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Abstract: In this paper, we investigate analytical and asymptotic properties of the Jost solution and Jost function of
the impulsive discrete Dirac equations. We also study eigenvalues and spectral singularities of these equations. Then we
obtain characteristic properties of the scattering function of the impulsive discrete Dirac systems. Therefore, we find the
Jost function, point spectrum, and scattering function of the unperturbed impulsive equations.
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1. Introduction
Impulsive differential and discrete equations appear as natural descriptions of observed evolution phenomena
of several real-world problems. Many physical phenomena involving thresholds, bursting rhythm models in
medicine, and mathematical models in economics do exhibit impulsive differential and discrete equations [6,7,17].
Therefore the theory of impulsive equations is a new and important branch of applied mathematics, which has
extensive physical and realistic mathematical models. For the general theory of impulsive differential equations,
we refer to the monographs [1,2,8]. In the literature, impulsive equations are called different kinds of names.
Some of these names are equations with jump condition, equations with interface condition, and equations with
transmission condition. In particular, impulsive Sturm–Liouville problems have been investigate in detail in
[3,4,10–15,18–22].

In the following, we will use these notations:

N := {1, 2, 3, ...} ,

N0 := {0, 1, 2, ...} ,

N∗
m0

:= N\ {m0} ,

Nm0 := {m0 + 1,m0 + 2, ...} ,

Nm0
:= {1, 2, ...,m0 − 2,m0 − 1} ,

N (m0) := N\ {m0 − 1,m0,m0 + 1} ,

where m0 ≥ 3 is an integer number.
Now we consider the impulsive boundary value problem generated by the system of difference equations
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of first order  an+1y
(2)
n+1 + bny

(2)
n + pny

(1)
n = λy

(1)
n ,

an−1y
(1)
n−1 + bny

(1)
n + qny

(2)
n = λy

(2)
n , n ∈ N (m0) ,

(1.1)

with the boundary condition

y
(1)
0 = 0, (1.2)

and the impulsive condition y
(1)
m0+1

y
(2)
m0+2

 = B

y
(2)
m0−1

y
(1)
m0−2

 , (1.3)

where B =

(
γ11 γ12

γ21 γ22

)
is a real matrix, detB > 0 ; {an}n∈N0 , {bn}n∈N, {pn}n∈N, {qn}n∈N, are real sequences

such that an ̸= 0, n ∈ N0, bn ̸= 0, n ∈ N; and λ is a spectral parameter.
If an ≡ 1, n ∈ N∗

m0
∪ {0} , bn ≡ 1, n ∈ N∗

m0
then system (1.1) reduces to

 ∆y
(2)
n + pny

(1)
n = λy

(1)
n ,

−∆y
(1)
n−1 + qny

(2)
n = λy

(2)
n , n ∈ N (m0) ,

(1.4)

where ∆ is a forward difference operator defined by ∆yn = yn+1 − yn .
System (1.4) is the discrete analog of the well-known canonical Dirac system [9]:

(
0 1

−1 0

)(
y

′

1

y
′

2

)
+

(
p(x) 0

0 q(x)

)(
y1

y2

)
= λ

(
y1

y2

)
,

and so system (1.4) is called a canonical discrete Dirac system.
This paper is organized as follows. In the next section, we study asymptotic properties of the Jost

solution and Jost function of the impulsive boundary value problem (IBVP) (1.1)–(1.3). We investigate the
point spectrum and characteristic properties of the scattering function of the impulsive discrete Dirac system
in Section 3. Finally, in Section 4, we present the Jost function, eigenvalues, and scattering function of the
unperturbed impulsive Dirac equations.

2. The Jost solution
Suppose that the sequences {an}, {bn}, {pn}, and {qn}, n ∈ N∗

m0
, satisfy

∑
n∈N∗

m0

n(|1− an|+ |1 + bn|+ |pn|+ |qn|) < ∞. (2.1)

Let

P (z) = {Pn(z)}n∈Nm0
=


P

(1)
n (z)

P
(2)
n (z)


n∈Nm0
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and

Q(z) = {Qn(z)}n∈Nm0
=


Q

(1)
n (z)

Q
(2)
n (z)


n∈Nm0

be the solutions of (1.1) for λ = 2 sin z

2
and z ∈ C , satisfying the conditions

P
(1)
0 (z) = 0, P

(2)
1 (z) = −1 (2.2)

and

Q
(1)
0 (z) =

1

a0
, Q

(2)
1 (z) = 0, (2.3)

respectively.
It is clear that

deg
[
P (1)
n

(
2 arcsin λ

2

)]
= 2n− 1, deg

[
P (2)
n

(
2 arcsin λ

2

)]
= 2n− 2, (2.4)

for all n ∈ Nm0 .

