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Abstract: The main purpose of the present paper is to study the geometry of transversal lightlike submanifolds
and radical transversal lightlike submanifolds of metallic semi-Riemannian manifolds. We investigate the geometry of
distributions and obtain necessary and sufficient conditions for the induced connection on these manifolds to be a metric
connection. We also obtain characterization of transversal lightlike submanifolds of metallic semi-Riemannian manifolds.
Finally, we give two examples.
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1. Introduction
Lightlike submanifolds are one of the most interesting topics in differential geometry. It is well known that a
submanifold of a Riemannian manifold is always a Riemannian one. Contrary to that case, in semi-Riemannian
manifolds the induced metric by the semi-Riemann metric on the ambient manifold is not necessarily nondegen-
erate. Since the induced metric is degenerate on lightlike submanifolds, the tools that are used to investigate
the geometry of submanifolds in the Riemannian case are not favorable in the semi-Riemannian case and so the
classical theory cannot be used to define any induced object on a lightlike submanifold. The main difficulties
arise from the fact that the intersection of the normal bundle and the tangent bundle of a lightlike submani-
fold is nonzero. In 1996, Duggal and Bejancu [14] put forward the general theory of lightlike submanifolds of
semi-Riemannian manifolds in their book.

In order to resolve the difficulties that arise while studying lightlike submanifolds, they introduced a
nondegenerate distribution called screen distribution to construct a lightlike transversal vector bundle that does
not intersect its lightlike tangent bundle. It is well known that a suitable choice of screen distribution gives
rises to many substantial results in lightlike geometry. Many authors have studied the geometry of lightlike
submanifolds [2–4, 16–18, 29, 33, 34, 37] in different manifolds. For further reading we refer to [14, 15] and the
references therein.

Manifolds with various geometric structures are convenient to study submanifold theory [21, 30, 31, 35].
In recent years, one of the most studied manifold types are Riemannian manifolds with metallic structures.
Metallic structures on Riemannian manifolds allow many geometric results to be given on a submanifold.

As a generalization of the golden mean, which contains the silver mean, the bronze mean, the copper
mean, the nickel mean, etc., the metallic means family was introduced by de Spinadel [12] in 2002. The positive
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solution of the equation given by

x2 − px− q = 0,

for some positive integer p and q is called a (p, q) -metallic number [9, 11], which has the form

σp,q =
p+

√
p2 + 4q

2
.

For p = q = 1 and p = 2, q = 1 , it is well known that we have the golden mean ϕ = 1+
√
5

2 and silver mean

σ2,1 = 1 +
√
2 , respectively . The metallic mean family plays an important role in establishing a relationship

between mathematics and architecture. For example, the golden mean and silver mean can be seen in the sacred
art of Egypt, Turkey, India, China, and other ancient civilizations [13].

Goldberg, Yano, and Petridis in [25] and [23] introduced polynomial structures on manifolds. As some
particular cases of polynomial structures Hretcanu and Crasmareanu defined the golden structure [6–8, 28] and
some generalizations of this called metallic structure [22]. Being inspired by the metallic mean, the notion of
metallic manifold N̆ was defined in [22] by a (1, 1) -tensor field J̆ on N̆ , which satisfies J̆2 = pJ̆+qI , where I is
the identity operator on the Lie algebra χ(N̆) of vector fields on N̆ and p , q are fixed positive integer numbers.
Moreover, if (N̆ , g) is a Riemannian manifold endowed with a metallic structure J̆ such that the Riemannian
metric ğ is J̆ -compatible, i.e. ğ(J̆V,W ) = ğ(V, J̆W ), for any V,W ∈ χ(N̆) , then (ğ, J̆) is called a metallic
Riemannian structure and (N̆ , ğ, J̆) is a metallic Riemannian manifold. The metallic structure on the ambient
Riemannian manifold provides important geometrical results on the submanifolds, since it is an important tool
while investigating the geometry of submanifolds. Invariant, antiinvariant, semiinvariant, slant, and semislant
submanifolds of a metallic Riemannian manifold were studied in [5, 26, 27] and the authors obtained important
characterizations on submanifolds of metallic Riemannian manifolds.

One of the most important subclasses of metallic Riemannian manifolds is the golden Riemannian
manifolds. Many authors have studied golden Riemannian manifolds and their submanifolds in recent years
(see [6–8, 19, 20, 32, 36]). Poyraz Önen and Yaşar [34] initiated the study of lightlike geometry in golden
semi-Riemannian manifolds by investigating lightlike hypersurfaces of golden semi-Riemannian manifolds. Acet
introduced lightlike hypersurfaces in metallic semi-Riemannian manifolds [1].

