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Abstract: In this paper we consider a mixed problem for the nonlinear wave equations with transmission acoustic
conditions, that is, the wave propagation over bodies consisting of two physically different types of materials, one of
which is clamped. We prove the existence of a global solution. Under the condition of positive initial energy we show

that the solution for this problem blows up in finite time.
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1. Introduction
Let © be a bounded domain in R™ (n > 1) with smooth boundary T';, Q9 C Q is a subdomain with smooth
boundary 'y, and ©; = Q\Qs is a subdomain with boundary I' = T’y UTy, T’y N Ty =@. The nonlinear

transmission acoustic problem considered here is

e — Au+ Jug] ™ g = |ufP " w in Q) x (0,00), (1.1)
Vi — Av + o2 o = [o]P T e in Q x (0,00), (1.2)
Méy + Doy + K§ = —uy on I'y x (0,00) , (1.3)
u=0on I'y x (0,00), (1.4)
uzv,ét—%—gvonfgx(o,oo), (1.5)

u (x,0) = ug (), us (7,0) = uy (), x € Qy, (1.6)

v (z,0) = vg (), v (2,0) = vy (z),2 € Qo, (1.7)
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§(z,0) =do (z),0; (2,0) = — — — = §1,x € [y, (1.8)

where v is the unit outward normal vector to I'; M, D, K : Ty — R, wug, u1: Q1 — R, vg, v1: Qs — R, & :
I's — R are given functions; p > 1, ¢; > 1, i = 1,2 are constants.

Transmission problems arise in several applications of physics and biology. For example, problems like
(1.1)—(1.8), called transmission acoustic problems, are related to the problem of two wave equations, which
model the transverse acoustic vibrations of a membrane composed of two different materials 2, and 5.

Transmission problems were studied, for example, in [1, 2, 4, 13, 35, 37, 40]. The transmission problem
for hyperbolic equations was investigated by Dautray and Lions [13], who proved the existence and regularity of
solutions for the linear problem. Rivera and Oquendo [40] considered the transmission problem of viscoelastic
waves and proved that the dissipation produced by the viscoelastic part can produce exponential decay of the
solution. Bae [2] studied the transmission problem, in which one component is clamped and the other is in a
viscoelastic fluid producing a dissipation mechanism on the boundary, and established a decay result. Bastos
and Raposo [4] investigated the transmission problem with frictional damping and showed the well-posedness
and exponential stability of the total energy.

Aliev and Mammadhasanov [1] studied the initial boundary value problem on longitudinal impact on a
composite linear viscoelastic bar and established a well-posedness result by the method of dynamic regularization
of transmission and boundary conditions.

In [19] the authors made a comparison of several boundary conditions, among which were the acoustic
boundary conditions.

The acoustic boundary conditions were introduced by Beale and Rosencrans [7] and studied in [5, 6, 9-
12, 14-18, 20, 22-24, 27, 30, 39, 41-43]. In [7] the authors derived

ug —Au =0 in Q x (0,00),

Oou
5—& on I x (0,00),

mdy + doy + kéd = —pour on T x (0, 00)

as a theoretical model for describing the acoustic wave motion into a fluid in Q x R3; here pg, m, d, k are
physical known quantities. The function w (x,t)is the velocity potential of a fluid and § (x,t) models the
normal displacement of the point x € I at time ¢. To obtain the model, Beale and Rosencrans assumed that
each point of surface I' acts like a spring in response to excess pressure from the fluid in the interior and that
each point of I does not influence the others. Surfaces of such type are called locally reacting; see Morse and
Ingard [38]. See also [15] for a related model.

Similarly, in [12, 14] acoustic boundary conditions were coupled with homogeneous Dirichlet condition on
a portion of the boundary. In [15, 18, 39] acoustic boundary conditions were imposed in the whole boundary.
In [14] Frota et al. obtained decay results to a nonlinear wave equation when n = 1; Cousin et al. [12] and
Park and Park [42] obtained decay results when the coefficient in front of ¢ is zero.

In [17] Frota et al. considered acoustic boundary conditions in domains with nonlocally reacting boundary.