Under condition (2.1) for λ = 2 sin z

2
, system (1.1) has the bounded solution

f(z) = {fn(z)}n∈Nm0 =


f

(1)
n (z)

f
(2)
n (z)


n∈Nm0

, z ∈ C+,

satisfying the following asymptotic condition:

fn(z) = [I2 + o(1)]

(
ei

z
2

−i

)
einz, z ∈ C+, n → +∞, (2.5)

where I2 :=

(
1 0

0 1

)
and C+ := {z : z ∈ C, ℑ(z) ≥ 0} such that ℑ(z) is the imaginary part of z .

It is well known from [5] that the solution f(z) = {fn(z)}n∈Nm0 has the following representation:


fn(z) =

f
(1)
n (z)

f
(2)
n (z)

 = αn

(
I2 +

∞∑
m=1

Anmeimz

)(
ei

z
2

−i

)
einz,

f
(1)
0 (z) = α11

0

[
ei

z
2

(
1 +

∞∑
m=1

A11
0meimz

)
− i

∞∑
m=1

A12
0meimz

]
,

(2.6)

for all n ∈ Nm0 , where

αn =

(
α11
n α12

n

α21
n α22

n

)
, Anm =

(
A11

nm A12
nm

A21
nm A22

nm

)
,
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and also, Aij
nm, i, j = 1, 2, satisfy

|Aij
nm| ≤ M

∞∑
k=n+[m/2]

(|1− ak|+ |1 + bk|+ |pk|+ |qk|),

where [m/2] is the integer part of m/2 and M > 0 is a constant.
Note that the function f(z) = {fn(z)}n∈Nm0 is analytic with respect to z in

C+ := {z : z ∈ C, ℑ(z) > 0} , continuous up to the real axis, and fn(z + 4π) = fn(z) for all z in C+ [5].

Theorem 2.1 The following equations are satisfied for the functions f(z) = {fn(z)}n∈Nm0 and P (z) =

{Pn(z)}n∈Nm0
:

(i) lim
|z|→+∞

fn(z)e
−inz = −i

(
α12
n

α22
n

)
, z ∈ C+,

(ii) lim
|z|→+∞

P (1)
n (z)ei(n−

1
2 )z = i (−1)

n
K1(n), z ∈ C+,

lim
|z|→+∞

P (2)
n (z)ei(n−1)z = i (−1)

n
K2(n), z ∈ C+,

where

K1(n) := −

(
b1

n∏
k=2

akbk

)−1

, K2(n) := −

(
n∏

k=2

akbk−1

)−1

. (2.7)

Proof (i) It follows from (2.6) that

f (1)
n (z)e−inz + iα12

n =

∞∑
m=1

[
(α11

n A11
nm + α12

n A21
nm)ei

z
2 − (α11

n A12
nm + α12

n A22
nm)i

]
eimz

+ α11
n ei

z
2 ,

f (2)
n (z)e−inz + iα22

n =

∞∑
m=1

[
(α21

n A11
nm + α22

n A21
nm)ei

z
2 − (α21

n A12
nm + α22

n A22
nm)i

]
eimz

+ α21
n ei

z
2 .

Thus, for all z ∈ C+ and n ∈ Nm0 , we obtain

lim
|z|→+∞

f1
n(z)e

−inz = −iα12
n ,

lim
|z|→+∞

f2
n(z)e

−inz = −iα22
n ,

or

lim
|z|→+∞

fn(z)e
−inz = −i

(
α12
n

α22
n

)
.
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(ii) Using (1.1) and (2.2), we see that

P (1)
n

(
2 arcsin λ

2

)
= K1(n)λ

2n−1 +

2n−2∑
m=0

kmλm, km ∈ R, (2.8)

P (2)
n

(
2 arcsin λ

2

)
= K2(n)λ

2n−2 +

2n−3∑
m=0

lmλm, lm ∈ R, (2.9)

are satisfied for n ∈ Nm0
, where

K1(n) := −

(
b1

n∏
k=2

akbk

)−1

, K2(n) := −

(
n∏

k=2

akbk−1

)−1

.

