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Abstract: We consider statistical submanifolds in Sasaki-like statistical manifolds. We give some examples of invariant
and antiinvariant submanifolds of Sasaki-like statistical manifolds. We prove Chen-like inequality involving scalar
curvature and Chen–Ricci inequality for these kinds of submanifolds.
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1. Introduction
Statistical manifolds have arisen from the study of a statistical distribution. In 1985 Amari [2] introduced a
differential geometric approach for a statistical model of discrete probability distribution. Statistical manifolds
have many applications in information geometry, which is a branch of mathematics that applies the techniques of
differential geometry to the field of probability theory. Some of these applications are statistical inference, linear
systems, time series, neural networks, nonlinear systems, linear programming, convex analysis and completely
integrable dynamical systems, quantum information geometry, and geometric modeling (for more details see
[1]).

Let (M, g) be a Riemannian manifold given by a pair of torsion-free affine connections ∇ and ∇∗ . A
pair of (∇, g) is called a statistical structure on M if

(∇Xg) (Y, Z)− (∇Y g) (X,Z) = 0 (1.1)

holds for X,Y, Z ∈ TM [2]. If a Riemannian manifold (M, g) with its statistical structure satisfies

Xg (Y, Z) = g (∇XY, Z) + g (Y,∇∗
XZ) ,

then it is called a statistical manifold and denoted by (M, g,∇,∇∗) (see [2] and [22]).
Any torsion-free affine connection ∇ always has a dual connection ∇∗ given by

∇+∇∗ = 2∇0, (1.2)

where ∇0 is the Levi-Civita connection of M [2].
The study to find some inequalities between the extrinsic and intrinsic invariants of a submanifold was

started by Chen in 1993 [8]. He established some inequalities in a real space form and now they are well
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known as Chen inequalities. The main extrinsic invariant is the squared mean curvature and the main intrinsic
invariants are the scalar curvature and the Ricci curvature. A relation between the Ricci curvature and the
main extrinsic invariant squared mean curvature for a submanifold in a real space form was given in [10] by
Chen and is now known as the Chen–Ricci inequality. In [14] Mihai and in [19] Matsumoto and Mihai found
relations between Ricci curvature and the squared mean curvature for submanifolds in Sasakian space forms.
Since then, many geometers have studied similar problems for different submanifolds in various ambient spaces;
for example, see [3, 9, 10, 15, 17, 18]. For the collections of the results related to Chen inequalities see also [11]
and the references therein.

Furthermore, in [4], Aydın et al. found relations between the extrinsic and intrinsic invariants for
submanifolds in statistical manifolds of constant curvature. In [16], Mihai and Mihai studied statistical
submanifolds of Hessian manifolds of constant Hessian curvature. As generalizations of the results given in
[4], the present authors studied the same problems for submanifolds in statistical manifolds of quasiconstant
curvature [5].

Motivated by the studies of the above authors, in the present paper, we define invariant and antiinvariant
submanifolds of Sasaki-like statistical manifolds and give some examples of these submanifolds. Furthermore, we
obtain Chen-like inequality involving scalar curvature and Chen–Ricci inequality for these types of submanifolds.

2. Preliminaries
Let M be an odd-dimensional manifold and ϕ, ξ, η a tensor field of type (1, 1) , a vector field, and a 1 -form on
M, respectively. If ϕ, ξ , and η satisfy the following conditions,

η (ξ) = 1, ϕ2X = −X + η (X) ξ (2.1)

for X ∈ TM , then M is said to have an almost contact structure (ϕ, ξ, η) and is called an almost contact
manifold.

