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1. Introduction
Most of the results in the cohomology theory of transformation groups (based on the Borel construction)
concern Lie group actions and results about non-Lie group actions are still quite scarce. However, in the case
of topological groups (without assuming smooth structure), other groups exist, e.g., p -adic integers or solenoid.
These wild groups play an important role in, for example, Hilbert–Smith conjecture. The main difficulty in
generalizing theorems for Lie group actions to topological group actions is how to handle these wild groups.

In this paper, we try to overcome this difficulty by using the fact that for a finite dimensional compact
group G , there is a closed normal subgroup N such that the quotient group G/N is a compact Lie group and
by applying the cohomological technique of Lie group actions to show the main theorem.

This paper is about finite dimensional compact groups. The concept of the dimension of a compact
topological group plays an essential role in transformation group theory. The Lebesgue covering dimension or
topological dimension of a compact Hausdorff space is defined as below.

A collection A of subsets of the space X is said to have order n + 1 if some point of X lies in n + 1

members of A , and no point of X lies in more than n+ 1 members of A .
Recall that given a collection A of subsets of X , a collection B is said to refine A (is a refirement of A)

if for each element B of B there is an element A of A such that B ⊂ A .
A compact Hausdorff space X has dimension n ≥ 0 if for every finite covering of X by open sets there

exists a finite covering by closed sets that refines the given covering and has order n+ 1 . A space is said to be
finite dimensional if there is some integer n such that the space has dimension n .

It is a well-known fact that a finite dimensional compact group G has a totally disconnected closed
normal subgroup N of G such that the factor group G/N is a compact Lie group of the same dimension (see
for details [21, Theorem 69]).

Moreover, if G is an n -dimensional compact group, then the group G = lim←−N∈NG/N where N is a
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filter basis of closed normal zero dimensional (totally disconnnected) subgroups of G such that
∩
N = {1} and

G/N is an n -dimensional Lie group for each N ∈ N . Besides, group G will be called n -dimensional pro-torus
if G is the projective limit of n -dimensional tori, and the 1 -dimensional pro-torus will be called solenoid.

Note that pro-tori are compact connected abelian topological groups. Conversely, any compact connected
abelian topological group is the projective limit of tori [11,12].

In this paper, by a pro-torus we will always mean a finite dimensional pro-torus.
Unless expressly stated otherwise, k will be a field of characteristic zero, and all spaces will be assumed to

be Hausdorff. The proofs of our theorems need a cohomology theory having the continuity property (see Spanier
[22]). The Alexander–Spanier cohomology, the C̆ech cohomology, and the sheaf cohomology are three such
theories. Throughout the present paper, the Alexander–Spanier cohomology is used. Indeed, the Alexander–
Spanier cohomology and the C̆ech cohomology are naturally isomorphic for arbitrary topological spaces [9].
Moreover, Godement [10, Theorem 5.10.1] proved that the C̆ech cohomology coincides with the sheaf cohomology
on paracompact spaces (also see [7, Chapter III]). Therefore, all of our results are also valid for these cohomology
theories.

2. Preliminaries
In this section, we shall state a few definitions and facts relevant to the study of compact transformation groups.
We refer the reader to [1,4,6] for more details.

Let G be a topological group and X be a G -space and N be a closed normal subgroup of G . Then
there exists a canonically induced action of the quotient group G/N on the orbit space X/N and a natural
homeomorphism from X/G to (X/N) / (G/N) [12, Proposition 10.31].

The next lemma was proved by Ku [15, Lemma 4.2 (ii)].

Lemma 2.1 Let G be a compact connected group acting on a space X and N be any compact totally
disconnected normal subgroup of G . Then the fixed point set XG is homeomorphic to the fixed point set

(X/N)
G/N of the action of G/N on X/N .

Proof For any x ∈ XG , we have that G (x) = {x} and N (x) = {x} . Thus, (gN) (N (x)) = N (gx) = N (x) ,

which implies N (x) ∈ (X/N)
G/N .

Now, for any N (x) ∈ (X/N)
G/N , we obtain that (gN) (N (x)) = N (gx) = N (x) for all g ∈ G .

Hence, we have that G (x) = N (x) . Since G (x) is connected and N (x) is totally disconnected, we get that

G (x) = N (x) = {x} ; that is, x ∈ XG . Thus, XG ≈ (X/N)
G/N . 2

Thus, many problems about the cohomological properties of orbit space and fixed point set of actions of
finite dimensional compact groups are reduced to problems about Lie group actions by comparing actions of G

on X and G/N on X/N .
Let us recall the Borel construction.
For any topological group G , there exists a universal principal G -bundle EG → BG (see Milnor [18]).

