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Abstract: In this paper we discuss the connection between conditional expectation type operators and integral operators.
A variant of Schur’s lemma is established and we obtain modular inequalities for a class of conditional expectation type
operators.
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1. Introduction
Let (Ω,S,P) be a probability space and let X be a real-valued random variable on Ω . The expectation
EX of X is defined as

∫
Ω
XdP if the integral exists. Let A be a sub-σ -algebra of S . The conditional

expectation of X given A is defined as a random variable E(X|A) , measurable for A , such that for all A ∈ A ,∫
A
E(X|A)dP =

∫
A
XdP , if such a E(X|A) exists. For any X ∈ L1(Ω,S,P) and any sub-σ -algebra A of S ,

a conditional expectation E(X|A) exists, and if Y and Z are conditional expectations of X given A , then
Y = Z almost everywhere (see [5, 10.1.1 Theorem]). The operator E(·|A) : L1(Ω,S,P) → L1(Ω,A,P) is called
the conditional expectation operator induced by A . If X is also A -measurable, then E(X|A) = X and hence
E(·|A) is a projection from L1(Ω,S,P) onto L1(Ω,A,P) . It is known that E(·|A) is a bounded linear operator
and for each 1 ≤ p ≤ ∞ , if X ∈ Lp(Ω,S,P) , then E(X|A) ∈ Lp(Ω,A,P) and ∥E(X|A)∥p ≤ ∥X∥p . For more
important properties and detailed discussion, we refer the readers to [1,3–5,16].

Recently, Estaremi and Jabbarzadeh established the boundedness and compactness properties for weighted
conditional expectation type operators. Let (Ω,S, µ) be a complete σ -finite measure space and let A be a sub-
σ -algebra of S . Let L0(Ω,S, µ) be the vector space of all equivalence classes of almost everywhere finite-valued
measurable functions on Ω and D = {f ∈ L0(Ω,S, µ) : E(|f ||A) ∈ L0(Ω,A, µ)} . Take u,w ∈ D and define
T =MwE(·|A)Mu : Lp(Ω,S, µ) → L0(Ω,S, µ) , where Mu and Mw are multiplication operators. Consider the
boundedness of T : Lp(Ω,S, µ) → Lq(Ω,S, µ) . In [9, Theorem 2.1], it was proved that for 1 < p = q < ∞ , T
is bounded if and only if

{E(|w|p|A)}1/p{E(|u|p
∗
|A)}1/p

∗
∈ L∞(Ω,A, µ),

where 1/p+ 1/p∗ = 1 . In the case p = q = 1 , the condition is

uE(|w||A) ∈ L∞(Ω,S, µ).
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The authors showed in [9, Theorem 2.2] that for 1 < q < p <∞ , T is bounded if and only if

{E(|w|q|A)}1/q{E(|u|p
∗
|A)}1/p

∗
∈ Lr(Ω,A, µ),

where 1/r = 1/p∗ − 1/q∗ . In the case 1 < p < q <∞ , the conditions for the boundedness of T were obtained
in [9, Theorem 2.3]. The cases q = 1 or p = 1 were also considered in [9, Theorem 2.4]. Similar results for
composition Lambert type operators can be found in [10]. Necessary and sufficient conditions for Lambert type
operators and conditional type operators to be compact on Lp spaces can be found in [8,9,11]. The boundedness
and compactness properties of operators of the form E(·|A)Mu on Orlicz spaces were established in [7].

The theory of boundedness for integral operators on weighted Lp spaces has been developed well. Let
(E, µ) and (T, λ) be two σ -finite measure spaces and let k be a nonnegative measurable function defined on
(E × T, µ× λ) . We define the integral operator Tk for nonnegative measurable functions g on (T, λ) by

Tkg(x) =

∫
T

k(x, t)g(t)dλ(t), x ∈ E. (1.1)

Weighted inequalities of the form

{∫
E

Tkg(x)
qu(x)dµ(x)

}1/q

≤ C

{∫
T

g(t)pv(t)dλ(t)

}1/p

, (1.2)

where 1 ≤ p, q ≤ ∞ , play an important role in analysis and have been investigated by many authors. Here u and
v are nonnegative locally integrable weight functions on (E, µ) , (T, λ) , respectively. A natural generalization
of (1.2) is modular inequalities of the form

{∫
E

ϕq(Tkg(x))u(x)dµ(x)

}1/q

≤ C1

{∫
T

ϕp(C2g(t))v(t)dλ(t)

}1/p

(1.3)

for all nonnegative functions g defined on (T, λ) , where 0 < p, q <∞ and ϕ : [0,∞) → [0,∞) . See [6] and the
references given there.