In [21], Takano considered a semi-Riemannian manifold (M, g) with the almost contact structure (ϕ, ξ, η) ,
which has another tensor field ϕ∗ of type (1, 1) satisfying

g (ϕX, Y ) + g (X,ϕ∗Y ) = 0 (2.2)

for vector fields X and Y on (M, g) . Then (M, g, ϕ, ξ, η) is called an almost contact metric manifold of certain
kind [20]. Obviously, we find (ϕ∗)

2
X = −X + η (X) ξ and

g (ϕX, ϕ∗Y ) = g (X,Y )− η (X) η (Y ) . (2.3)

Because of (2.2), the tensor field ϕ is not symmetric with respect to g. This means that ϕ+ϕ∗ does not vanish
everywhere. Equations ϕξ = 0 and η (ϕX) = 0 hold on the almost contact manifold. We obtain ϕ∗ξ = 0

and η (ϕ∗X) = 0 on the almost contact metric manifold of certain kind. In [21], Takano defined a statistical
manifold on the almost contact metric manifold of certain kind. If

∇Xξ = −ϕX, (∇Xϕ)Y = g (X,Y ) ξ − η (Y )X, (2.4)

then (M,∇, g, ϕ, ξ, η) is called a Sasaki-like statistical manifold and considered the curvature tensor R with
respect to ∇ such that
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R(X,Y )Z =
c+ 3

4
[g(Y, Z)X − g(X,Z)Y ] +

c− 1

4
[η(X)η(Z)Y

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ + g(X,ϕZ)ϕY

− g(Y, ϕZ)ϕX + {g(X,ϕY )− g(ϕX, Y )}ϕZ], (2.5)

where c is a constant. Changing ϕ for ϕ∗ in (2.5), we get the curvature tensor R∗ [21].
Denote by R and R∗ the curvature tensor fields of ∇ and ∇∗ , respectively. Then R and R∗ satisfy

g (R∗ (X,Y )Z,W ) = −g (Z,R (X,Y )W ) (2.6)

(see [12]).

Let (M, g,∇,∇∗) and
(
M̃, g̃, ∇̃, ∇̃∗

)
be two statistical manifolds. An immersion f : M −→ M̃ is called

a statistical immersion if (∇, g) coincides with the induced statistical structure, i.e. if (1.1) holds [12]. If

there is a statistical immersion between two statistical manifolds (M, g,∇,∇∗) and
(
M̃, g̃, ∇̃, ∇̃∗

)
, then M

is called a statistical submanifold of M̃. (For the definition of affine immersions of statistical manifolds into
(n+ 1) -dimensional affine space Rn+1 see also [13].)

Denote the normal bundle on M by T⊥M . In the present study, we use the ambient space M̃ as a

statistical manifold
(
M̃, g̃, ∇̃, ∇̃∗

)
.

Let M be a statistical submanifold of a statistical manifold M̃. Then the Gauss formulas are given by

∇̃XY = ∇XY + h(X,Y ),

∇̃∗
XY = ∇∗

XY + h∗(X,Y ),

where the normal valued tensor fields h and h∗ are symmetric and bilinear, called the embedding curvature
tensors of M in M̃ for ∇̃ and ∇̃∗, respectively. ∇ and ∇∗ are called the induced connections of ∇̃ and ∇̃∗ ,
respectively. Since h and h∗ are symmetric and bilinear, we have the linear transformations Aξ and A∗

ξ defined
by

g (AξX,Y ) = g̃ (h (X,Y ) , ξ) (2.7)

and
g
(
A∗

ξX,Y
)
= g̃ (h∗ (X,Y ) , ξ) (2.8)

for any unit ξ ∈ T⊥M and X,Y ∈ TM [22]. The corresponding Weingarten formulas are as follows:

∇̃Xξ = −A∗
ξX +∇⊥

Xξ

and
∇̃∗

Xξ = −AξX +∇∗⊥
X ξ.

If we use the Levi-Civita connection, it is known that h and Aξ are called the second fundamental form and

the shape operator with respect to the unit ξ ∈ T⊥M, respectively [7]. Let ∇̃ and ∇̃∗ be affine and dual
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connections on M̃ . We denote the induced connections ∇ and ∇∗ of ∇̃ and ∇̃∗ , respectively, on M . Let
R̃, R̃∗, R , and R∗ be the Riemannian curvature tensors of ∇̃, ∇̃∗,∇ , and ∇∗ , respectively. Then the Gauss
equations are given by

g̃
(
R̃ (X,Y )Z,W

)
=g (R (X,Y )Z,W ) (2.9)

+ g̃ (h (X,Z) , h∗ (Y,W ))− g̃ (h∗ (X,W ) , h (Y, Z))

and

g̃
(
R̃∗ (X,Y )Z,W

)
=g (R∗ (X,Y )Z,W )

+ g̃ (h∗ (X,Z) , h (Y,W ))− g̃ (h (X,W ) , h∗ (Y, Z)) ,

where X,Y, Z,W ∈ TM [22].