A mixed problem for wave equations with nonlinear acoustic boundary conditions was considered by Gao et al.
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[20] and Graber [22, 23]. In [27] Jeong et al. studied the global nonexistence of solutions for a quasilinear wave
equation with acoustic boundary conditions.

Graber and Said-Houari [24] studied the stability of a structural acoustic wave equation with semilinear
porous acoustic boundary conditions and obtained several results in local existence, global existence, the decay
rate, and blow up results.

Bucci and Lasiecka [11] studied uniform stability properties of a strongly coupled system of partial
differential equations of hyperbolic/parabolic type, which arises from the analysis and control of acoustic models
with structural damping on an interface. In [30] Lasiecka obtained results on uniform stabilizability of a three-
dimensional structural acoustic model describing the pressure in an acoustic clamber with flexible walls.

For the one wave equation

Uy — Au+ Jug)™ 2wy = [uf 2w in (0,T) x Q, (1.9)

with Dirichlet boundary conditions on 0f2 in the absence of the damping term |ut|m_2 ut, the source term

|u”~? u causes finite-time blow-up of solutions with negative initial energy (see [3, 8, 28]). In contrast, in the
absence of the source term, the damping term assures global existence for arbitrary initial data (see [25, 29]).
The interaction between the damping and source terms was first considered by Levine [31, 32] for linear damping
(m = 2). Levine showed that solutions with negative initial energy blow up in finite time. The main tool used in
[25] and [31] is the “concavity method”, which fails in the case of a nonlinear damping term (m > 2). Georgiev
and Todorova [21] extended Levin’s result to nonlinear damping case m > 2. In their work, the authors
introduced a new method and determined relations between m and p for which there is a global existence
and the relations between m and p for which there is a finite time blow up. Specifically, they showed that
solutions with negative initial energy continue to exist globally if m > p and blow up in finite time if p > m
and the initial energy is negative. Their method is based on the construction of a function L that satisfies the

differential inequality

L' (t) > wL'™™ (t) (1.10)

in [0, 00), where w > 0 and v > 0. The inequality (1.10) leads to a blow up of the solutions in finite time,
provided that L (0) > 0.

The result in [21] was later generalized to an abstract setting and to unbounded domains by Levine and
Serrin [34] and Levine and Park [33]. Vitillaro in [44] combined the arguments in [21] and [34] to extend these
results to situations where damping is nonlinear and the solution has positive initial energy.

Our main goal in this paper is to extend the above results on the wave equation (1.9) to our system (1.1)—
(1.8). We study a mixed problem for the nonlinear wave equations with transmission acoustic conditions. To the
best of our knowledge, there are no results on nonlinear wave equations with transmission acoustic conditions.
We prove the existence of a global solution for the problem (1.1)—(1.8) under the condition p < min{q,, ¢,}.
For positive initial energy and the condition p > max {q,, ¢,} we give the blow up result.

Our paper is organized as follows. In Section 2 we introduce some notations, preliminaries, and a
statement of main results; in Section 3 we prove the existence of a global solution, and the blow up result is

proved in Section 4.
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2. Preliminaries and main results

The inner product and norm in L?(€;), i = 1,2, and L? (T'y) are denoted, respectively, by

o= [ w@ @ dn - ( | oy @) -z,

Nl=

(0, O)p, :/F d(x) 0 (x) dly, 0], = (/F (8 ())* dT2>
We define a closed subspace of the H} () as
Hlll Q1) ={ we€ H () : v (u) =0 a.e. on I},

where 7o : H' (1) — HY? (D) is the trace map of order zero and H'/2(I') is the Sobolev space of order 3
defined over T', as introduced by Lions and Magenes [36]. Observe that the norm in H{ (Q1),

Jul - Z/ o\ )
H%‘l(ﬂl) - ~ Jo, axl s

and the norm of the real Sobolev space H* (€;) are equivalent, because Poincaré’s inequality holds in H%l (Q1).

Thus, we consider H}\ (Q1) with the above gradient norm.

In this section we give our main results on the existence and nonexistence of global solutions. First of
all, we give the theorem on local existence of solutions and the regularity theorem for the problem (1.1)—(1.8),

which were proved in [26] by combining the Galerkin method and the fixed point method (see [21]).