Motivated by the studies on submanifolds of metallic Riemannian manifolds and lightlike submanifolds
of semi-Riemannian manifolds, in the present paper we introduce the transversal lightlike submanifolds of a
metallic semi-Riemannian manifold.

Considering the brief background given above, in this paper, we introduce transversal lightlike subman-
ifolds of metallic semi-Riemannian manifolds and study their differential geometry. The paper is organized
as follows: Section 2 is devoted to basic definitions needed for the rest of the paper. In Section 3 and Sec-
tion 4, we introduce a metallic semi-Riemannian manifold along with its subclasses, namely radical transversal
and transversal lightlike submanifolds, and obtain some characterizations. We investigate the geometry of dis-
tributions and find necessary and sufficient conditions for the induced connection to be a metric connection.
Furthermore, we give two examples.
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2. Preliminaries

A submanifold Ńm immersed in a semi-Riemannian manifold (N̆m+k, ğ) is called a lightlike submanifold if it

admits a degenerate metric g induced from ğ, whose radical distribution RadTŃ is of rank r , where 1 ≤ r ≤ m. Then
RadTŃ = TŃ ∩ TŃ⊥ , where

TŃ⊥ = ∪x∈Ń

{
u ∈ TxN̆ | ğ (u, v) = 0, ∀v ∈ TxŃ

}
.

Let S(TŃ) be a screen distribution that is a semi-Riemannian complementary distribution of RadTŃ in TŃ , i.e.

TŃ = RadTŃ ⊥ S(TŃ).

We consider a screen transversal vector bundle S(TŃ⊥), which is a semi-Riemannian complementary vector

bundle of RadTŃ in TŃ⊥ since, for any local basis {ξi} of RadTŃ , there exists a lightlike transversal vector bundle

ltr(TŃ) locally spanned by {Ni} [14]. Let tr(TŃ) be complementary (but not orthogonal) vector bundle to TŃ in

TN̆⊥ |Ń . Then we have

tr(TŃ) = ltr T Ń⊥S(TŃ⊥),

T N̆ | Ń = S(TŃ)⊥[RadTŃ ⊕ ltr T Ń ] ⊥ S(TŃ⊥).

Although S(TŃ) is not unique, it is canonically isomorphic to the factor vector bundle TŃ/RadTŃ [14].
The following result is important for this paper.

Proposition 2.1 The lightlike second fundamental forms of a lightlike submanifold Ń do not depend on S(TŃ),

S(TŃ⊥) , and ltrT Ń [14].

We say that a submanifold (Ń , g, S(TŃ), S(TŃ⊥)) of N̆ is
Case 1: r-lightlike if r < min{m, k};

Case 2: Co-isotropic if r = k < m; S(TŃ⊥) = {0};

Case 3: Isotropic if r = m = k; S(TŃ) = {0};

Case 4: Totally lightlike if r = k = m; S(TŃ) = {0} = S(TŃ⊥).

The Gauss and Weingarten equations are

∇̆WU = ∇WU + h (W,U) , ∀W,U ∈ Γ(TŃ), (2.1)

∇̆WV = −AV W +∇t
WV, ∀W ∈ Γ(TŃ), V ∈ Γ(tr(TŃ)), (2.2)

where {∇WU,AV W} and
{
h (W,U) ,∇t

WV
}

belong to Γ(TŃ) and Γ(tr(TŃ)), respectively. Here, ∇ and ∇t denote

linear connections on Ń and the vector bundle tr (TŃ) , respectively. Moreover, we have

∇̆WU = ∇WU + hℓ (W,U) + hs (W,U) , ∀W,U ∈ Γ(TŃ), (2.3)

∇̆WN = −ANW +∇ℓ
WN +Ds (W,N) , N ∈ Γ(ltr T Ń), (2.4)

∇̆WZ = −AZW +∇s
WZ +Dℓ (W,Z) , Z ∈ Γ(S(TŃ⊥)). (2.5)
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Denote the projection of TŃ on S(TŃ) by P. Then by using (2.1), (2.3)–(2.5), and the fact that ∇̆ is a metric
connection, we obtain

ğ(hs (W,U) , Z) + ğ(U,Dℓ (W,Z)) = ğ (AZW,U) , (2.6)

ğ (Ds (W,N) , Z) = ğ (N,AZW ) . (2.7)

From the decomposition of the tangent bundle of a lightlike submanifold, we have

∇WPU = ∇∗
WPU + h∗ (W,PU) , (2.8)