It is known that conditional expectation type operators are closely related to a class of integral operators
(see [13, Example 2.4 & Example 4.2] and [5, §10.1 Problem 9]). Since Schur’s lemma is a useful way to
investigate the boundedness of operators by choosing a suitable function that satisfies certain inequalities (see
[2,12,15,17,18]), we are interested in applying this method to obtain modular inequalities of the form (1.3) for
conditional expectation type operators. In this paper we discuss the connection between conditional expectation
type operators and integral operators. Then a variant of Schur’s lemma is established and we obtain sufficient
conditions for inequalities of the form (1.3) to hold, where Tk is replaced by a class of conditional expectation
type operators and ϕ1/s is quasiconvex for some s ≥ max{1/p, 1/q} .

Throughout this paper all functions are assumed to be measurable on their domains. For constants c1
and c2 , we write c1 ≲ c2 if there exists a constant d > 0 such that c1 ≤ dc2 . We use the convention that
00 = ∞0 = 1 and ∞/∞ = 0/0 = 0 · ∞ = 0 . For 1 ≤ p ≤ ∞ , p∗ is defined by 1/p+ 1/p∗ = 1 .

2. Conditional expectation type operators and integral operators
In this section we show the connection between integral operators and conditional expectation type operators.
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Definition 2.1 ([5, §10.1 Problem 5]) Let (Ω,S,P) be a probability space and let A be a sub-σ -algebra of S .
A random variable X on (Ω,S,P) is said to be independent of A if for every A ∈ A and measurable set B in
the range of X ,

P(X−1(B) ∩A) = P(X−1(B))P(A). (2.1)

Note that if X is real-valued and independent of A , with E|X| < ∞ , then E(X|A) = EX almost
everywhere.

Lemma 2.2 ([5, §10.1 Problem 9]) Let (Ω,S,P) be a probability space, (E,ME) and (T,MT ) two measurable
spaces, Φ : Ω → E and Ψ : Ω → T measurable functions, and f a real-valued measurable function on
(E × T,ME

⊗
MT ) with

∫
Ω
|f(Φ,Ψ)|dP(ω) < ∞ . Let A be a sub-σ -algebra of S . Suppose that Φ is

measurable for A and Ψ is independent of A . Let λ = P ◦Ψ−1 on (T,MT ) . Then we have

E(f(Φ,Ψ)|A) =

∫
T

f(Φ, y)dλ(y). (2.2)

Choose (E,ME) = (T,MT ) = (Ω,S) in Lemma 2.2. Suppose that k is a nonnegative measurable
function on (Ω × Ω,S

⊗
S) . Let A be a sub-σ -algebra of S and suppose that Φ : Ω → Ω is measurable

for A and Ψ : Ω → Ω is independent of A . Let g be a nonnegative S -measurable function on Ω with∫
Ω
k(Φ,Ψ)g(Ψ)dP(ω) <∞ . Define λ = P ◦Ψ−1 on (Ω,S) . By Lemma 2.2 with f(x, t) = k(x, t)g(t) , we have

E(k(Φ,Ψ)g(Ψ)|A)(ω) =

∫
Ω

k(Φ(ω), y)g(y)dλ(y) for P -a.e. ω ∈ Ω. (2.3)

Hence, E(k(Φ,Ψ)g(Ψ)|A) can be written as an integral operator for g .
In the following we show that integral operators of the form (1.1) can also be written as a conditional

expectation type. Let (E,ME , µ) and (T,MT , λ) be two σ -finite measure spaces. Let Ω = E × T and let
S = ME

⊗
MT be the product σ -algebra. Suppose that k is a nonnegative measurable function on (Ω,S) . For

nonnegative measurable functions g on (T,MT , λ) , define Tkg(x) =
∫
T
k(x, t)g(t)dλ(t) for x ∈ E . Suppose that

there exist positive measurable functions u and v on E and T , respectively, such that
∫
E
udµ =

∫
T
vdλ = 1 .