It follows from (2.8) and (2.9) that

lim
|z|→+∞

P (1)
n (z)ei(n−

1
2 )z = i (−1)

n
K1, z ∈ C+,

lim
|z|→+∞

P (2)
n (z)ei(n−1)z = i (−1)

n
K2, z ∈ C+,

hold. 2

Definition 2.2 The Wronskian of two solutions {Yn(z)}n∈N∗
m0

=


y

(1)
n (z)

y
(2)
n (z)


n∈N∗

m0

and {Un(z)}n∈N∗
m0

=


u

(1)
n (z)

u
(2)
n (z)


n∈N∗

m0

of system (1.1) is defined by

W [Yn(z), Un(z)] := an

[
y(1)n (z)u

(2)
n+1(z)− y

(2)
n+1(z)u

(1)
n (z)

]
. (2.10)

Using (2.2), (2.3), (2.5), and (2.10) we obtain

W [P (z), Q(z)] = 1, z ∈ C,

W
[
f(z), f(z)

]
= 2i cos z

2
, z ∈ R.

The set
{
{fn(z)}n∈Nm0 ,

{
fn(z)

}
n∈Nm0

}
forms a fundamental system of the solutions of the system

(1.1) for λ = 2 sin z

2
, z ∈ R\ {(2k + 1)π, k ∈ Z} , and similarly, the set

{
{Pn(z)}n∈Nm0

, {Qn(z)}n∈Nm0

}
forms

a fundamental system of the solutions of system (1.1) for λ = 2 sin z

2
, z ∈ C .

We consider the following vector sequences:

En(z) =

{
a(z)Pn(z) + b(z)Qn(z), n ∈ Nm0

fn(z), n ∈ Nm0 ,
(2.11)
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for z ∈ C+ and

Fn(z) =

{
Pn(z), n ∈ Nm0

c(z)fn(z) + d(z)fn(z), n ∈ Nm0 ,
(2.12)

for z ∈ R\ {(2k + 1)π, k ∈ Z} .
It is clear that E(z) = {En(z)}n∈N∗

m0

and F (z) = {{Fn(z)}n∈N∗
m0

are the solutions of system (1.1) for

λ = 2 sin z

2
. Using the impulsive condition (1.3), we have

a(z) =
am0−2

detB

[
x(z)f

(2)
m0+2(z)− y(z)f

(1)
m0+1(z)

]
, (2.13)

b(z) = −am0−2

detB

[
u(z)f

(2)
m0+2(z)− v(z)f

(1)
m0+1(z)

]
, (2.14)

for z ∈ C+ and

c(z) =
am0+1

2i cos z
2

[
u(z)f

(2)
m0+2(z)− v(z)f

(1)
m0+1(z)

]
, (2.15)

d(z) = − am0+1

2i cos z
2

[
u(z)f

(2)
m0+2(z)− v(z)f

(1)
m0+1(z)

]
, (2.16)

for z ∈ R\ {(2k + 1)π, k ∈ Z} where

x(z) = γ11Q
(2)
m0−1(z) + γ12Q

(1)
m0−2(z),

y(z) = γ21Q
(2)
m0−1(z) + γ22Q

(1)
m0−2(z),

u(z) = γ11P
(2)
m0−1(z) + γ12P

(1)
m0−2(z),

v(z) = γ21P
(2)
m0−1(z) + γ22P

(1)
m0−2(z).

(2.17)

Vector sequence E(z) = {En(z)}n∈N∗
m0

=


E

(1)
n (z)

E
(2)
n (z)


n∈N∗

m0

defined by (2.11) is called the Jost

solution of the IBVP (1.1)–(1.3). From (2.11), we see that

E
(1)
0 (z) =

b(z)

a0
, z ∈ C+.

The function b(z) (or E
(1)
0 (z)) defined by (2.14) is called the Jost function of the impulsive Dirac system

(1.1)–(1.3). Note that the Jost solution and Jost function are analytic in C+ and continuous in C+ and also

E(z + 4π) = E(z), z ∈ C+,

b(z + 4π) = b(z), z ∈ C+.

Using (2.17) and Theorem 2.1, we obtain the following theorem:
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Theorem 2.3 The functions u(z) and v(z) satisfy

(i) lim
|z|→+∞

u(z)ei(m0−2)z = i(−1)m0γ11K2(m0 − 1), z ∈ C+,

(ii) lim
|z|→+∞

v(z)ei(m0−2)z = i(−1)m0γ21K2(m0 − 1), z ∈ C+,

where the function K2(n) was defined by (2.7).