3. Statistical submanifolds in Sasaki-like statistical manifolds
In this section, we give some examples of invariant and antiinvariant submanifolds of Sasaki-like statistical
manifolds. We find some properties for these kinds of submanifolds.

Similar to the classical definition of the invariant or antiinvariant submanifold of a Sasakian manifold
(see [23]), we give the following definition:

Definition 3.1 Let M̃ be a Sasaki-like statistical manifold and M a submanifold of M̃ . For X ∈ TM , if
ϕX ∈ T⊥M, then M is called an antiinvariant submanifold of M̃ . On the other hand, for a submanifold M,

if ϕX ∈ TM, then M is called an invariant submanifold of M̃ .

Example 3.2 [21] Let R2n+1
n be a (2n+1)-dimensional affine space with the standard coordinates {x1, ..., xn, y1, ..., yn, z} .

We define a semi-Riemannian metric g, the affine connection ∇, ϕ, ξ , and η on R2n+1
n respectively by

g =

 2δij + yiyj 0 −yi
0 −δij 0

−yj 0 1

 ,

∇∂xi
∂xj = −yj∂yi − yi∂yj ,

∇∂xi∂yj = ∇∂yj∂xi = yi∂xj + (yiyj − 2δij) ∂z,

∇∂xi∂z = ∇∂z∂xi = ∂yi,

∇∂yi
∂z = ∇∂z∂yi = −∂xi − yi∂z,

∇∂yi
∂yi = ∇∂z∂z = 0, where ∂xi =

∂

∂xi
, ∂yi =

∂

∂yi
and ∂z =

∂

∂z
.

ϕ =

 0 δij 0
−δij 0 0
0 yi 0

 , ξ = ∂z =


0
.
.
.
0
1

 , η = (−y1, 0,−y2, ...,−yn, 0, 1) .
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Then
(
R2n+1

n ,∇, g, ϕ, ξ, η
)

is a Sasaki-like statistical manifold such that the curvature tensor of R2n+1
n satisfies

equation (2.5) with c = −3 . From here, it can be easily found that

ϕ∗ =
1

2

 0 −δij 0
4δij 0 0
0 −yi 0

 .

Similar to the examples given in [6], now we present the following examples in R5 and R9 with the
Sasaki-like structure given in Example 3.2:

Example 3.3 Let M be a submanifold of dimension 3 such that

x (u, v, t) = (u, 0, v, 0, t) .

For any U ∈ TM , it is easy to see that ϕU ∈ TM and ϕ∗U ∈ TM, so M is an invariant submanifold of
Sasaki-like manifold R5 with the structure (∇, g, ϕ, ξ, η) .

Example 3.4 Let M be a submanifold of dimension 3 such that

x (u, v, t) = (0, v, u, 0, t) .

For any U ∈ TM , it is easy to see that ϕU ∈ T⊥M and ϕ∗U ∈ T⊥M, so M is an antiinvariant submanifold
of Sasaki-like manifold R5 with the structure (∇, g, ϕ, ξ, η) and ξ is tangent to M.

Example 3.5 Let M be a submanifold of dimension 4 such that

x (u, v, w, s) = (0, 0, 0, 0, u, v, w, s, 0) .

For any U ∈ TM , it is easy to see that ϕU ∈ T⊥M and ϕ∗U ∈ T⊥M, so M is an antiinvariant submanifold
of Sasaki-like manifold R9 with the structure (∇, g, ϕ, ξ, η) and ξ is normal to M.