BG is unique up to homotopy equivalence and is called the classifying space of G .
Let X be a G -space. There is the diagonal action on X × EG and the Borel construction is defined to

be the orbit space (X × EG)/G and denoted by XG . The second projection X × EG → EG induces a map

π2 : XG = (X × EG)/G→ EG/G = BG,
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which is a fibration with fiber X and base space BG . The fibration X
i→ XG → BG is called the Borel

fibration.
Moreover, H∗ (XG; k) is an algebra over H∗ (BG; k) by π∗

2 : H∗ (BG; k)→ H∗ (XG; k) ;

H∗ (BG; k)×H∗ (XG; k) → H∗ (XG; k)

(x, y) → π∗
2 (x) ∪ y := x.y,

and it is called the equivariant graded cohomology algebra of X with coefficients in k and denoted by H∗
G (X; k)

[4].
X is said to be totally nonhomologous to zero (TNHZ) in XG → BG with respect to H∗ (−; k) if

i∗ : H∗
G (X; k)→ H∗ (X; k)

is surjective, where i : X → XG is the inclusion.
The following theorem was proved for torus (compact, connected, abelian Lie group) actions on compact

spaces [5, p. 250; 8, Chapter III, Proposition 1.18].

Theorem 2.2 Let G be a torus, X be a compact G-space, and dimk H
∗ (X; k) <∞ . Then

dimk H
∗ (XG; k

)
≤ dimk H

∗ (X; k) .

Furthermore, dimk H
∗ (XG; k

)
= dimk H

∗ (X; k) if and only if X is TNHZ in XG → BG . In the theorem,
dim denotes the dimension of vector space over k .

Note that this theorem is true when X is a paracompact space of finite cohomological dimension or
finitistic space.

In this short paper, we shall prove this theorem for pro-torus actions on compact spaces. The theorem
was generalized for solenoid (1 -dimensional pro-torus) actions on compact spaces [20, Theorem 3.2].

Now let us recall the following theorem of Leray-Serre for fibrations, as given in [17, Theorem 5.2]. Note
that there is no need for the fiber to be connected, as mentioned there.

Theorem 2.3 [The cohomology Leray-Serre Spectral sequence] Let R be a commutative ring with unit. Given

a fibration F ↪→ E
p→ B , where B is path-connected, there is a first quadrant spectral sequence of algebras

{E∗,∗
r , dr} , with

Ep,q
2
∼= Hp (B;Hq (F ;R))

and converging to H∗ (E;R) as an algebra, where Hq (F ;R) denotes the cohomology of B with local coefficients
in the cohomology of F . Furthermore, this spectral sequence is natural with respect to fiber-preserving maps of
fibrations.

Note that if k is a field, then the graded commutative algebra H∗ (E; k) is isomorphic to the graded
commutative algabra TotE∗,∗

∞ , the total complex of E∗,∗
∞ , given by

(TotE∗,∗
∞ )

q
=

⊕
k+l=q

Ek,l
∞ .

That is, Hq (E; k) ∼=
⊕

k+l=q

Ek,l
∞ .
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The next two lemmas are needed in the proof of our main theorem. The proofs of these lemmas can be
found in [14, Theorem 2.1; 15, Theorem 3.3].

Lemma 2.4 If N is a compact, totally disconnected group and X is a locally compact N -space, then the orbit
map π : X → X/N induces an isomorphism

H∗
c (X/N ; k)→ (H∗

c (X; k))
N

where H∗
c denotes cohomology with compact supports, and (H∗

c (X; k))
N is the fixed point set of the induced

action of N on H∗
c (X; k) .

Proof It is well known that (N,X) = lim←−H∈N (N/H;X/H) , where each N/H is a finite group. By [4,

Chapter III, (2.3)], we have that

H∗
c (X/N ; k)

∼=→ (H∗
c (X/H; k))

N/H
.

Because of the continuity property of Alexander–Spanier cohomology [22], by passage to the direct limit, we
obtain that

H∗
c (X/N ; k)

∼=→ (H∗
c (X; k))

N
.

2

It is clear that if the space X is compact, we have that

H∗ (X/N ; k)
∼=→ (H∗ (X; k))

N
.

Remark 2.5 Let G be a finite dimensional compact connected group acting on a compact space X . Let N be
a totally disconnected closed normal subgroup of G such that G/N is a compact connected Lie group. Since G

is connected, its action (and hence that of N ) on H∗ (X; k) is trivial [7, Corollary 11.11]. Therefore, Lemma
2.4 implies that

H∗ (X/N ; k)
∼=→ H∗ (X; k) .

The proof of the following lemma can be found in [15, Proposition 3.9].