It follows from (2.13)–(2.17) that


c(z) = d(z) =

am0+1 detB
2iam0−2 cos z

2

b(z),

x(z) = x(z), y(z) = y(z), u(z) = u(z), v(z) = v(z),

a(z + 4π) = a(z), b(z + 4π) = b(z),

(2.18)

for z ∈ R\ {(2k + 1)π, k ∈ Z} .

Theorem 2.4 For z ∈ R\ {(2k + 1)π, k ∈ Z} , the following equation holds:

W
[
En(z), En(z)

]
=


−2i

am0−2

am0+1 detB cos z
2
, n ∈ Nm0

2i cos z
2
, n ∈ Nm0 .

(2.19)

Proof (i) Let n ∈ Nm0
and z ∈ R\ {(2k + 1)π, k ∈ Z} . In this case, from Definition 2.2, we obtain

W
[
En(z), En(z)

]
= −2iℑ

[
a(z)b(z)

]
, (2.20)

where a(z) and b(z) were defined by (2.13) and (2.14). If we define

T (z) :=
[
f
(2)
m0+2(z)x(z)− f

(1)
m0+1(z)y(z)

] [
f
(2)
m0+2(z)u(z)− f

(1)
m0+1(z)v(z)

]
,

then

a(z)b(z) = −
(am0−2

detB

)2
T (z).

Furthermore, using (2.17), we obtain

x(z)v(z) =γ11γ21P
(2)
m0−1Q

(2)
m0−1 + γ11γ22P

(1)
m0−2Q

(2)
m0−1

+ γ12γ21P
(2)
m0−1Q

(1)
m0−2 + γ12γ22P

(1)
m0−2Q

(1)
m0−2

y(z)u(z) =γ11γ21P
(2)
m0−1Q

(2)
m0−1 + γ12γ21P

(1)
m0−2Q

(2)
m0−1

+ γ11γ22P
(2)
m0−1Q

(1)
m0−2 + γ12γ22P

(1)
m0−2Q

(1)
m0−2
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and so

Φ(z) =2
(
γ11γ21P

(2)
m0−1Q

(2)
m0−1 + γ12γ22P

(1)
m0−2Q

(1)
m0−2

)
ℜ
(
f
(1)
m0+1f

(2)
m0+2

)
+ γ11γ22

(
P

(1)
m0−2Q

(2)
m0−1f

(2)
m0+2f

(1)
m0+1 + P

(2)
m0−1Q

(1)
m0−2f

(2)
m0+2f

(1)
m0+1

)
+ γ12γ21

(
P

(1)
m0−2Q

(2)
m0−1f

(2)
m0+2f

(1)
m0+1 + P

(2)
m0−1Q

(1)
m0−2f

(2)
m0+2f

(1)
m0+1

)
,

where Φ(z) := x(z)v(z)f
(2)
m0+2f

(1)
m0+1 + y(z)u(z)f

(2)
m0+2f

(1)
m0+1 and ℜ(z) is the real part of z . Therefore,

T (z) = x(z)u(z)|f (2)
m0+2|2 + y(z)v(z)|f (1)

m0+1|2 − Φ(z)

is obtained. Using the equation

P
(1)
m0−2Q

(2)
m0−1 =

1

am0−2
+ P

(2)
m0−1Q

(1)
m0−2,

we can write

Φ(z) =2
(
γ11γ21P

(2)
m0−1Q

(2)
m0−1 + γ12γ22P

(1)
m0−2Q

(1)
m0−2

)
ℜ
(
f
(1)
m0+1f

(2)
m0+2

)
+ γ11γ22

f (2)
m0+2f

(1)
m0+1

am0−2
+ 2P

(2)
m0−1Q

(1)
m0−2ℜ

(
f
(1)
m0+1f

(2)
m0+2

)
+ γ12γ21

f (1)
m0+1f

(2)
m0+2

am0−2
+ 2P

(2)
m0−1Q

(1)
m0−2ℜ

(
f
(1)
m0+1f

(2)
m0+2

) .

Thus, we get

Φ(z) =2
(
γ11γ21P

(2)
m0−1Q

(2)
m0−1 + γ12γ22P

(1)
m0−2Q

(1)
m0−2

)
ℜ
(
f
(1)
m0+1f

(2)
m0+2

)
+ 2 (γ11γ22 + γ12γ21)P

(2)
m0−1Q

(1)
m0−2ℜ

(
f
(1)
m0+1f

(2)
m0+2

)
+ 2

γ11γ22
am0−2

ℜ
(
f
(1)
m0+1f

(2)
m0+2

)
− detB

am0−2
f
(1)
m0+1f

(2)
m0+2.