Theorem 2.1 (local existence) Assume that

M,D,K €C(Ty), M>0, D>0,K >0 forVz eIy, (2.1)
p>1if n=1,2,1<p< nQifnZS, (2.2)
-
. n+2 .
¢G>11if n=1,2, 1<qi§72 if n>3, (2.3)
P

and
(uo, vo, 00) € HE, (1) x H' () x L* (T'g),

(ul, U1, 51) S L2 (Ql) X L2 (QQ) X L2 (Fg),
ug = vg and u; = v, on I's.

Then there exists T > 0 such that the problem (1.1)~(1.8) has a unique solution (u,v,d), which satisfies

(u,v,d) eL> (O’Tv Hll‘l (Ql) X Hl (QZ) X L2 (FQ)) )
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up € L (0,75 L% (1)) N L2+ (2 x [0,7)),

vp € L= (0,T; L? (Q2)) N L2 (Qy x [0,T)), 6, € L™ (0,75 L* (T'2)) -

2
-
Iy

Moreover, at least one of the following statements holds:
2

1 lim (Iutllf o ol + IV} + Vol + || V26| +]|vEo|
- 2

2)T = +o0.

Theorem 2.2 (regularity result). Suppose that (2.1)~(2.3) hold. Let

ug € Hi () (VH? () ,u1 € HE () (L7 (1) 00 € H? () ,v1 € H' () [ | L2 (Q2) ,

up =vo anduy =v; on I's, 00 € L? (T2).

Then there exists T > 0 such that the problem (1.1)~(1.8) has a unique solution (u,v,d), which satisfies

U, U € L™ (O,T,Hlll (Ql)) , Ut € L™ (0,T,L2 (Ql)) s

v, v € L% (0,75 H' (), v € L™ (0,7 ;L7 (Q2)),
u(t) € H(A,Q),v(t) e H(A Q) a.ein(0,T),

8,0, € L (0,T;L* ('), 6, € L? (0,T; L* (Ty)),

and
U — A+ ||y = |u|pﬁ1 u a. e in Q x(0,T),
Vg — Av+ o |2 o = ol o a e in Qg x (0,7,
Moy + Do+ Ké = —up,u=v a. e. on I'yx(0,T),
(m (w@®) —v(t) s 70 () =172y xmr2(ry) = (66 (1) 70 (),
forVo e H(A, Q1) JH (A, Q2) a. e in (0,T),
u(z,0 (
v(z,0) =vg (x), vt (2,0) =v1 (2) a. e in D,
0(x,0) =dp (x) a. e. onTy.

) =wuo (z), u (z,0) =uy (z) a. e in Q,

The following theorem shows that the solution obtained in Theorem 2.1 is a global solution if p <

min {q1, g2}
Theorem 2.3 (global existence) If the assumptions of Theorem 2.1 hold and

p<min {q1, g2}, (2.4)

then the local solution (u,v,0) is a global solution and T may be taken arbitrarily large.
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Next we consider the problem (1.1)—(1.8) under the assumption

p > max {q1, ¢2}, (2.5)

in which case we show that the solution blows up in finite time.
Let s be a number with 2 < s < +oo if n = 1,2 and 2 < s < =% if n > 3. Then there exists the

constant By depending on 2; and s such that

[l

ooy < Bl Vall g, for Yue HE (). (2.6)

By this and Phriedrich’s inequality there exists the constant B depending on €y, {25, and p such that

p+1

2
1 1 2 2
lllths o) + W0l oy < B IVl + 9013) (2.7)

for Yu € Hf. () and Vv € H' (Qy), which satisfy the condition (1.5);.

Now we define the following energy function associated with the solution (u,wv,d) of the problem (1.1)-
(1.8):

E(t) = ||ut||1+||vu||1+|\vt||2+||wu2+Hf6t
1 +1 1 +1
b (o), < (),

Multiplying equation (1.1) by w;, (1.2) by v, and (1.3) by §; and integrating over 4 x [0,¢], Q2 x [0, ],

'y x [0,t], respectively, then summing them and integrating by parts (we will do this in Section 3), we can

] (2.8)

obtain

d 1 h
%E (t) _ (”Ut“%lq_f‘*'l(ﬂl) + Hvt||%2q—l_+l(ﬂ2) + H\/B(st

2

< 2.
SEL 29)
or

t
1
BO-50 =~ [ (Il g + Il o, + VDS

iz) dr. (2.10)

Thus, if (u,v,d) is a solution of the problem (1.1)—(1.8) then E (¢) is a nonincreasing function for ¢ > 0.