∇W ξ = −A∗
ξW +∇∗t

W ξ, (2.9)

for W,U ∈ Γ(TŃ) and ξ ∈ Γ(RadTŃ). By using above equations, we obtain

g
(
hℓ (W,PU) , ξ

)
= g

(
A∗

ξW,PU
)
, (2.10)

g (hs (W,PU) , N) = g (ANW,PU) , (2.11)

g
(
hℓ (W, ξ) , ξ

)
= 0, A∗

ξξ = 0. (2.12)

In general, the induced connection ∇ on Ń is not a metric connection. Since ∇̆ is a metric connection, by using (2.3)
we get

(∇W g) (U, V )= ğ
(
hℓ (W,U) , V

)
+ğ

(
hℓ (W,V ) , U

)
. (2.13)

However, we note that ∇∗ is a metric connection on S(TŃ) .

Fix two positive integers p and q . The positive solution of the equation

x2 − px− q = 0

is an entitled member of the metallic means family [9]–[13]. These numbers, denoted by

σp,q =
p+

√
p2 + 4q

2
, (2.14)

are called (p, q) -metallic numbers.

Definition 2.1 A polynomial structure on a manifold N̆ is called a metallic structure if it is determined by a (1, 1) -tensor

field J̆ , which satisfies
J̆2 = pJ̆ + qI, (2.15)

where I is the identity map on N̆ and p, q are positive integers. Also, if

ğ(J̆W,U) = ğ(W, J̆U) (2.16)

holds, then the semi-Riemannian metric ğ is called J̆ -compatible for every U,W ∈ Γ(TN̆). In this case (N̆ , ğ, J̆) is

called a metallic semi-Riemannian manifold. Also, a metallic semi-Riemannian structure J̆ is called a locally metallic
structure if J̆ is parallel with respect to the Levi-Civita connection ∇̆, that is

∇̆W J̆U = J̆∇̆WU (2.17)

[6].
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If J̆ is a metallic structure, then (2.16) is equivalent to

ğ(J̆W, J̆U) = pğ(J̆W,U) + qğ(W,U), (2.18)

for any W,U ∈ Γ(TN̆).

3. Radical transversal lightlike submanifolds of metallic semi-Riemannian manifolds

In this section, we introduce radical transversal lightlike submanifolds of a metallic semi-Riemannian manifold.

Definition 3.1 Let (Ń , g, S(TŃ), S(TŃ⊥)) be a lightlike submanifold of a metallic semi-Riemannian manifold (N̆ , ğ, J̆) .

If the following conditions are satisfied, then the lightlike submanifold Ń is called a radical transversal lightlike subman-
ifold:

J̆Rad TŃ = ltr T Ń, (3.1)

J̆S(TŃ) = S(TŃ). (3.2)

Proposition 3.1 Let N̆ be a metallic semi-Riemannian manifold. In this case, there is no 1-radical transversal lightlike
submanifold of N̆ .

Proof Let Ń be a 1-radical transversal lightlike submanifold. Hence, RadTŃ = {ξ} and ltrT Ń = {N}. From
equation (2.18), we have

ğ(J̆ξ, ξ) = ğ(ξ, J̆ξ) = 0. (3.3)

On the other hand, from (3.1), since J̆ξ ∈ Γ(TN̆) , we have

ğ(J̆ξ, ξ) ̸= 0,

which contradicts equation (3.3). The proof is completed. 2

Theorem 3.1 Let Ń be a radical transversal lightlike submanifold of a metallic semi-Riemannian manifold N̆ . In this
case, the distribution S(TŃ⊥) is invariant with respect to J̆ .

Proof For V ∈ Γ(S(TŃ⊥)) and ξ ∈ Γ(RadTŃ), from (2.18), we find

ğ(J̆V, ξ) = ğ(V, J̆ξ) = 0,

which implies that there is not a component of J̆V in ltr T Ń .

Similarly, for N ∈ Γ(ltr T Ń) from (2.18), we have

ğ(J̆V,N) = ğ(V, J̆N) =
1

p
ğ(J̆V, J̆N). (3.4)

From the definition of a radical transversal lightlike submanifold, for ξ1 ∈ Γ(RadTŃ) there exists a N1 ∈ Γ(ltr T Ń)

such that

J̆ξ1 = N1.
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If we apply J̆ to the last equation, we can write

pJ̆ξ1 + qξ1 = J̆N1,

which implies that equation (3.4) equals zero. Namely, we see that there is no component of J̆V in RadTŃ .