For X ∈ TM, we put
ϕX = PX + FX,

where PX and FX are the tangential and normal components of ϕX, respectively. Similarly, we can write

ϕ∗X = P ∗X + F ∗X,

where P ∗X and F ∗X are the tangential and normal components of ϕ∗X, respectively. We define

∥P∥2 =

n∑
i,j=1

g2(ϕei, ej),

and
λ = trP.
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From the Gauss equation and (2.5), for the curvature tensor R with respect to induced connection ∇, we obtain

g (R (X,Y )Z,W ) =
c+ 3

4
[g (Y, Z) g (X,W )− g (X,Z) g (Y,W )]

+
c− 1

4
[η(X)η(Z)g (Y,W )− η(Y )η(Z)g (X,W )

+g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W ) + g(X,ϕZ)g (ϕY,W )

−g(Y, ϕZ)g (ϕX,W ) + {g(X,ϕY )− g(ϕX, Y )} g (ϕZ,W )]

+ g̃ (h∗ (X,W ) , h (Y, Z))− g̃ (h (X,Z) , h∗ (Y,W )) , (3.1)

where X,Y, Z,W ∈ TM.

Let M be an n -dimensional statistical submanifold of a (2m + 1) -dimensional Sasaki-like statistical

manifold M̃ and {e1, ..., en} , {en+1, ..., e2m+1} orthonormal tangent and normal frames on M , respectively.
The mean curvature vector fields are given by

H = 1
n

n∑
i=1

h (ei, ei) =
1
n

2m−n+1∑
α=1

(
n∑

i=1

hα
ii

)
en+α , hα

ij = g̃ (h (ei, ej) , en+α) ,

and

H∗ = 1
n

n∑
i=1

h∗ (ei, ei) =
1
n

2m−n+1∑
α=1

(
n∑

i=1

h∗α
ii

)
en+α , h∗α

ij = g̃ (h∗ (ei, ej) , en+α) .

Now, we compute Ricci tensor S and dual Ricci tensor S∗ with respect to induced connections ∇ and
∇∗ . Denote by R the Riemannian curvature tensor of M with respect to ∇. Then we write

S(X,Y ) =

n∑
j=1

g(R(ej , X)Y, ej),

and by using equation (3.1), we have

S(X,Y ) =

n∑
j=1

(
c+ 3

4
{g(X,Y )g(ej , ej)− g(ej , Y )g(X, ej)}

+
c− 1

4
{g(X, ej)η(Y )η(ej)− g(ej , ej)η(X)η(Y )

+ g(ej , Y )η(X)η(ej)− g(X,Y )η(ej)η(ej)− g (X,ϕY ) g (ϕej , ej)

+g (ej , ϕY ) g (ej , ϕX) + [g (ej , ϕX)− g (ϕej , X)] g (ej , ϕY )}

+g̃(h∗(ej , ej), h(X,Y ))− g̃(h∗(X, ej), h(ej , Y ))) , (3.2)

which gives us

S (X,Y ) =
c+ 3

4
(n− 1) g (X,Y ) +

c− 1

4
{(2− n)η(X)η(Y )

− g (X,Y )
∥∥ξT∥∥2 − λg (X,PY ) + 2g (PX,PY ) + g (P ∗X,PY )}

+

2m−n+1∑
i=n+1

{
g
(
Aen+i

X,Y
)
trA∗

en+i
− g

(
A∗

en+i
X,Aen+i

Y
)}

. (3.3)
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In a similar way, for dual Ricci tensor S∗, we obtain

S∗ (X,Y ) =
c+ 3

4
(n− 1) g (X,Y ) +

c− 1

4
{(2− n)η(X)η(Y )

− g (X,Y )
∥∥ξT∥∥2 − λg (PX, Y ) + 2g (P ∗X,P ∗Y ) + g (PX,P ∗Y )}

+

2m−n+1∑
i=n+1

{
g
(
A∗

en+i
X,Y

)
trAen+i − g

(
A∗

en+i
Y,Aen+iX

)}
. (3.4)

We have the following propositions:

Proposition 3.6 Let M̃ be a (2m+1)-dimensional Sasaki-like statistical manifold and M an n-dimensional

statistical submanifold of M̃ .
(i) Assume that ξ is tangent to M .
(a) If M is invariant, then

S (X,Y ) =
c+ 3

4
(n− 1) g (X,Y )

+
c− 1

4
{2g (PX,PY )− (n− 1)η(X)η(Y )− λg (X,PY )}

+

2m−n+1∑
i=n+1

{
g
(
Aen+i

X,Y
)
trA∗

en+i
− g

(
A∗

en+i
X,Aen+i

Y
)}

. (3.5)