It follows from (2.6), (2.7), and (2.8) that

B(t) 2§ (Il + ||w||2) o P e = L [ o e =
=1 (IIVullf + IIVUII§> el o)) — 531 ||7ﬂ|’2ﬁ1(92) > (211)
> 1 (Ivull +19012) = 325 (I9ul +19013) = g(e),
where
.
o= (IVal} +1vol3)" (2.12)
g(a) = %cf - Z%a”“. (2.13)
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Therefore,

where o = B~ 1 , and since p > 1 then

_ 2 (1 1 5 (1 1
gmax(al)—B p-l (2_]7+1> = <2—p+1) =F; >0. (214)

Applying the idea of Vitillaro [44] we have the following lemma.

Lemma 2.4 Let (u,v,d) be a solution of the problem (1.1)~(1.8). Assume that (2.1) and (2.2) hold. If

0< E(0) < E; (2.15)
and
(Ivuoll? + 1 92ol3)* > n, (2.16)
then there exists as > aq such that
(I9ull + 1901)* = o (217)
and
/ lulP T da +/ loP™ dz > Bab™! (2.18)
Q Qo
for t>0.

Proof. Let F(0) < E;. Then by (2.14) there exists a number ag such that s > a1 and g (a2) = E(0).
On the other hand, by (2.11), g («) < E (t), and hence

g(a0) < E(0) = g(az), (2.19)

1
where g = af,_, = (HVUOHf + ||VU0H§)2. Since by (2.16), ap > a1 and ¢’ (o) < 0 if @ > a1, we obtain

from (2.19) that ap > as.

Now, to establish (2.17) for such asq, we suppose by contradiction that

1

(I tto, )15 + 190 (to, Y 13) " < 2 (2.20)

1
for some ty > 0. By the continuity of <||Vu (t, ) ||§ +||Vo(t, ) ||§) ® we can suppose that

N

a1 < (IVuto, ) I +11Vv to, ) 113) " < az.

From (2.11) and (2.20) we obtain
B(t0) > 90 k) = ((IVutto, )+ V0 00 V1)) > g (0) = B 0).
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but it is impossible by (2.9). Therefore, (2.17) is proved.
Using (2.8), (2.9), (2.10), (2.12), (2.13), and (2.17) we get

1

1
A |u|p+1 de + —— i1 / |U|p+1 dr =
D

Y

1 2 2 2 2 2
= (nutnl IVl + o3 + 1 90]3 + |[Vaa]|
2

i) —B(t)

1 1 1 1
> 5 (IVull} +1Vvl3) =B () = 30* =B () > 503 —B(t) > ;03 — B(0) =
1 B
= 5043 - g(a2) m gH,

from which we obtain (2.18).

Lemma 2.4 is proved.
Theorem 2.5 Assume that (2.1)~(2.2) and (2.5) hold and K > 1. If
(uo, vo, do) € Hp, (1) x H' (2) x L*(T'3),

(Ul, v, 51) S L2 (Ql) X L2 (Qg) X L2 (FQ),

then the solution of the problem (1.1)—(1.8) with initial data satisfying (2.15) and (2.16) blows up in finite time.

3. Proof of Theorem 2.3
Approximating the initial data with the smooth ones and using Theorems 2.1 and 2.2, we can show that all the
operations performed below are valid.