Define dP1 = udµ , dP2 = vdλ , and P = P1 × P2 . Then (Ω,S,P) is a probability space. Note that
k(x, t)v(t)−1g(t) is S -measurable on Ω and we write Tkg(x) =

∫
T
k(x, t)v(t)−1g(t)dP2(t) for x ∈ E . Define

A = {A × T : A ∈ ME} . Then A is a sub-σ -algebra of S . Here we show that Tkg can be written as
E(kv−1g|A) . Define Φ : Ω → E and Ψ : Ω → T by Φ(x, t) = x and Ψ(x, t) = t , respectively. It is easy to show
that Φ is measurable for A . On the other hand, for D ∈ A and D2 ∈ MT , D = D1 × T for some D1 ∈ ME

and Ψ−1(D2) = E ×D2 . Then

P(D ∩Ψ−1(D2)) = P(D1 ×D2) = P1(D1)P2(D2) = P(D)P(Ψ−1(D2)).

By Definition 2.1 we see that Ψ is independent of A . Let f(x, t) = k(x, t)v(t)−1g(t) for (x, t) ∈ Ω . By the
definitions of Φ and Ψ , we have f(Φ,Ψ)(ω) = f(ω) for ω = (x, t) ∈ Ω . Since P ◦ Ψ−1 = P2 , by Lemma 2.2
we see that if

∫
Ω
|f(ω)|dP(ω) <∞ then for (x, t) ∈ Ω ,

E(kv−1g|A)(x, t) = E(f(Φ,Ψ)|A)(x, t) =

∫
T

f(Φ(x, t), y)dP2(y) = Tkg(x).

This result is also given in [13, Example 4.2].
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3. Modular inequalities for conditional expectation type operators

In this section we prove modular inequalities for conditional expectation type operators of the form (2.3) . Let
(Ω,S,P) be a probability space and let A be a sub-σ -algebra of S . Suppose that Φ : Ω → Ω is measurable for
A and Ψ : Ω → Ω is independent of A . Suppose that k is a nonnegative measurable function on (Ω×Ω,S

⊗
S)

such that E(k(Φ,Ψ)) <∞ and E(k(Φ,Ψ)|A)(ω) = 1 for P -a.e. ω ∈ Ω . Let g be a nonnegative S -measurable
function on Ω with E(k(Φ,Ψ)g(Ψ)) <∞ . Define λ = P ◦Ψ−1 . We consider modular inequalities of the form

{∫
Ω

ϕq(E(k(Φ,Ψ)g(Ψ)|A)(ω))u(ω)dP(ω)

}1/q

≤ C1

{∫
Ω

ϕp(C2g(y))v(y)dλ(y)

}1/p

, (3.1)

where 0 < p, q < ∞ , ϕ : [0,∞) → [0,∞) , u is a nonnegative function on Ω , and v is a positive and finite
function on Ω .

Since E(k(Φ,Ψ)) <∞ , by (2.3) we have E(k(Φ,Ψ)|A)(ω) =
∫
Ω
k(Φ(ω), y)dλ(y) . By Schur’s lemma [12,

Appendix I.1 Lemma] and the condition that E(k(Φ,Ψ)|A)(ω) = 1 for P -a.e. ω ∈ Ω , we see that in the case
ϕ(x) = x , 1 < p = q < ∞ , and u = v = 1 , if supy∈Ω

∫
Ω
k(Φ(ω), y)dP(ω) = B < ∞ , then (3.1) holds with

C1 = B1/p and C2 = 1 . Moreover, by [12, Appendix I.2 Lemma] we see that the same case of (3.1) holds for
0 < C1 < ∞ and C2 = 1 if and only if for all B > C1 there is a measurable function w on Ω that satisfies
0 < w <∞ λ -a.e., E(k(Φ,Ψ)w(Ψ)) <∞ , 0 < E(k(Φ,Ψ)w(Ψ)|A) <∞ P -a.e., and such that∫

Ω

k(Φ(ω), y)[E(k(Φ,Ψ)w(Ψ)|A)(ω)]p/p
∗
dP(ω) ≤ Bpw(y)p/p

∗
. (3.2)

Here we apply a variant of Schur’s lemma obtained in [15] to establish (3.1) .

Definition 3.1 ([14, Definition 1.1.6])We say that ϕ : [0,∞) → [0,∞) is quasiconvex if there exist a convex
function ψ and a constant ℓ > 0 such that ψ(t) ≤ ϕ(t) ≤ ℓψ(ℓt) for t ≥ 0 . Define sϕ = sup{s >

0|ϕ1/s is quasiconvex.} . If ϕ1/s is not quasiconvex for any s > 0 , we define sϕ = 0 .

The following theorem is an extension of [15, Corollary 2.3] and the method that is used to prove [15,
Theorem 2.2] can also be applied to prove this theorem.

