

n2 .

Theorem 3 For sufficiently large values of natural number n , the boundary value problem L has only a unique
eigenvalue in proximity of n2 .

Proof By (9) and (10), the expression

−λ−2r1

∫ b

a

q(t) sinλr1(b− t)(h(t, α), λ)dt− λ−r1

∫ b

a

q(t) cosλr1(b− t)(h(t, α), λ)dt (15)

is indicated by O(1) . Hence, relations (12)–(13) imply that the derivative of (15) is bounded at sufficiently
large λ . On the other hand, for sufficiently large η , the zeros of (10) are in the proximity of integers. Now we
consider the function C(η) as

C(η) = η sin(η(b− a)) +O(1).

Then, for sufficiently large values of n , C ′(η) ̸= 0 and η is in the proximity of n2 . Hence, the proof is completed
by Rolle’s theorem and (11). 2

Relation (10) has a central role to approximate the eigenvalues of L . Thus, for sufficiently large n , we
denote the eigenvalues in proximity of n2/r1 with λn = (ηn + π

4(b−a) )
1/r1 by Theorem 3, where ηn = n2 + εn

for sufficiently small εn . Consequently,

λr1n = n2 + εn +
π

4(b− a)
. (16)
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Let b− a = mπ , m ∈ N . Thus, substituting ηn into (11) we obtain

(n2 + δn)| sin(mδnπ)| = O(1).

Hence, for sufficiently large n , sin(mδnπ) = O( 1
n2 ) , and so δn = O( 1

n2 ) . Thus,

ηn = n2 +O(
1

n2
). (17)

For obtaining more certain asymptotic expressions that depend on the coefficient of delay α , the following
lemma is useful.

Lemma 3 Assume that q′(x) exists and is bounded on [a, b] . Then, for a ≤ x ≤ b ,

∫ x

a

q(t) sinλr1(t+ h(t, α))dt = O(λ−r1),∫ x

a

q(t) cosλr1(t+ h(t, α))dt = O(λ−r1).

Theorem 4 If b − a = mπ , m ∈ N , q′(x) exists and is bounded on [a, b] . Then, for sufficiently large n , the
asymptotic form of the eigenvalues of the boundary value problem L is

λn = {n2 + 1

4m
− 1

2mπn2
(1 +

∫ a+mπ

a

q(t) cos{(n2 + 1

4m
)(1− α)(t− a)}dt) +O(

1

n4
)}1/r1 . (18)

Proof According to (6) and (12) we have

ζ(x, λ) =
√
2 sin(π

4
− λr1(x− a)) +O(λ−2r1).

Hence,

ζ(h(t, α), λ) =
√
2 sin(π

4
− λr1(h(t, α)− a)) +O(λ−2r1). (19)

Substituting (19) into (9) we obtain

λr2−r1{cos(mπλr1)− sin(mπλr1)} − λr2−2r1 sin(λr1b)
∫ b

a

q(t) cos(λr1t){cos(λr1h(t, α))− sin(λr1h(t, α))}dt

− λr2−2r1 cos(λr1b)
∫ b

a

q(t) sin(λr1t){cos(λr1h(t, α))− sin(λr1h(t, α))}dt

− 1

λr1
cos(λr1b)

∫ b

a

q(t) cos(λr1t){cos(λr1h(t, α))− sin(λr1h(t, α))}dt

− 1

λr1
sin(λr1b)

∫ b

a

q(t) sin(λr1t){cos(λr1h(t, α))− sin(λr1h(t, α))}dt

− sin(mπλr1)− cos(mπλr1) +O(λr2−4r1) = 0.
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This together with the following identities,

sin(λr1t) sin(λr1h(t, α)) = 1

2
{cosλr1(t− h(t, α))− cosλr1(t+ h(t, α))},

cos(λr1t) cos(λr1h(t, α)) = 1

2
{cosλr1(t− h(t, α)) + cosλr1(t+ h(t, α))},

sin(λr1t) cos(λr1h(t, α)) = 1

2
{sinλr1(t− h(t, α)) + sinλr1(t+ h(t, α))},

cos(λr1t) sin(λr1h(t, α)) = 1

2
{sinλr1(t+ h(t, α))− sinλr1(t− h(t, α))},

and with Lemma 3, yields

sin(π
4
−mπλr1){λr2−r1 +

1

2

∫ a+mπ

a

q(t) sinλr1(t− h(t, α))dt}

− cos(π
4
−mπλr1){1 + 1

2

∫ a+mπ

a

q(t) cosλr1(t− h(t, α))dt} = O(λr1−r2). (20)

Take

η = λr1 − 1

4m
. (21)

Then equality (20) gives us

tan(mπη) = − 4m

1 + 4mη
{1 + 1

2

∫ a+mπ

a

q(t) cosλr1(t− h(t, α))dt}+O(
1

η2
).