Let (u, v, §) be a weak solution to the transmission acoustic problem (1.1)—(1.8). Multiplying equation
(1.1) by us, (1.2) by v, and (1.3) by d; and integrating over €y, Qa, I's, respectively, then summing them

and integrating by parts, we have

1d 2 ou q,+1 1 d +1
o Iz —\ 49 ) 1) = 1 ( b ) 1) ’
2 dt el <8V ut)r 2dt ”qul ('ut‘ 1 p+1dt [ul 1

1d ov qa+1 1 d +1
v 1) = —— 2 (jopt™ 1
2dt lvell3 + (a,/ Ut>r 24t HW”2 ('“” ’ )2 p+1ldl ('U‘ ’ )2’

+Hf6t 114

‘\ﬁét 2 dt

2dt

from which, using (1.5)1, we obtain

1d

2
2 2 2 2
3 (e 19l + ol + [0l + | VT
2

2
L)
), (o)) ()

3218



ALIEV and ISAYEVA /Turk J Math

2
o, ), ),
2
or by (1.5)2
1d ) , , , ) )
3% Hut||1+IIVuII1+||vt||2+||vu||2+H\/Mgt ) +H\/7{5’F B
2 2

_Zﬁ% [(MPH’ 1)1 + <|U|p+1’ 1)2] +

2
+ (\ut\‘““ , 1) + (|Ut|q2+1 , 1) + H\/Bét =0. (3.1)
1 2 I

Note that, using (2.8), equality (3.1) can be written as (2.9).
Integrating (3.1) from 0 to ¢ we obtain

1 2 2 2 2 2 2

5 laall? + 157l + leall3 + 19013 + | VAT | +||VEe| ) +

2 2

1 1
(el 1) (1) +
p+1 1 p+1 2

+/0t [(|ut|ql+1 ’ 1)1 + (|Ut|q2+1 ’ 1)2 + H\/B(ﬁ

2
] dr =
s

1 2
=3 (nuln? IV llf + lforll3 + I 9v0ll3 + | VAza: |+ || vVEd|
2

2
)+
s

t t
+2/ (|u|p*1 u, ut) dr + 2/ (|v\p*1 v, Ut> dr. (3.2)
0 E 0 2

Let us estimate the last two terms of (3.2). Using the Holder inequality with exponents p = qlq—“
1

and

pP=q +1 (%—l—%:l),wehave

t t
/ (|U|P*1 U, ut) dr § / / |U‘p Ut dx dr S
0 1 0 Jo,

q

1
1
E a1 T1

t pla1+1) nr t S
< / / lu| " dadr (/ / lue| da d7'> ,
0 Jou 0 Jou

/B 1

from which, using the Young inequality (ab < % + "ppf’p ; % + ﬁ = 1) with the parameter n = pu/*™" , we
obtain

t q t play+1)

— q
/ (IUI” L, Ut) dr < ——— / / | ' dedr+
L T
0 (g, +1) pr 70 I
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t "
+L/ / | ddr.
q; +1 0 JO

By the condition (2.4) and the Young inequality with exponents p = (ptl)g,
we have

’_ (p+1) q
p(ql—i-l) ’ 9, —p
p(a1+1)
D= AU b0 iGN T
(r+1)gq (p+1) q,

Using this in (3.3) we get

. 3
/ (\u|p71 u, ut) ar < P4
0 1

_ 1

pt1 — T mes )
L // \u|+ dxd7+(q1 p) 1y !
p+1 Jo Jo,

(¢, +1) (p+1)
I ¢ q; +1
+— / / [ dz dr.
ql + 1 0 Ql

Similarly, we have

t St p+1 — 7$Tmesﬂ
/ (\v|p71 v, ’Ut) dr < PE, / / [v] i dz dr + (¢, —p) 1, 24
0 2 p+1 Jo Ja,

(. +1) (p+1)
7 t q5+1
—|—72/ / |v] dx dr.
Q2 + 1 0 Qz

.5) we conclude that

From (3.2), (3.4), and (3

(||ut|1+Vu|1+||vt2+|w||2+Hv s,

2 t
(1) + (o 1) ]+ (1- 22 / (lut\““, 1) drt
p+1 1 2 a+1) )y 1

21 /t +1
+(1-—= (U 2 ,1) dT-I—/
( C]2+1) 0 ‘t| 2

2
(|u1||1 + Vol + ol + 1 Vwolly + || VAZa,

N =

2+H\/T<50’

dT<
1

2
)+
I
9 1
(q, —p)p. " mesQ
ot (ol 1) (oo™ 1), [+ +
p+1 [l 1 [vol P+ 1; q+1

p or -3 ¢ +1 +1
+m max{,ul Yo, }/0 K|u|p ) 1)1 + <|U|p : 1)2} dr

(3.4)
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and p, , p, are chosen such that