Lemma 2.6 If N is a compact, totally disconnected group, then H∗ (BN ; k) = k ; that is, BN is acyclic over
k .

Proof It is clear that N = lim←−H∈NN/H , where N/H is a finite group for every H ∈ N . Then we have

that Hi (BN ; k) = lim−→H∈NHi
(
BN/H ; k

)
by [13, Chapter III, Corollary 1.12]. Because Hi

(
BN/H ; k

)
= {0} for

every i ≥ 1 [4, Chapter IV, Proposition 2.4], we get that

Hi (BN ; k) = lim−→N∈NHi
(
BN/H ; k

)
= {0}

for every i ≥ 1 . Moreover, since BN is path-connected, we obtain H∗ (BN ; k) = k . 2
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3. Main results
First we shall state the cohomology algebra structure of the classifying space of a finite dimensional compact
group. For this, we need the following theorem about finite dimensional compact groups.

For any closed subgroup H ⊆ G , we say that H has a local cross-section if there is a neighborhood U

of eH with a map s : U → G satisfying p ◦ s = 1U . If G is a Lie group, and H is a closed subgroup of G ,
then there is a local cross-section. More generally, Nagami [19] proved the next theorem.

Theorem 3.1 Any closed subgroup of a locally compact, finite dimensional group has a local cross-section.

It is well known that the quotient map G → G/N is a principal N -bundle if and only if it has a local
cross-section.

According to the theorem above, if G is a finite dimensional compact group and N is a closed normal
subgroup of G , then the quotient map G→ G/N is a principal N -bundle.

When the quotient map G → G/N is a principal N -bundle, we can take EG for EN , and EG →
EG/N = BN to be the universal bundle for N . We thus obtain the next lemma. The proof of this lemma can
be found in [2, Theorem 2.4.12].

Lemma 3.2 If G is a finite dimensional compact group and N is a closed normal subgroup of G , then the
sequence BN → BG → BG/N , induced by the inclusion N ↪→ G and the quotient map G→ G/N , is a fibration.

Now we can prove the next lemma.

Lemma 3.3 Let G be a finite dimensional compact group and N a closed, totally disconnected normal subgroup
such that G/N is a Lie group. Then the homomorphism

Bq∗ : H∗ (BG/N ; k
)
→ H∗ (BG; k)

is induced by the quotient map q : G→ G/N is an isomorphism.

Proof The quotient map G → G/N induces the map BG → BG/N , and the fiber of this map is the acyclic
space BN by Lemma 2.6. There is a Leray-Serre spectral sequence converging to H∗ (BG; k) such that the
second term is

Ep,q
2 = Hp

(
BG/N ;Hq (BN ; k)

)
.

On the other hand, the homomorphism Bqn : Hn
(
BG/N ; k

)
→ Hn (BG; k) induced by the projection BG →

BG/N decomposes as follows:

Hn
(
BG/N ; k

)
= En,0

2 ↠ En,0
3 ↠ ... ↠ En,0

n+1 = En,0
∞ ⊆ Hn (BG; k)

for each n .
Since the fiber BN is acyclic, the local coefficient system is simple and we have that

Ep,q
2 = 0 if q ̸= 0 and Ep,0

2 = Hp
(
BG/N ;H0 (BN ; k)

)
= Hp

(
BG/N ; k

)
.

Therefore, we obtain that Ep,q
∞ = 0 for q ̸= 0 , En,0

∞ = En,0
2 and

Hn (BG; k) ∼=
⊕

k+l=n

Ek,l
∞ = En,0

∞ = En,0
2 = Hn

(
BG/N ; k

)
.
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Then the result follows. 2

This lemma could also be proven using the Vietoris–Begle mapping theorem.
Now we can prove our main theorem. The first part of this theorem was also proved by Biller [3, Theorem

1.3].

Theorem 3.4 Let G be a pro-torus, X be a compact G-space, and dimk H
∗ (X; k) <∞ . Then

dimk H
∗ (XG; k

)
≤ dimk H

∗ (X; k) .

Furthermore, dimk H
∗ (XG; k

)
= dimk H

∗ (X; k) if and only if X is TNHZ in XG → BG .

Proof Let N be a closed totally disconnected subgroup of G such that G/N is a torus. Consider the quotient

group G/N on the orbit space X/N . Since (X/N)
G/N ≈ XG by Lemma 2.1 and H∗ (X/N ; k) ∼= H∗ (X; k)

by Remark 2.5, we have that

dimk H
∗
(
(X/N)

G/N
; k
)
= dimk H

∗ (XG; k
)

and
dimk H

∗ (X/N ; k) = dimk H
∗ (X; k) .