(b) If M is antiinvariant, then

S (X,Y ) =
c+ 3

4
(n− 1) g (X,Y )

− c− 1

4
{(n− 2)η(X)η(Y ) + g (X,Y )}

+

2m−n+1∑
i=n+1

{
g
(
Aen+i

X,Y
)
trA∗

en+i
− g

(
A∗

en+i
X,Aen+i

Y
)}

. (3.6)

(ii) If ξ is normal to M (which means that M is antiinvariant), then

S (X,Y ) =
c+ 3

4
(n− 1) g (X,Y )

+

2m−n+1∑
i=n+1

{
g
(
Aen+i

X,Y
)
trA∗

en+i
− g

(
A∗

en+i
X,Aen+i

Y
)}

.

Proposition 3.7 Let M̃ be a (2m+1)-dimensional Sasaki-like statistical manifold and M an n-dimensional

statistical submanifold of M̃ .
(i) Assume that ξ is tangent to M .
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(a) If M is invariant, then

S∗ (X,Y ) =
c+ 3

4
(n− 1) g (X,Y )

+
c− 1

4
{2g (P ∗X,P ∗Y )− (n− 1)η(X)η(Y )− λg (PX, Y )}

+

2m−n+1∑
i=n+1

{
g
(
A∗

en+i
X,Y

)
trAen+i

− g
(
A∗

en+i
Y,Aen+i

X
)}

.

(b) If M is antiinvariant, then

S∗ (X,Y ) =
c+ 3

4
(n− 1) g (X,Y )

− c− 1

4
{(n− 2)η(X)η(Y ) + g (X,Y )}

+

2m−n+1∑
i=n+1

{
g
(
A∗

en+i
X,Y

)
trAen+i

− g
(
A∗

en+i
Y,Aen+i

X
)}

.

(ii) If ξ is normal to M (which means that M is antiinvariant), then

S∗ (X,Y ) =
c+ 3

4
(n− 1) g (X,Y )

+

2m−n+1∑
i=n+1

{
g
(
A∗

en+i
X,Y

)
trAen+i

− g
(
A∗

en+i
Y,Aen+i

X
)}

.

Theorem 3.8 Let M̃ be a (2m+ 1)-dimensional Sasaki-like statistical manifold and M an n-dimensional

statistical submanifold of M̃ . Then

2τ ≥c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

+ n2g̃ (H,H∗)− ∥h∥ ∥h∗∥ , (3.7)

where τ =
∑

1≤i<j≤n

g (R (ei, ej) ej , ei) is the scalar curvature of (M, g,∇,∇∗) and λ = trP . Moreover, the

equality holds if and only if h ∥ h∗ .

Proof We denote by ∥h∥2 =
2m−n+1∑
α=n+1

n∑
i,j=1

(
hα
ij

)2 and similarly ∥h∗∥2 .
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From (3.1), taking X = W = ei and Y = Z = ej , we can write

n∑
i,j=1

g (R (ei, ej) ej , ei) =

n∑
i,j=1

[
c+ 3

4
{g (ej , ej) g (ei, ei)− g (ei, ej) g (ei, ej)}

+
c− 1

4
{g (ei, ej) η(ej)η(ei)− η (ej) η (ej) g (ei, ei)

+g (ei, ej) η(ej)η(ei)− g (ej , ej) η(ei)η(ei)

+g (ei, ϕej) g (ei, ϕej)− g (ej , ϕej) g (ϕei, ei)

[g (ei, ϕej)− g (ϕei, ej)] g (ei, ϕej)}

+g̃ (h∗ (ei, ei) , h (ej , ej))− g̃ (h (ei, ej) , h
∗ (ei, ej))] . (3.8)

We obtain

2τ =
c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

+ n2g̃ (H,H∗)−
2m−n+1∑
α=n+1

∑
1≤i,j≤n

hα
ijh

∗α
ij

≥ c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

+ n2g̃ (H,H∗)− ∥h∥ ∥h∗∥ . (3.9)

From (3.9), it is easy to see that the equality holds if and only if h ∥ h∗ . Hence, we finish the proof. 2

4. Chen–Ricci inequality

In the present section, we prove the Chen–Ricci inequality for statistical submanifolds in Sasaki-like statistical
manifolds.