In a similar way, for W ∈ Γ(S(TŃ)), we obtain

ğ(J̆V,W ) = ğ(V, J̆W ) = 0;

that is, there is no component of J̆V in S(TŃ). Hence, the proof is completed. 2

Let Ń be a radical transversal lightlike submanifold of metallic semi-Riemannian manifold N̆ . Q and T denote
projection morphisms in RadTŃ and S(TŃ), respectively. For any W ∈ Γ(TŃ), we can write

W = TW +QW, (3.5)

where TW ∈ Γ(S(TŃ)) and QW ∈ Γ(RadTŃ). By applying J̆ to (3.5), we have

J̆W = J̆TW + J̆QW. (3.6)

Here, if we write J̆TW = SW and J̆QW = LW, then (3.6) becomes

J̆W = SW + LW, (3.7)

where SW ∈ Γ(S(TŃ)) and LW ∈ Γ(ltr T Ń).

Assume Ń to be a radical transversal submanifold of a locally metallic semi-Riemannian manifold N̆ . From
(2.17), (2.3), and (2.5), we have

∇̆U (SW + LW )=J̆(∇UW + hl(U,W ))+hs(U,W )),

where U,W ∈ Γ(TŃ). If we write J̆hl(U,W ) = K1J̆h
l(U,W ) + K2J̆h

l(U,W ), where K1 and K2 are projection

morphisms of J̆ ltr T Ń in ltr T Ń and RadTŃ , respectively , we find

(
∇USW + hl(U, SW ) + hs(U, SW )

−ALWU +∇l
ULW +Ds(U,LW )

)
=

(
S∇UW + L∇UW + J̆hs(U,W )

+K1J̆h
l(U,W ) +K2J̆h

l(U,W )

)
.

Thus, by equating the tangent, screen transversal, and lightlike transversal parts components, we have

∇USW −ALWU = S∇UW +K2J̆h
l(U,W ),

hs(U, SW ) +Ds(U,LW ) = J̆hs(U,W ),

hl(U, SW ) +∇l
ULW = L∇UW +K1J̆h

l(U,W ).

Therefore, we give the following proposition.
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Proposition 3.2 Let Ń be a radical transversal lightlike submanifold of a locally metallic semi-Riemannian manifold
N̆ . Then we have

(∇US)W = ALWU +K2J̆h
l(U,W ), (3.8)

0 = hS(U, SW ) +Ds(U,LW )− J̆hs(U,W ), (3.9)

0 = hl(U, SW ) +∇l
ULW − L∇UW −K1J̆h

l(U,W ), (3.10)

for W,U ∈ Γ(TŃ).

Theorem 3.2 Let Ń be a radical transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ .
Then the induced connection ∇ on Ń is a metric connection if and only if there is no component of AJ̆ξW in Γ(S(TŃ)),

for W ∈ Γ(TŃ) and ξ ∈ Γ(RadTŃ).

Proof Assume that the induced connection ∇ is a metric connection. In this case, for W ∈ Γ(TŃ) and ξ ∈ Γ(RadTŃ),

∇ξW ∈ Γ(RadTŃ). For any U ∈ Γ(S(TŃ)), we have

g (∇ξW,U) = ğ(∇̆ξW,U) = 0.

If we use (2.18), we find

0 = ğ(J̆∇̆ξW, J̆U)− pğ(∇̆ξW, J̆U),

and from (2.4), we have

ğ(AJ̆ξW, J̆U) = 0,

which implies that there is no component of AJ̆ξW in Γ(S(TŃ)).

Since the converse is obvious, we omit it. 2

Now we shall investigate the conditions for integrability of the distributions involved in the definition of radical
transversal lightlike submanifolds.

Theorem 3.3 Let Ń be a radical transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ .
In this case, the screen distribution is integrable if and only if

hl(U, SW ) = hl(W,SU),

for W,U ∈ Γ(S(TŃ)).

Proof For W,U ∈ Γ(S(TŃ)), if we use equation (3.10), and by interchanging the roles of U and W, we find

hl(U, SW )− hl(W,SU)−K1

(
J̆hl(U,W )− J̆hl(W,U)

)
= L [U,W ] .

Since hl is symmetric, we obtain

hl(U, SW )− hl(W,SU) = L [U,W ] ,

which completes the proof. 2
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Theorem 3.4 Let Ń be a radical transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ .
The radical distribution is integrable if and only if

ALUW = ALWU,

for U,W ∈ Γ(RadTŃ).