Since ℑT (z) = ℑΦ(z) , we can write

ℑ
[
a(z)b(z)

]
=

am0−2

detB ℑ
(
f
(1)
m0+1f

(2)
m0+2

)
,

and we have for n ∈ Nm0

W
[
En(z), En(z)

]
= −2i

am0−2

am0+1 detB cos z
2
,

by (2.20).
(ii) Let n ∈ Nm0 . The proof is obvious while Definition 2.2 is used. 2
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Theorem 2.5 The Jost function of IBVP (1.1)–(1.3) satisfies:

b(z) = e3iz [A+ o(1)] , z ∈ C+, |z| → +∞,

where A is a real constant such that A ̸= 0 .

Proof Using (2.14), we can write

b(z)e−3iz =
am0−2

detB

[
f
(1)
m0+1e

−i(m0+1)zv(z)ei(m0−2)z − f
(2)
m0+2e

−i(m0+2)zu(z)ei(m0−1)z
]
.

Thus, we get

b(z)e−3iz =
am0−2

detB γ21α
12
m0+1(−1)m0+1

(
m0−2∏
k=1

ak+1bk

)−1

+ o(1), |z| → +∞,

for z ∈ C+ by Theorem 2.2 and Theorem 2.3. If we define

A :=
am0−2

detB γ21α
12
m0+1(−1)m0+1

(
m0−2∏
k=1

ak+1bk

)−1

,

then we find
b(z) = e3iz [A+ o(1)] , z ∈ C+, |z| → +∞.

2

3. The scattering function
Let us define the semi strips

Π0 := {z : z ∈ C, 0 ≤ ℜ(z) ≤ 4π, ℑ(z) > 0}

Π := Π0 ∪ [0, 4π] .

We will denote the set of all eigenvalues and spectral singularities of the system (1.1)–(1.3) by σd and
σss , respectively. It is obvious that [5,16]

σd :=
{
λ : λ = 2 sin z

2
, z ∈ Π0, b(z) = 0

}
,

σss :=
{
λ : λ = 2 sin z

2
, z ∈ [0, 4π] , b(z) = 0

}
\ {0} .

Theorem 3.1 For all z ∈ (0, 2π) ∪ (2π, 4π), b(z) = 0 .

Proof Let us assume that there exists z0 in (0, 2π) ∪ (2π, 4π) such that b(z) = 0 . It follows from (2.18)
that c(z0) = c(z0) = 0 . Thus, Fn(z0) ≡ 0 for all n ∈ Nm0 ∪ {0} . It is a contradiction, so b(z) ̸= 0 for all
z ∈ (0, 2π) ∪ (2π, 4π) . 2

Remark 3.2 Because b(z) ̸= 0 for all z ∈ (0, 2π) ∪ (2π, 4π) , we can obtain σss = ∅ .
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Theorem 3.3 For all n ∈ Nm0 and all z ∈ (0, 2π) ∪ (2π, 4π) , the equation

2i cos z
2

am0−2

am0+1 detB
Pn(z)

b(z)
= En(z)− S(z)En(z) (3.1)

is valid, where S(z) =
b(z)

b(z)
.

Proof Since E(z) = {En(z)}n∈N∗
m0

and E(z) =
{
En(z)

}
n∈N∗

m0

form the fundamental system of (1.1) for

λ = 2 sin z

2
, we have

Pn(z) = c1En(z) + c2En(z), n ∈ N∗
m0

, z ∈ (0, 2π) ∪ (2π, 4π), (3.2)

where |c1|+ |c2| ̸= 0 . Using (2.10) and (2.19) we obtain

W
[
En(z), En(z)

]
= −2i

am0−2

am0+1 detB cos z
2
,

W [En(z), Pn(z)] = −b(z),

W
[
En(z), Pn(z)

]
= −b(z),

for n ∈ N∗
m0

and all z ∈ (0, 2π) ∪ (2π, 4π) . Thus, we get

c1 = − am0+1 detB
2iam0−2 cos z

2

b(z), c2 = − am0+1 detB
2iam0−2 cos z

2

b(z),

and if we take into account these relations,

Pn(z) = − am0+1 detB
2iam0−2 cos z

2

b(z)En(z) +
am0+1 detB
2iam0−2 cos z

2

b(z)En(z)b(z)

is obtained by (3.2). Finally, since b(z) ̸= 0 for all z ∈ (0, 2π) ∪ (2π, 4π) , we can divide both sides of the last
expression by b(z) and obtain equation (3.1). 2