Theorem 3.2 Let 0 < p, q < ∞ , ϕ : [0,∞) → [0,∞) , and max{1/p, 1/q} < sϕ ≤ ∞ . Let s be a finite
constant in the range max{1/p, 1/q} < s ≤ sϕ such that ϕ1/s is quasiconvex. Let 1 < β ≤ min{sp, sq} .
Suppose that there exist 0 ≤ m ≤ β∗ , 0 < D < ∞ , and a positive and finite function w on Ω such that
E(k(Φ,Ψ)mw(Ψ)v(Ψ)1−(sp)∗) <∞ and

Hm
s,βw(y) ≤ Dw(y)q(s−1/p) for λ− a.e. y ∈ Ω, (3.3)

where

Hm
s,βw(y) =

∫
Ω

k(Φ(ω), y)(1−m/β∗)squ(ω)

(
E(k(Φ,Ψ)mw(Ψ)v(Ψ)1−(sp)∗ |A)(ω)

)sq/β∗

dP(ω). (3.4)

Then (3.1) holds with
C1 ≲ D1/qE(w(Ψ)v(Ψ)1−(sp)∗)(sp−β)/(βp). (3.5)
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Proof If ϕ1/s is quasiconvex, then there exist a constant ℓ > 0 and a convex function ψ such that
ψ(t) ≤ ϕ(t)1/s ≤ ℓψ(ℓt) for t ≥ 0 . Since E(k(Φ,Ψ)|A)(ω) = 1 for P -a.e. ω ∈ Ω , Jensen’s inequality
and (2.3) imply that

ϕ1/s(E(k(Φ,Ψ)g(Ψ)|A)(ω)) ≤ℓψ(E(k(Φ,Ψ)(ℓg)(Ψ)|A)(ω)) = ℓψ

(∫
Ω

k(Φ(ω), y)(ℓg)(y)dλ(y)

)
≤ℓ

∫
Ω

k(Φ(ω), y)ψ(ℓg(y))dλ(y)

for P -a.e. ω ∈ Ω and∫
Ω

ϕq(E(k(Φ,Ψ)g(Ψ)|A)(ω))u(ω)dP(ω) ≤ ℓsq
∫
Ω

(∫
Ω

k(Φ(ω), y)h(y)dσ(y)

)sq

u(ω)dP(ω), (3.6)

where h(y) = ψ(ℓg(y))v(y)(sp)
∗−1 and dσ(y) = v(y)1−(sp)∗dλ(y) . Hölder’s inequality with indices β and β∗

implies∫
Ω

k(Φ(ω), y)h(y)dσ(y) ≤
(∫

Ω

k(Φ(ω), y)(1−m/β∗)βh(y)βw(y)1−βdσ(y)

)1/β(∫
Ω

k(Φ(ω), y)mw(y)dσ(y)

)1/β∗

.

By (3.6) , Minkowski’s integral inequality with index sq/β , and (3.3) , we have{∫
Ω

ϕq(E(k(Φ,Ψ)g(Ψ)|A)(ω))u(ω)dP(ω)

}1/q

≤ℓs
{∫

Ω

h(y)β(Hm
s,βw(y))

β/(sq)w(y)1−βdσ(y)

}s/β

≤ℓsD1/q

{∫
Ω

h(y)βw(y)1−β/(sp)dσ(y)

}s/β

≤ℓsD1/q

{∫
Ω

w(y)v(y)1−(sp)∗dλ(y)

}(sp−β)/(βp){∫
Ω

h(y)spdσ(y)

}1/p

.

The last inequality is based on Hölder’s inequality with indices sp/β and (sp/β)∗ . By the equality∫
Ω

w(y)v(y)1−(sp)∗dλ(y) =

∫
Ω

w(Ψ(ω))v(Ψ(ω))1−(sp)∗dP(ω) = E(w(Ψ)v(Ψ)1−(sp)∗)

and the inequality ∫
Ω

h(y)spdσ(y) ≤
∫
Ω

ϕp(ℓg(y))v(y)dλ(y),

we have (3.1) with (3.5) . 2

In the case u = v = 1 and m = sqβ∗/(sq + β∗) , we have m = (1−m/β∗)sq and conditions (3.3)–(3.4)
can be reduced to ∫

Ω

k(Φ(ω), y)m
(
E(k(Φ,Ψ)mw(Ψ)|A)(ω)

)sq/β∗

dP(ω) ≤ Dw(y)q(s−1/p) (3.7)

for λ -a.e. y ∈ Ω . In particular, in the case s = 1 , p = q , and β = p , we have m = 1 and (3.7) is reduced to
the form (3.2) .
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