Proof For any U,W ∈ Γ(RadTŃ), if we use equation (3.8), we have

−S∇UW = ALWU +K2J̆h
l(U,W ),

by virtue of SW = 0. By changing the roles of U and W, we find

S (∇WU −∇UW ) = ALUW −ALWU +K2

(
J̆hl(W,U)− J̆hl(U,W )

)
.

Since hl is known to be symmetric, we obtain

S [W,U ] = ALUW −ALWU.

Therefore, the proof is completed. 2

Theorem 3.5 Let Ń be a radical transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ .
Then the radical distribution is defined as a totally geodesic foliation if and only if

h∗(W, J̆Z) = ph∗(W,Z),

for W ∈ Γ(RadTŃ), Z ∈ Γ(S(TŃ)).

Proof By using the definition of a lightlike submanifold, it is known that the radical distribution defines totally geodesic
foliation if and only if

ğ (∇WU,Z) = 0,

for any W,U ∈ Γ(RadTŃ) and Z ∈ S(TŃ). Since ∇̆ is a metric connection, if we use (2.3), (2.17), and (2.18), we have

ğ(J̆U, ∇̆W J̆Z)− pğ(J̆U, ∇̆WZ) = 0.

Then, from (2.8), we get

ğ
(
J̆U, h∗(W, J̆Z)− ph∗(W,Z)

)
= 0.

Hence, the proof is completed. 2

Theorem 3.6 Let Ń be a radical transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ .
Then the screen distribution defines a totally geodesic foliation if and only if either

h∗(W, J̆U) +K2h
l(W, J̆U) = p(h∗(W,U) +K2h

l(W,U))

or there is no component of J̆N in ltr T Ń for W,U ∈ Γ(S(TŃ)), N ∈ Γ(ltr T Ń).
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Proof Since the screen distribution defines a totally geodesic foliation if and only if

ğ (∇WU,N) = 0,

for any W,U ∈ Γ(S(TŃ)), N ∈ Γ(ltr T Ń). Here, if we use (2.3), then we have

ğ(∇̆WU,N) = 0.

Also, from (2.18) and (2.17), we have

ğ(∇̆W J̆U, J̆N)− pğ(∇̆WU, J̆N) = 0.

By using (2.3) and (2.8) in the last equation, we find

ğ(h∗(W, J̆U) +K2h
l(W, J̆U), J̆N)− pğ(h∗(W,U) +K2h

l(W,U), J̆N) = 0.

Therefore, we conclude. 2

Example 3.1 Let (N̆ = R5
2, ğ, J̆) be the 5 -dimensional semi-Euclidean space with the semi-Euclidean metric of signature

(−,+,−,+,+) and the structure J̆ given by

J̆(x1, x2, x3, x4, x5) = ((p− σ)x1, σx2, (p− σ)x3, σx4, σx5),

where (x1, x2, x3, x4, x5) is the standard coordinate system of R5
2 . If we take σ =

p+
√

p2+4q

2
, then we have

J̆2 = pJ̆ + qI,

which implies J̆ is a metallic structure on R5
2. Hence, (N̆ = R5

2, ğ, J̆) is a metallic semi-Riemannian manifold. Let Ń

be a submanifold in N̆ defined by
x2 = 0, x4 = σx1 + σx3.

Then TŃ = Sp{W1,W2,W3}, where

W1 =
∂

∂x1
+ σ

∂

∂x4
, W2 =

∂

∂x3
+ σ

∂

∂x4
, W3 =

∂

∂x5
.

It is easy to check that Ń is a lightlike submanifold. Therefore,

RadTŃ = Sp{ξ = σW1 − σW2 + σ
√
2W3},

ltr T Ń = Sp

{
N =

1

2σ2 (2σ − p)

(
(p− σ)

∂

∂x1
− (p− σ)

∂

∂x3
+ σ

√
2

∂

∂x5

)}
,

S(TŃ) = Sp{W3},

and we have

N =
1

4σ3
J̆ξ.

That is, J̆ξ ∈ Γ(ltr T Ń) and J̆W3 = σW3 ∈ S(TŃ) . Therefore, Ń is a radical transversal lightlike submanifold of

(N̆ = R5
2, ğ, J̆) .
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4. Transversal lightlike submanifolds of metallic semi-Riemannian manifolds

In this section, we give a definition of transversal lightlike submanifolds and investigate the geometry of distributions.

Definition 4.1 Let (Ń , g, S(TŃ), S(TŃ⊥)) be a lightlike submanifold of a metallic semi-Riemannian manifold (N̆ , ğ, J̆) .