Let M̃ be a (2m + 1) -dimensional Sasaki-like statistical manifold and M an n -dimensional statistical

submanifold of M̃. Then from (3.1), we obtain

2τ =
c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

+ n2g̃(H,H∗)−
n∑

i,j=1

g̃ (h (ei, ej) , h
∗ (ei, ej)) ,
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where H and H∗ are the mean curvature vector fields. Then it follows that

2τ =
c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

+
n2

2
{2g̃(H,H∗) + g̃(H,H) + g̃(H∗,H∗)− g̃(H,H)− g̃(H∗,H∗)}

− 1

2
{

n∑
i,j=1

2g̃ (h (ei, ej) , h
∗ (ei, ej)) + g̃ (h (ei, ej) , h (ei, ej))

+ g̃ (h∗ (ei, ej) , h
∗ (ei, ej))− g̃ (h (ei, ej) , h (ei, ej))− g̃ (h∗ (ei, ej) , h

∗ (ei, ej))

=
c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

+
n2

2
{g̃(H +H∗,H∗ +H)− g̃(H,H)− g̃(H∗,H∗)}

− 1

2
{

n∑
i,j=1

g̃ (h (ei, ej) + h∗ (ei, ej) , h
∗ (ei, ej) + h (ei, ej))

− g̃ (h (ei, ej) , h (ei, ej))− g̃ (h∗ (ei, ej) , h
∗ (ei, ej))}.

From (1.2), since 2H0 = H +H∗, we have

2τ =
c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

+ 2n2g̃(H0,H0)− n2

2
g̃(H,H)− n2

2
g̃(H∗,H∗)− 2

n∑
i,j=1

g̃
(
h0 (ei, ej) , h

0 (ei, ej)
)

+
1

2

n∑
i,j=1

g̃ (h (ei, ej) , h (ei, ej)) + g̃ (h∗ (ei, ej) , h
∗ (ei, ej))

and then

2τ =
c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

+ 2n2
∥∥H0

∥∥2 − n2

2
∥H∥2 − n2

2
∥H∗∥2 − 2

∥∥h0
∥∥2 + 1

2
(∥h∥2 + ∥h∗∥2). (4.1)

On the other hand, we can write

∥h∥2 =

2m−n+1∑
α=n+1

n∑
i,j=1

(hα
ij)

2

=

2m−n+1∑
α=n+1

{
(hα

11)
2 + (hα

12)
2 + ...+ (hα

1n)
2 + (hα

21)
2 + (hα

22)
2

+...+ (hα
11)

2 + (hα
n1)

2 + ...+ (hα
nn)

2
}
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=

2m−n+1∑
α=n+1

[
(hα

11)
2 + (hα

22 + ...+ hα
nn)

2
]

−
2m−n+1∑
α=n+1

∑
2≤i̸=j≤n

hα
iih

α
jj + 2

2m−n+1∑
α=n+1

∑
1≤i<j≤n

(hα
ij)

2

=
1

2

2m−n+1∑
α=n+1

{(hα
11 + hα

22 + ...+ hα
nn)

2 + (hα
11 − hα

22 − ...− hα
nn)

2}

+2

2m−n+1∑
α=n+1

∑
1≤i<j≤n

(hα
ij)

2 −
2m−n+1∑
α=n+1

∑
2≤i̸=j≤n

hα
iih

α
jj

≥ 1

2
n2 ∥H∥2 −

2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

[hα
iih

α
jj − (hα

ij)
2].

Similarly, we have

∥h∗∥2 ≥ 1

2
n2 ∥H∗∥2 −

2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

[h∗α
ii h

∗α
jj − (h∗α

ij )
2].

The summation of the last two inequalities gives us

∥h∥2 + ∥h∗∥2 ≥ 1

2
n2 ∥H∥2 + 1

2
n2 ∥H∗∥2

−
n+1∑
α=1

∑
2≤i̸=j≤n

[hα
iih

α
jj − (hα

ij)
2]−

n+1∑
α=1

∑
2≤i ̸=j≤n

[h∗α
ii h

∗α
jj − (h∗α

ij )
2].