The function

S(z) =
b(z)

b(z)
=

E
(1)
0 (z)

E
(1)
0 (z)

, z ∈ (0, 2π) ∪ (2π, 4π), (3.3)

is called the scattering function of the impulsive Dirac system (1.1)–(1.3). It is evident from (2.14) and (3.3)
that

S(z) =
u(z)f

(2)
m0+2(z)− v(z)f

(1)
m0+1(z)

u(z)f
(2)
m0+2(z)− v(z)f

(1)
m0+1(z)

=
E

(1)
0 (z)

E
(1)
0 (z)

, z ∈ (0, 2π) ∪ (2π, 4π), (3.4)

Note that the characteristic properties of the scattering function of the Sturm–Liouville and Dirac
equations were investigated in [9,16].
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Theorem 3.4 For all z ∈ (0, 2π) ∪ (2π, 4π) , the scattering function is continuous and satisfies

S(z) =
[
S(z)

]−1

, |S(z)| = 1.

The proof of theorem is the direct consequence of (3.3) and (3.4).

4. Unperturbed Dirac systems
Now we consider the following unperturbed discrete Dirac system: y

(2)
n+1 − y

(2)
n = λy

(1)
n ,

y
(1)
n−1 − y

(1)
n = λy

(2)
n , n ∈ N(3),

(4.1)

with the boundary condition
y
(1)
0 (z) = 0, (4.2)

and the impulsive condition y
(1)
4

y
(2)
5

 =

(
γ1 0

0 γ2

)y
(2)
2

y
(1)
1

 , (4.3)

where γ1 and γ2 are real numbers such that γ1γ2 ̸= 0 .

Let {En(z)}n∈N∗(3) denote the Jost solution of (4.1)–(4.3) for λ = 2 sin z

2
. It is clear that

En(z) =

{
a(z)Pn(z) + b(z)Qn(z), n = 0, 1, 2

fn(z), n = 4, 5, 6, ...,
(4.4)

where

fn(z) =

(
ei

z
2

−i

)
einz.

In the event that solution (4.4) satisfies condition (4.3), we obtain

a(z) = −a1e
9iz/2

a0γ1γ2

[
γ1e

iz + (γ2 − γ1)
]
,

b(z) =
a1e

4iz

γ1γ2i

[
γ1e

2iz + (γ2 − γ1)e
iz − (γ2 − γ1)

]
,

and also, b(z) ̸= 0 for all z ∈ (0, 2π)∪(2π, 4π) . On the contrary, there exists a real number z0 in (0, 2π)∪(2π, 4π)
such that b(z0) = 0 . Then

γ1e
2iz + (γ2 − γ1)e

iz − (γ2 − γ1) = 0,

and so, for a :=
γ2 − γ1
2γ1

z0 = −i ln
(
a±

√
a2 − 2a

)
+ 2kπ, k ∈ Z,

is obtained, but there is a contradiction as a±
√
a2 − 2a ̸= 1 . Thus, the assumption cannot be true.
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The scattering function S(z) of the problem (4.1)–(4.3) is

S(z) = −e−8iz

[
γ1e

−2iz + (γ2 − γ1)e
−iz − (γ2 − γ1)

γ1e2iz + (γ2 − γ1)eiz − (γ2 − γ1)

]
.

Since b(z) ̸= 0 for all z ∈ (0, 2π) ∪ (2π, 4π) , there is not spectral singularity of this problem, whereas

there are the eigenvalues of this problem if
∣∣a±

√
a2 − 2a

∣∣ < 1 such that a :=
γ2 − γ1
2γ1

.

Case 1 a2 − 2a < 0 :

In this case, 0 < a < 2 must be. If and only if
∣∣a±

√
a2 − 2a

∣∣ < 1 holds, 0 < a <
1

2
or 0 <

γ2
γ1

< 1 is obtained.

Therefore, the system (4.1)–(4.3) has the eigenvalues if 0 <
γ2
γ1

< 1 .

Case 2 a2 − 2a ≥ 0 :

In this case, a ∈ (−∞, 0] ∪ [2,+∞) must be. If and only if
∣∣a±

√
a2 − 2a

∣∣ < 1 holds, 3

2
<

γ2
γ1

is obtained.

Therefore, the system (4.1)–(4.3) has the eigenvalues if γ2
γ1

>
3

2
.

Finally, the unperturbed discrete Dirac system has the eigenvalues if 0 <
γ2
γ1

< 1 or γ2
γ1

>
3

2
.
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