If the following conditions are satisfied, then the lightlike submanifold Ń is called a transversal lightlike submanifold:

J̆Rad TŃ = ltr T Ń,

J̆(S(TŃ)) ⊆ S(TŃ⊥).

We shall denote the orthogonal complement subbundle to J̆(S(TŃ)) in S(TŃ⊥) by µ.

Proposition 4.1 Let Ń be a transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ . In
this case, the distribution µ is invariant according to J̆ .

Proof For V ∈ Γ (µ) , ξ ∈ Γ(RadTŃ) , and N ∈ Γ(ltr T Ń), from (2.15), (2.16), and (2.18), we have

ğ(J̆V, ξ) = ğ(V, J̆ξ) = 0, (4.1)

and
ğ(J̆V,N) = ğ(V, J̆N) = 0. (4.2)

Therefore, there is no component of J̆V in RadTŃ and ltr T Ń.

Similarly, for W ∈ Γ(S(TŃ)) and V1 ∈ Γ(J̆S(TŃ⊥)), we have

ğ(J̆V,W ) = ğ(V, J̆W ) = 0 (4.3)

and
ğ(J̆V, V1) = ğ(V, J̆V1) = 0, (4.4)

which imply that there is no component of J̆V in S(TŃ) and J̆(S(TŃ)). From (4.1), (4.2), (4.3), and (4.4), we conclude.
2

Proposition 4.2 There does not exist a 1 -lightlike transversal lightlike submanifold of a locally metallic semi-Riemannian
manifold.

Proof Assume that Ń is a 1 -lightlike transversal lightlike submanifold of a locally metallic semi-Riemannian manifold
N̆ . In this case, RadTŃ = Sp {ξ} and ltr T Ń = Sp {N} . From (2.15) and (2.18), we obtain

ğ(J̆ξ, ξ) = ğ(ξ, J̆ξ) = 0. (4.5)

On the other hand, from the fact that J̆Rad TŃ = ltr T Ń , we have J̆ξ ∈ Γ(ltr T Ń) and so we find

ğ(ξ, J̆ξ) ̸= 0,

which contradicts (4.5). The proof is completed. 2

From Definition 4.1 and Proposition 4.2, we have:

Corollary 4.1 Let Ń be a transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ . Then:
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(i) dim(RadTŃ) ≥ 2,

(ii) The transversal lightlike submanifold of 3 -dimensional is 2 -lightlike.

Let Ń be a transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ . Q and T are
projection morphisms in RadTŃ and S(TŃ), respectively. For any W ∈ Γ(TŃ), we can write

W = TW +QW, (4.6)

where TW ∈ Γ(S(TŃ)) and QW ∈ Γ(RadTŃ). If we apply J̆ to (4.6) , we have

J̆W = J̆TW + J̆QW. (4.7)

By writing J̆TW = KW and J̆QW = LW, expression (4.7) is

J̆W = KW + LW. (4.8)

Here, KW ∈ Γ(S(TŃ⊥)) and LW ∈ Γ(ltr T Ń). Besides, let D and E be projection morphisms in J̆S(TŃ) and µ in

S(TŃ⊥) , respectively. For V ∈ Γ(S(TŃ⊥)), we write

V = DV + EV. (4.9)

By applying J̆ to (4.9), we have

J̆V = J̆DV + J̆EV. (4.10)

If we write J̆DV = BV and J̆EV = CV, expression (4.10) becomes

J̆V = BV + CV, (4.11)

where BV ∈ J̆S(TŃ)⊕S(TŃ), CV ∈ Γ (µ) . Since N̆ is a locally metallic semi-Riemannian manifold, then from (2.3),
(2.5), and (4.8), we have

(
−AKWU +∇s

UKW +Dl(U,KW )

−ALWU +∇l
ULW +Ds(U,LW )

)
=

(
K∇UW + L∇UW + J̆hl(U,W )

+Bhs(U,W ) + Chs(U,W )

)
, (4.12)

where U,W ∈ Γ(TŃ). For projection morphisms K1 and K2 of J̆ ltr T Ń in ltr T Ń and RadTŃ , respectively, we write

J̆hl(U,W ) = K1J̆h
l(U,W ) +K2J̆h

l(U,W ).

Also, for projection morphisms S1 and S2 of J̆S(TŃ⊥) in J̆S(TŃ) ⊆ S(TŃ⊥) and S(TŃ), we have

Bhs(U,W ) = S1Bhs(U,W ) + S1Bhs(U,W ).