Hence, we have

∥h∥2 + ∥h∗∥2 ≥ 1

2
n2 ∥H∥2 + 1

2
n2 ∥H∗∥2

−
2m−n+1∑
α=n+1

∑
2≤i̸=j≤n

(hα
ii + h∗α

ii )(h
α
jj + h∗α

jj )

+2

2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

hα
iih

∗α
jj +

2m−n+1∑
α=n+1

∑
2≤i̸=j≤n

(
(hα

ij)
2 + (h∗α

ij )
2
)
. (4.2)

3159



AYTİMUR and ÖZGÜR/Turk J Math

Using (4.2) and (4.1), we find

c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

≤ 2τ − 2n2
∥∥H0

∥∥2 + n2

2
∥H∥2 + n2

2
∥H∗∥2 + 2

∥∥h0
∥∥2 − 1

4
n2 ∥H∥2

− 1

4
n2 ∥H∗∥2 + 1

2

2m−n+1∑
α=n+1

∑
2≤i̸=j≤n

(hα
ii + h∗α

ii )(h
α
jj + h∗α

jj )−
2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

hα
iih

∗α
jj

− 1

2

2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

(
(hα

ij)
2 + (h∗α

ij )
2
)

= 2τ − 2n2
∥∥H0

∥∥2 + n2

4
∥H∥2 + n2

4
∥H∗∥2 + 2

∥∥h0
∥∥2

+ 2

2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

h0α
ii h

0α
jj −

n+1∑
α=1

∑
2≤i ̸=j≤n

hα
iih

∗α
jj

− 1

2

2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

(
(hα

ij)
2 + (h∗α

ij )
2
)

.

The last inequality can be written as

c+ 3

4

(
n2 − n

)
+

c− 1

4

{
2 ∥P∥2 − (n− 2)

∥∥ξT∥∥2 − λ2 +

n∑
i=1

g (Pei, P
∗ei)

}

≤ 2τ − 2n2
∥∥H0

∥∥2 + n2

4
∥H∥2 + n2

4
∥H∗∥2 + 2

∥∥h0
∥∥2 + 2

2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

h0α
ii h

0α
jj

−
2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

(
hα
iih

∗α
jj − hα

ijh
∗α
ij

)
− 1

2

2m−n+1∑
α=n+1

∑
2≤i̸=j≤n

(hα
ij + h∗α

ij )
2.

Since

∑
2≤i ̸=j≤n

g (R(ei, ej)ej , ei) =
c+ 3

4
(n− 1)(n− 2) +

c− 1

4
{2 ∥P∥2

− (n− 4)
∥∥ξT∥∥2 − λ2 + 2(n− 2)η(e1)

2 + 2λg (Pe1, e1)

−2g (Pe1, P
∗e1)− 2g (P ∗e1, P

∗e1)− 2g (Pe1, P e1)

+

n∑
i=1

g (Pei, P
∗ei)}+

2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

(
hα
iih

∗α
jj − hα

ijh
∗α
ij

)
,

3160



AYTİMUR and ÖZGÜR/Turk J Math

we have
c+ 3

2
(n− 1)− c− 1

4
{2

∥∥ξT∥∥2 + 2(n− 2)η(e1)
2 + 2λg (Pe1, e1)

−2g (Pe1, P
∗e1)− 2g (P ∗e1, P

∗e1)− 2g (Pe1, P e1)}

≤ 2τ − 2n2
∥∥H0

∥∥2 + n2

4
∥H∥2 + n2

4
∥H∗∥2 + 2

∥∥h0
∥∥2

+ 2

2m−n+1∑
α=n+1

∑
2≤i̸=j≤n

h0α
ii h

0α
jj −

∑
2≤i≠j≤n

g (R(ei, ej)ej , ei)

− 2

2m−n+1∑
α=n+1

∑
2≤i̸=j≤n

(h0α
ij )

2.