Hence, it follows from (17) and assuming

ηn = n2 + εn (22)

that

tan((n2 + εn)mπ) = tan(mπεn) = − 1

n2
{1 + f(n, α)}+O(

1

n4
),

where

f(n, α) =
1

2

∫ a+mπ

a

q(t) cos{(n2 + 1

4m
)(t− h(t, α))}dt. (23)

Therefore, for sufficiently large n we obtain

εn = − 1

mπn2
{1 + f(n, α)}+O(

1

n4
).

Substituting εn into (22) together with (21), we arrive at (18). 2

Now we ask: Does the given sequence of eigenvalues λn , n ≥ 1 , uniquely determine the parameter of
delay α? Under some additional conditions, we will show that the answer of this question is positive.
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Theorem 5 Let r2 = 2r1 , b − a = mπ , m ∈ N . If the eigenvalues of the boundary value problem L of the
form (18) are given, then the parameter of delay α ∈ (0, 1) is unambiguously determined.

Proof First, we denote the sequences C±(λn) as follows:

C±(λn) = {λr1n±1 − (n± 1)2 − 1

4m
}(n± 1)2.

Therefore, according to (18), we get

C±(λn) = − 1

mπ
{1 + f(n± 1, α)}+O(

1

n2
),

where f(n, α) is defined in (23). Hence, we obtain the following system:

2mπ(C±(λn)− 1) = sinΘ

∫ a+mπ

a

q(t) sinΘ±(t, n)dt

− cosΘ
∫ a+mπ

a

q(t) cosΘ±(t, n)dt+O(
1

n2
), (24)

where

Θ = (1 +
1

4m
)αa, Θ±(t, n) = {(n± 1)2 +

1

4m
}(1− α)t+ (n2 ± 2n)(α− 1)a− (1 +

1

4m
)a.

Let us choose the subsequence nk of the sequence n , n ∈ N , such that

Cnk
:=

∫ a+mπ

a

q(t) sinΘ+(t, nk)dt .

∫ a+mπ

a

q(t) cosΘ−(t, nk)dt

−
∫ a+mπ

a

q(t) sinΘ−(t, nk)dt .

∫ a+mπ

a

q(t) cosΘ+(t, nk)dt+O(
1

n2k
) ̸= 0.

Then the sequence

C̃(λnk
) :=

2mπ

Cnk

{(C+(λnk
)− 1)

∫ a+mπ

a

q(t) sinΘ−(t, nk)dt

−(C−(λnk
)− 1)

∫ a+mπ

a

q(t) sinΘ+(t, nk)dt}+O(
1

n2k
)

is well defined. Moreover, from (24), we obtain

cosΘ = lim
k→∞

C̃(λnk
) =: γ.

Consequently,

α =
4m

a(1 + 4m)
arccos γ,

and the determination of α is proved. 2

In the next theorem, we obtain a relation between the potential function q and the infinite product form
of the characteristic function C(λ) .
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Theorem 6 Let r1 = 2 , b− a = mπ , m ∈ N ; then the following relation is valid:

{mλ(
∞∏

n=1

λ2n
n2

)

∞∏
n=1

(1− m2λ2

λ2n
)− sin(mπλ)} =

sin(mπλ)
2mπ

∫ a+mπ

a

q(t)B1(λ, t, α)dt

+
π cos(mπλ)

8m2λ
+

sin(mπλ)
m2λ2

{m2λ3ℓ(λ, α) +
1

8m
− π2

6
− 1}

−π cos(mπλ)
2m3λ3

+
1

m4λ4
{ sin(mπλ)

2
− π2

6
}+O(

cos(mπλ)
λ5

), (25)

as λ→ +∞ .