Therefore, (4.12) can be rewritten as

(
−AKWU +∇s

UKW +Dl(U,KW )

−ALWU +∇l
ULW +Ds(U,LW )

)
=

 K∇UW + L∇UW +K1J̆h
l(U,W )

+K2J̆h
l(U,W ) + S1Bhs(U,W )

+S2Bhs(U,W ) + Chs(U,W )

 .
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If we equate the tangent and transversal parts of the above equation, we get

−AKWU −ALWU = K2J̆h
l(U,W ) + S2Bhs(U,W ), (4.13)

∇s
UKW +Ds(U,LW ) =

(
K∇UW + S1Bhs(U,W )

+Chs(U,W )

)
, (4.14)

Dl(U,KW ) +∇l
ULW = L∇UW +K1J̆h

l(U,W ). (4.15)

Now we shall investigate the integrable of the distributions on transversal lightlike submanifolds.

Theorem 4.1 Let Ń be a transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ . Then
the radical distribution is integrable if and only if

Ds(U,LW ) = Ds(W,LU),

for U,W ∈ Γ(RadTŃ).

Proof For U,W ∈ Γ(RadTŃ), from equation (4.14), by interchanging the roles of W and U , we find

∇s
UKW −∇s

WKU +Ds(U,LW )−Ds(W,LU)−K (∇UW −∇WU) = 0,

since hs is symmetric. Also, we have ∇s
UKW = ∇s

WKU = 0. Then we get

Ds(U,LW )−Ds(W,LU) = K [U,W ] ,

which completes the proof . 2

Theorem 4.2 Let Ń be a transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ . Then
the screen distribution is integrable if and only if

Dl(U,KW ) = Dl(W,KU),

W,U ∈ Γ(S(TŃ)).

Proof From (4.15), the fact that hl is symmetric, and LW = LU = 0 , we have

Dl(U,KW )−Dl(W,KU) = L [U,W ] ,

by interchanging the roles of W,U ∈ Γ(S(TŃ)). Thus, the proof is completed. 2

Theorem 4.3 Let Ń be a transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ . Then
the screen distribution defines a totally geodesic foliation if and only if Dl(W, J̆U) = −phl(W,U) , h∗(W,U) = 0 , and

there is no component of AJ̆UW in RadTŃ, for W,U ∈ Γ(S(TŃ)) , N ∈ Γ(ltr T Ń).

Proof By the definition of a lightlike submanifold, it is known that S(TŃ) defines a totally geodesic foliation if and
only if

ğ (∇WU,N) = 0,

where W,U ∈ Γ(S(TŃ)) and N ∈ Γ(ltr T Ń). If we use (2.16), (2.17), and (2.18), we find

0 = ğ(∇̆W J̆U, J̆N)− pğ(∇̆WU, J̆N).
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Since J̆U ∈ Γ(S(TŃ⊥)) and from equation (2.3) and (2.5), we have

ğ(−AJ̆UW +Dl(W, J̆U), J̆N)− pğ(∇WU + hl(W,U), J̆N) = 0.

Then, by using (2.8), we obtain

ğ(−AJ̆UW +Dl(W, J̆U)− ph∗(W,U)− phl(W,U), J̆N) = 0,

which completes the proof. 2

Theorem 4.4 Let Ń be a transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ . Then
the radical distribution defines a totally geodesic foliation if and only if there is no component in RadTŃ of AJ̆ZW,

that is, either K2J̆h
l(W,Z) = 0 or −AJ̆ZW = S2Bhs(W,Z), for W,U ∈ Γ(RadTŃ) , Z ∈ Γ(S(TŃ)).

Proof The radical distribution defines a totally geodesic foliation if and only if

ğ (∇WU,Z) = 0,

for W,U ∈ Γ(RadTŃ) and Z ∈ S(TŃ). From (2.3), we find

ğ (∇WU,Z) = ğ(∇̆WU,Z) = 0.

Since ∇̆ is a metric connection, from (2.16), (2.17), and (2.18), we have

0 = −ğ(J̆U, ∇̆W J̆Z) + pğ(J̆U, ∇̆WZ).

For J̆Z ∈ Γ(S(TŃ⊥)), from (2.5) and (2.8), we get

0 = ğ(J̆U,AJ̆ZW ) + pğ(J̆U, h∗(W,Z)).

Here, since J̆U ∈ Γ(ltr T Ń), we conclude that either there is no component of AJ̆ZW in RadTŃ or, by changing the

roles of U and W and taking U = Z, we have K2J̆h
l(W,Z) = 0, by virtue of

−AJ̆ZW = S2Bhs(W,Z).