24, 248,
>0,
q, +1 g, +1

By Gronwall’s inequality and (3.6) we obtain

(||ut|1+Vu|1+||vt2+|w||2+1\¢ i

) +
1 pt1 ) ( pt1 ) } 2 /t ( " )
_— 1 1 1-— ! 1) d
+p+1 [(|u| ’ 1+ [v] "2 + a+1)J [ VAT T
2 t t 2
—+ (]. — MQ >/ <|’Ut‘q2+1 s 1) dT+/ H\/ﬁ(;t
% +1)Jo 2 0 Iy

where Cr depends on ||u, [, , [[v,lly, [IVu,lly 5 [V lly s 1, [r, 5 110, llp, and on T' > 0, which is arbitrary. By

dr < Crp,

the standard continuation argument, the local solution (u,v,d) obtained in Theorem 2.1 is global.

Theorem 2.3 is proved.

4. Proof of Theorem 2.5
Let
Ht)=E,—-FE(t), t>0. (4.1)

From (2.9) we have

2
H(t) = ~E' (1) = [l 74 ) + el Bt o,y + VDS 20020, (4.2)
Therefore, from (2.15), (4.1), and (4.2) we obtain that
0<H(0)<H({), t>0. (4.3)

By (2.8) and (4.1) we have
H(t)=

=B - (|m||1 + 7l + ol + Vol + VAT )

1 1
+7 (|u\p+17 1)1 + 1 (|U|p+17 1>2 < E - B} (HV“Hi + HVU”§> +

1
[ 1)+ (ol 1) ],
p+1 1 2

1 1
H(0) < B - god+ g [( 1)+ (1)
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or since ag > aj, then by (2.14)

m < [0 1), (0]

We define O (t) as follows:

@(t):Hl—a(t)—l-E(/ uutdx—i—/ thdx—/ uédl"g)
Q1 Qo Iy

for € > 0 to be chosen later and for o satisfying

-1 _ —
0<J§mm{ p p—q P—4q, }

2(p+1) ¢, (p+1)" g, (p+1)

Note that p—1>0, p—¢q, >0, p—gq, >0 by (2.2) and (2.5).
Differentiating (4.5) and taking into account (1.1) and (1.2) yields

O (t) = (1— o) H (1) H' (1) +g/

1951

0
+e (/ A drs —/ IVu|? dx) _
Ty ov N
q, —1 p+1 ov 2
—€ lug| "7 wpude 4+ ¢ |u"Trde+e [ — | —vdle— |Voul® dx | —
Qq Q4 Ty ov Qo

—8/ ‘Ut|q271 vtvdx—i—a/ "U|p+1d$—8/ wddly —e | Supdls,
(92 Qo Iy 1]

u?dm—i—e/ vide+
Q2

or since by (1.5),

ou ov ou Ov
—udly — —uoudly = —_—— dl'y = T
udly 8VU 2 /F2 (8V 8u)u 2 F25tUd 2,

then we obtain

O ()= (1—0) H (t) H' (t) +5/

Q

75/ Vul|® dx—s/ \Vol* do—
Ql QZ

75/ g | ! wpude 75/ og|%2 7! vtvdx+5/ luP™! do+
Q1 Qo 951

+€/ |v|p+1dmf€/ 0 uy dl's.
QQ 1_‘2

q,+1
a4,

/ e ™ wg uda §/ [ug| ™t |u| do <
Q1 Q1

ufdx—i—s/ v? de—
1 Q2

Using the Holder inequality with exponents p = and p' =¢q, +1 (l + 4 = 1) we have
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91 1
q,+1 qq+1
S(/ uthl“d"”>l (/ |uq1+1d‘"”>l ’
Ql Ql