Proof Since for r1 = 2 the characteristic function C(λ) is entire in λ (see (7)), using Hahamard’s theorem,
C(λ) can be represented by its zeros λn , n ∈ N , in the form of an infinite product as follows:

C(λ) = C(λ, α) = H

∞∏
n=1

(1− m2λ2

λ2n
)

=
H

mπ
(

∞∏
n=1

n2

λ2n
) . mπ

∞∏
n=1

{(1− m2λ2

n2
) +

λ2n − n2

n2
}. (26)

Put H1 = H
mπ

∏∞
n=1

n2

λ2
n

. Then we have

C(λ, α) = mπH{
∞∏

n=1

(1− m2λ2

n2
) +

∞∑
k=1

∏
n ̸=k

(1− m2λ2

n2
)
λ2k − k2

k2

+

∞∑
i=2

∑
k1<k2<...<ki

∏
n ̸=k1,k2,...,ki

(1− m2λ2

n2
)

i∏
s=1

λ2ks
− k2s
k2s

}

= H1{
sin(mπλ)

λ
+

sin(mπλ)
λ

∞∑
n=1

λ2n − n2

n2 −m2λ2
+ ℓ(λ, α)}, λ ∈ C \ Z. (27)

It follows from (11) and (27) that H1 = λ2 . Hence, H = mπλ2
∏∞

n=1
λ2
n

n2 . Substituting this into (26), and using
(27), equation (26) becomes

∞∑
n=1

λ2n − n2

n2 −m2λ2
=

(mπ
∏∞

n=1
λ2
n

n2 )
∏∞

n=1(1−
m2λ2

n2 )

sin(mπλ) − 1− λℓ(λ, α)

sin(mπλ) , λ ∈ C \ Z, (28)

where

ℓ(λ, α) = λ sin(mπλ)
∞∑
i=2

∑
1≤k1<k2<...<ki

i∏
s=1

λ2ks
− k2s

k2s −m2λ2
.
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On the other hand, we can write

∞∑
n=1

λ2n − n2 − 1
4m

n2 −m2λ2
=

∞∑
n=1

λ2n − n2 − 1
4m − f̃(n,α)

n2

n2 −m2λ2
+

∞∑
n=1

f̃(n, α)

n2(n2 −m2λ2)

=

∞∑
n=1

f̃(n, α)

n2(n2 −m2λ2)
+

1

m2λ2

∞∑
n=1

(λ2n − n2 − 1

4m
− f̃(n, α)

n2
)

n2

n2 −m2λ2
− 1

m2λ2
Q(α), (29)

where

f̃(n, α) =
1

mπ
(1 + f(n, α)), (30)

Q(α) =

∞∑
n=1

(λ2n − n2 − 1

4m
− f̃(n, α)

n2
).

Moreover, from (18) with r1 = 2 ,

λ2n − n2 − 1

4m
− f̃(n, α)

n2
= O(

1

n4
).

Thus,

1

m2λ2

∞∑
n=1

(λ2n − n2 − 1

4m
− f̃(n, α)

n2
)

n2

n2 −m2λ2
≈ 1

m2λ2

∞∑
n=1

1

n2(n2 −m2λ2)

= − π2

6m4λ4
− π cot(mπλ)

2m5λ5
+

1

2m6λ6
= − π2

6m4λ4
+O(

cot(mπλ)
m5λ5

), λ→ ∞. (31)

Based on (29) and (31) we get

∞∑
n=1

λ2n − n2 − 1
4m

n2 −m2λ2
=

∞∑
n=1

f̃(n, α)

n2(n2 −m2λ2)
− 1

m2λ2
Q(α)

− π2

6m4λ4
+O(

cot(mπλ)
m5λ5

), λ→ ∞. (32)

Further, using (23) and (30), we calculate

∞∑
n=1

f̃(n, α)

n2(n2 −m2λ2)
=

1

2mπ

∫ a+mπ

a

q(t)B1(λ, t, α)dt+B0(λ), (33)

where

B0(λ) =

∞∑
n=1

1

n2(n2 −m2λ2)
= − π2

6m2λ2
− π

2m3λ3
cot(mπλ) + 1

2m4λ4
,

B1(λ, t, α) =

∞∑
n=1

cos{(n2 + 1
4m )(t− h(t, α))}

n2(n2 −m2λ2)
.
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On the other hand,

∞∑
n=1

λ2n − n2 − 1
4m

n2 −m2λ2
=

∞∑
n=1

λ2n − n2

n2 −m2λ2
− 1

4m
(

1

2m2λ2
− π

2mλ
cot(mπλ)).

This together with (28) yields

∞∑
n=1

λ2n − n2 − 1
4m

n2 −m2λ2
=

mπ

sin(mπλ) (
∞∏

n=1

λ2n
n2

)

∞∏
n=1

(1− m2λ2

λ2n
)− 1− λℓ(λ, α)

sin(mπλ)

− 1

8m3λ2
+

π

8m2λ
cot(mπλ). (34)

Finally, substituting (33) into (32), and in view of the right side of (34), we arrive at (25). 2
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