2

Theorem 4.5 Let Ń be a transversal lightlike submanifold of a locally metallic semi-Riemannian manifold N̆ . Then
the induced connection on Ń is a metric connection if and only if

Q1J̆D
s(W, J̆ξ) = pM1J̆h

s(W, ξ),

for W ∈ Γ(TŃ), ξ ∈ Γ(RadTŃ).

Proof For W ∈ Γ(TŃ) and ξ ∈ Γ(RadTŃ), we have

∇̆W J̆ξ = J̆∇̆W ξ.

From equations (2.3) and (2.4), we write

−AJ̆ξW +∇l
W J̆ξ +Ds(W, J̆ξ) = J̆

(
∇W ξ + hl(W, ξ) + hs(W, ξ)

)
.
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If we apply J̆ to the above equation and use (2.15), (4.8), and (4.11), we obtain
−KAJ̆ξW − LAJ̆ξW

+T1J̆∇l
W J̆ξ + T2J̆∇l

W J̆ξ

+Q1J̆D
s
(
W, J̆ξ

)
+Q2J̆D

s
(
W, J̆ξ

)
=

 pJ̆∇W ξ + q∇W ξ+

pJ̆hl(W, ξ) + qhl(W, ξ)

+pJ̆hs(W, ξ) + qhs(W, ξ)

 , (4.16)

for W ∈ Γ(S(TŃ⊥)), where T1 and T2 are projection morphisms of J̆∇l
W J̆ξ in RadTŃ and ltr T Ń, respectively.

Then we have
J̆∇l

W J̆ξ = T1J̆∇l
W J̆ξ + T2J̆∇l

W J̆ξ.

Also, for projection morphisms M1 and M2 of J̆hs(W, ξ) in S(TŃ) and J̆S(TŃ), respectively, then we have

J̆hs(W, ξ) = M1J̆h
s(W, ξ) +M2J̆h

s(W, ξ).

Additionally, we get
J̆Ds(W, J̆ξ) = Q1J̆D

s(W, J̆ξ) +Q2J̆D
s(W, J̆ξ),

where Q1 and Q2 are projection morphisms of J̆Ds(W, J̆ξ) in S(TŃ) and S(TŃ⊥), respectively. By equating the
tangent parts in equation (4.16), we find

1

q

(
T1J̆∇l

W J̆ξ +Q1J̆D
s(W, J̆ξ)− pM1J̆h

s(W, ξ)− pK2J̆h
l(W, ξ)

)
= ∇W ξ.

Therefore, ∇W ξ belongs to RadTŃ if and only if

Q1J̆D
s(W, J̆ξ) = pM1J̆h

s(W, ξ).

This completes the proof. 2

Example 4.1 Let (N̆ = R6
2, ğ, J̆) be the 6 -dimensional semi-Euclidean space with the semi-Euclidean metric of signature

(−,+,+,−,+,+) and the structure

J̆(x1, x2, x3, y1, y2, y3) = ((p− σ)x1, σx2, σx3, (p− σ)y1, σy2, σy3),

where (x1, x2, x3, y1, y2, y3) is the standard coordinate system of R6
2. If we take σ =

p+
√

p2+4q

2
, then we have

J̆2 = pJ̆ + qI,

which implies that J̆ is a metallic structure on R6
2 . Thus, (N̆ = R6

2, ğ, J̆) is a metallic semi-Riemannian manifold. Let

Ń be a submanifold in N̆ defined by
x1 = y2, x2 = y1, x3 = y3.

Then TŃ = Span{W1,W2,W3}, where

W1 = ∂x1 + ∂y2, W2 = ∂x2 + ∂y1, W3 = ∂x3 + ∂y3.

It is easy to check that Ń is a lightlike submanifold. Therefore,

RadTŃ = Span{ξ = W1 +W2},

ltrT Ń = Span{N =
1

2p(2σ − p)

(
((p− σ)2 − q)∂x1 + (σ2 − q)∂x2

+((p− σ)2 − q)∂y1+(σ
2 − q)∂y2

)
},

S(TŃ) = Span{W =
1√
2
W3},
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and we have N = J̆ξ, for 2σ2 − 2pσ + p2 − 2q = 0, where J̆2ξ = pJ̆ξ + qξ. Also, screen transversal bundle S(TŃ⊥)

is spanned by V = 1√
2
(σ∂x3 − σ∂y3) and J̆W ⊆ S(TŃ⊥). Therefore, Ń is a transversal lightlike submanifold of

(N̆ = R6
2, ğ, J̆).
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