Therefore, we obtain that dimk H
∗ (XG; k

)
≤ dimk H

∗ (X; k) by Theorem 2.2.
Now let us prove the second part of the theorem.
First, suppose that dimk H

∗ (XG; k
)
= dimk H

∗ (X; k) . As before we have that

dimk H
∗
(
(X/N)

G/N
; k
)
= dimk H

∗ (X/N ; k) .

Therefore, by Theorem 2.2, we have that X/N is TNHZ in (X/N)G/N → BG/N .

Now, consider the commutative diagram

X //

��

XG
//

��

BG

� �
X/N // (X/N)G/N

// BG/N

for the Borel fibrations
X → XG → BG

and
X/N → (X/N)G/N → BG/N .

From the induced commutative diagram

H∗
G/N (X/N ; k) //

��

H∗(X/N ; k)

∼=
��

H∗
G(X; k) // H∗(X; k)
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we have that X is TNHZ in XG → BG . Since the map H∗ (X/N ; k) → H∗ (X; k) is an isomorphism and X

is TNHZ in XG → BG , it follows that X/N is TNHZ in (X/N)G/N → BG/N .

Now assume that X is TNHZ in XG → BG . We will show that X/N is also TNHZ in (X/N)G/N →

BG/N . Let us consider again the above commutative diagram of fibrations.

Suppose that (E∗,∗) and
(
Ē∗,∗) are Leray-Serre spectral sequences of the fibrations

X → XG → BG

and
X/N → (X/N)G/N → BG/N ,

respectively. Since the quotient group G/N is a connected Lie group, then BG/N is simply connected space,
and therefore the local coefficients system of the fibration X/N → (X/N)G/N → BG/N is simple; that is,

Ēp,q
2 = Hp

(
BG/N ;Hq (X/N ; k)

)
= Hp

(
BG/N ;Hq (X/N ; k)

)
.

On the other hand, since k is a field, from the universal coefficient theorem, we get that

Ēp,q
2 = Hp

(
BG/N ;Hq (X/N ; k)

)
= Hp

(
BG/N ; k

)
⊗Hq (X/N ; k) .

Moreover, since X is TNHZ in XG → BG , then the local coefficents system of the fibration X → XG → BG is
also simple [16, Chapter III, Theorem 4.4]. We get that

Ep,q
2 = Hp (BG;Hq (X; k)) = Hp (BG;H

q (X; k)) = Hp (BG; k)⊗Hq (X; k) .

Because of the isomorphisms
H∗ (X/N ; k) ∼= H∗ (X; k)

and
H∗ (BG/N ; k

) ∼= H∗ (BG; k) ,

we have that
Ēp,q

2 = Hp
(
BG/N ; k

)
⊗Hq (X/N ; k) ∼= Hp (BG; k)⊗Hq (X; k) = Ep,q

2 .

Since Ē0,q
2 → E0,q

2 and Ēp,0
2 → Ep,0

2 are isomorphisms for all p , q , Ēp,q
∞ → Ep,q

∞ are isomorphisms for all p , q ,
by Zeeman’s comparison theorem [23; 17, Theorem 3.26]. Furthermore, since

Hn
G/N (X/N ; k) ∼=

⊕
k+l=n

Ēk,l
∞

and
Hn

G (X; k) ∼=
⊕

k+l=n

Ek,l
∞

for every n ≥ 0 , then we obtain that the map

H∗
G/N (X/N ; k)→ H∗

G (X; k)
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is an isomorphism. Thus, from the commutative diagram

H∗
G/N (X/N ; k) //

∼=
��

H∗(X/N ; k)

∼=
��

H∗
G(X; k) // H∗(X; k)

we have that
H∗

G/N (X/N ; k)→ H∗ (X/N ; k)

is surjective; that is, X/N is TNHZ in (X/N)G/N → BG/N . By Theorem 2.2, we obtain that

dimk H
∗
(
(X/N)

G/N
; k
)
= dimk H

∗ (X/N ; k) .

On the other hand, because of

dimk H
∗
(
(X/N)

G/N
; k
)
= dimk H

∗ (XG; k
)

and
dimk H

∗ (X/N ; k) = dimk H
∗ (X; k) ,

we have that
dimk H

∗ (XG; k
)
= dimk H

∗ (X; k) .

2

An immediate consequence of this theorem is the next result.

Corollary 3.5 Let G be a pro-torus, and let X be a compact G-space. If X is TNHZ in XG → BG , and
0 < dimk H

∗ (X; k) <∞ , then XG ̸= ∅ .

Proof Since dimk H
∗ (X; k) <∞ and X is TNHZ in XG → BG , then we have that 0 < dimk H

∗ (XG; k
)
=

dimk H
∗ (X; k) , which implies XG ̸= ∅ . 2
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