o 1o’ TR
from which, by the Young inequality (ab < % + 1 p{’ , % + % = 1) with parameter n = [P,H™° (t)] = (P,
is a large constant to be fixed later), we obtain
/ Jue| ™! wpude| < cH PH° (t)/ ug| T da+
o 1 o
+ T / fu ™" da (48)
(¢, +1) (PLH=7 ()™ Jo,
Similarly, we have
/ 02 vy vda| < —p H" (t)/ e 2+ dat
QQ q2 ]‘ QQ
+ ! — 7 / |2 da. (4.9)
(¢, +1) (B,H7(1))" Ja,
By (4.2) from (4.8) and (4.9), we get
6/ g |21 utudx+5/ loe| 2™ vy vde| <
Ql QQ
<ePH™ 7 (t) {/ g | d:c+/ g %2 dx] +
Ql Q2
€ +1 € qy+1
b [ et o [l e <
(PH= ()" Jo, (P,H= ()" Jq,
< cPH™ () H' (t) + <P~ H (1) /Q gt
+eP 7 () [ ol da, (4.10)
2

where P =max{P,, P,} .

Taking into account (4.4) and the obvious inequalities

pHL
/ g <k, </ |U|p+1daj> <
Ql Q1
<k, (/ |u|p+1dx+/ Blan dx) ’ ,
(o Q,
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a1
p+1
/ |,U|‘12+1 dx S k2 (/ |,U|P+l d:C) S
QQ QQ
aptt
p+1
<k, (/ P! dx+/ Bl dx) ,
Ql Q2
P—ay P—dy
1 1
with k, = Q] ” , ky = Qs ” , from (4.10) we get

‘ le |Ut|ql utudx+5fﬂ |Ut‘q2 ’Ut’Udaj‘ <ePH" (t)H' (t)+
+1
Py +1 +1 06+
+(Ep+17”'11 (le [ul”™ dx + fQ Bl daj) =+

P, p+1 p+1 e
+m (fﬂl "U/l d$+ fQ |U| dl‘ .

By (2.8) and (4.1) we have

IVl ~ V0l = 28 (1) ~ 2By + ol + el + | VTS|

+1 g +1
p+1 le |“‘p dr — mfnz ‘U|p dx.

From (2.18) we get

2eFE
2B > —— — </ ufP dx+/ Blias d:c).
" Ba p o Qo

Since ¢’ (a1) = 0, then by (2.13), we obtain that a, — Ba? =0 or
af = Ba’l’“.
Taking into account (2.14) and (4.14) in (4.13) yields

+1 +1
_25E1 > 25 %(2 m) Bap+1 (fﬂ ‘ulp dx+f$2 |U|p dl‘) =
— 1 1
= —E(;’Hl) ( ) (fﬂ |ulP* dz + [o, lias dx) :

Multiplying (4.12) by e and using (4.15) we have

2 2

—e|[[Vully = ¢ [[Vully >

e(p—1) <a1>p+l 2
(2] o+

p+1 \o p+1

2
e Nl & el + < |VET8 |
2

> 2eH (t) —

+ef
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Using this and (4.11) from (4.7) we get

O#t)>Q—0c—eP)H °(t)H (t)+2cH (t)+
—|—2sz1 u? dx + 2¢ fQ2 v? dr — 5]1“2 Sup dlo+

+e (1 _ L (%)p“ 2

+1 +1
s (5)7 =3 (Jo, [l dat fo, o do) +
2 2
+5‘ \/Mdt‘ e H\/F(S - (4.16)
<k Pl Pl o0+
~Frge (o [ do o+ fo, 1o do)
qo+1
ek +1 +1 oq2+ 25y
ey (fo 17 ot o, 1o )™
Since o, > o, and p > 1, then
—1 P g -1 P
[P (0‘1 SR ek —8>0. (4.17)
p+1\a, p+1l p+l1 a,
Since by (4.6), 0 < ogq, + ij_:_ll < 1,7=1,2, then using the algebraic inequality
1
Z”Sz—f—lg(l—i—) (z44a),V2>0,0<v <1, a>0, (4.18)
a

we obtain

1

qu+%
</ \u|p+1d:£+/ |U|p+1d.’L‘> <
Ql Q2
1 1 +1
< 1—|—) (/ ulPt d:r—i—/ P de+ H 0),
(t+7) ([ [ 0)

or denoting 1+ ﬁ =, by (4.3) we get

Uq@'-i-%
(/ Ju|P T dx—l—/ luPt dw) <
Q1 Q2

1,2.