Hence, we find

Ric(X) ≥c+ 3

4
(n− 1)− c− 1

4
{
∥∥ξT∥∥2 + (n− 2)η(e1)

2

+ λg (Pe1, e1)− g (Pe1, P
∗e1)− g (P ∗e1, P

∗e1)

−g (Pe1, P e1)}+ n2
∥∥H0

∥∥2 − n2

8
∥H∥2 − n2

8
∥H∗∥2 −

∥∥h0
∥∥2

−
2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

[
h0α
ii h

0α
jj −

(
h0α
ij

)2] . (4.3)

By the Gauss equation with respect to the Levi-Civita connection, we have∑
1≤i ̸=j≤n

R̃0(ei, ej , ej , ei) =
∑

1≤i̸=j≤n

{
R0(ei, ej , ej , ei)

+g̃(h0(ei, ej), h
0(ei, ej))− g̃(h0(ei, ei), h

0(ej , ej))
}

= 2τ0 − n2g̃(H0,H0) +
∥∥h0

∥∥2 . (4.4)

Furthermore, by the Gauss equation, we can write∑
2≤i̸=j≤n

R̃0(ei, ej , ej , ei) =
∑

2≤i̸=j≤n

R0(ei, ej , ej , ei)

−
2m−n+1∑
α=n+1

∑
2≤i ̸=j≤n

[
h0α
ii h

0α
jj −

(
h0α
ij

)2] . (4.5)

Using (4.4) and (4.5) in (4.3), we obtain

Ric(X) ≥2Ric0(X) +
c+ 3

4
(n− 1)− c− 1

4
{
∥∥ξT∥∥2

+(n− 2)η(X)2 + λg (PX,X)− g (PX,P ∗X)− g (P ∗X,P ∗X)

−g (PX,PX)} − n2

8
∥H∥2 − n2

8
∥H∗∥2 − 2

n∑
i=2

K̃0 (X ∧ ei) ,
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where K̃0 (X ∧ .) is the sectional curvature of M̃ with respect to ∇̃ restricted to 2 -plane sections of the tangent
space TpM , which are tangent to X.

The vector field X = e1 satisfies the above equality if and only if

hα
11 = hα

22 + ...+ hα
nn, hα

1j = 0, 2 ≤ j ≤ n and n+ 1 ≤ α ≤ 2m+ 1,

h∗α
11 = h∗α

22 + ...+ h∗α
nn, h∗α

1j = 0, 2 ≤ j ≤ n and n+ 1 ≤ α ≤ 2m+ 1,

or, equivalently,

2h(X,X) = nH(p), h(X,Y ) = 0, ∀Y ∈ TpM orthogonal to X,

2h∗(X,X) = nH∗(p), h∗(X,Y ) = 0, ∀Y ∈ TpM orthogonal to X.

Thus, we can state the following theorem:

Theorem 4.1 Let M̃ be a (2m + 1)-dimensional Sasaki-like statistical manifold and M an n-dimensional

statistical submanifold of M̃.

(i) Assume that ξ is tangent to M .
(a) If M is invariant, then

Ric(X) ≥2Ric0(X) +
c+ 3

4
(n− 1)− c− 1

4
{1 + λg (PX,X)

+ (n− 1)η(X)2 − ∥X∥2 − g (P ∗X,P ∗X)− g (PX,PX)}

− n2

8
∥H∥2 − n2

8
∥H∗∥2 − 2

n∑
i=2

K̃0 (X ∧ ei) .

(b) If M is antiinvariant, then

Ric(X) ≥2Ric0(X) +
c+ 3

4
(n− 1)− c− 1

4

{
1 + (n− 2)η(X)2

}
− n2

8
∥H∥2 − n2

8
∥H∗∥2 − 2

n∑
i=2

K̃0 (X ∧ ei) .

(ii) If ξ is normal to M (which means that M is antiinvariant), then

Ric(X) ≥2Ric0(X) +
c+ 3

4
(n− 1)

− n2

8
∥H∥2 − n2

8
∥H∗∥2 − 2

n∑
i=2

K̃0 (X ∧ ei) .

Moreover, one of the equality holds in all cases if and only if

2h(X,X) = nH(p), h(X,Y ) = 0, ∀Y ∈ TpM orthogonal to X,

2h∗(X,X) = nH∗(p), h∗(X,Y ) = 0, ∀Y ∈ TpM orthogonal to X,

where K̃0 (X ∧ .) is the sectional curvature of M̃ with respect to ∇̃ restricted to 2-plane sections of the tangent
space TpM , which are tangent to X.
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