<7(/ |u|p+1dm+/ |’U|p+1d$+H(t)>,i
o 0

(4.19)
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Using (4.17) and (4.19) in (4.16), we have
©{t)>(1—0—eP)H °(t)H (t)+ 2 H (t) + 25f91 u? do+

+2¢ fm vidr —e fr2 5 uy dlo+

2

428 (Jo, Il da+ fo, WP do) +2 [VITS| +e|[VE|

2

FQ_
k p+1 p+1

i) (o 1 ot Jo, 1o de 4 H ()

kl
=1 (7o +

or since —e¢ fF2 dupdls > =5 [1 52dly — %fF2 u?dly and K > 1, then
O (t) > (1— o —eP) H-7 (t) H' () +
—1—375 le u2dx + 2¢ sz vidr + £ fl“z 52dly +

b by )} H(t)JreH\/Mét

2
— 1
te [2 7 (P{” ot T BE o n r,
k k p+1 p+1
+e [p-n (P{“ e P?(pﬁ)“%ﬂ (Jo "™ d - Jo, o™ da)

(4.20)

+

We choose P,, P, large enough such that

— 9 _ ky k,
th =2 Y (Pfl (p+1)° %1 + P2‘12 (p+1)7%2 ) > 07

92=B—W( ‘ ‘

+

1 2
P (p+1)7" T B (ph1)7 " )

Then we choose ¢ small enough such that 1 —o —eP > 0 and

C) (O) =H'"° (O) +e (/ uoU1dr +/ vourdT — / ’U;o(S()drg) >0 (4.21)
Q1 Qo I

or
1-0o H=7 (0)

€ < min ,
le uould:c + sz UQ’Uld.’B — ng uO(SodFQ‘

Then from (4.20) we have

o (t) > ( Joo, w2 dz + [, vfdx) + 5 [, 62d0y + 61 H (1) +

(4.22)
+ebs (‘[Ql |u|p+1alx—f—f92 luP! d;v).

Therefore, O (t) is a nondecreasing function for ¢ > 0. Using (4.21), we obtain that
©((t)>0(0) >0,t>0.
Since 0 < o < 1, it is obvious that ﬁ > 1. Then using the inequality

(a+b)" <C(a"+b"),a,b>0,r>0,C>0,
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from (4.5) we get

0" (1)< Cy

H(t)‘i'(/ Uutda?+/ thdx—/ u6dF2> -
931 Qo Ty

(4.23)

| S

where Cj is a positive constant.

On the other hand, from Hoélder and Young inequalities we obtain that

1

(fg wugdr + [, vvtdaz—fr ud dfg)
[|Q1 oDy (fQ ‘u| )ﬁ (fm u? d$> +
10T (o, 17 ) (o v )

_1_ 1

+|91|2(%” (o 1™ der) - (Jr, o dF2)2

o \/\

|

1—0o

<

1 1
p=1 FDa=o) IT—0)
2(p+1)(1—0) p+1
<94 (le |ul da:) (le u? dx) +

1 1
TR » BFDA=) Pree=ra)
4 |, (fm Mias dm) (fﬂz w2 dx) n (4.24)

1 1

p—1 BFD(A=0) Ple=ral
2T D(I—0) p+1

1T (o, ™ de Jo, 8% drz) <

2
___p—1l o+ (1—=20)
2(p+1D)(1-0) _ p+1
< || l21(1—2§) (le |ul dx)
2
__p-1l T+ (1—20)
2(p+DH(1-0) _ p+1
+ 62| lZl(l—zg) (f92 ] dx) 2(1 ) Jo, vide

2
e PFD(I-20)
pFD(-a) | 1_o pH1 L )
+|Ql| [2(1_3) (le |u| dx) + 3(1—0) sz 0= dIl'y

Since by (4.6), 0 <

+ 2(11—0) le ui dz| +

m < 1, then using (4.18) we obtain

(fﬂl o d )mg(uﬁ) (Jo ol s 11(0) <
(1+H0>) (fg Jul” H()) v(fﬂ | de+ H (t )

(4.25)

Similarly, we have

(p+1)(21—2a)’
pt1 p+1
</ |v] da:) <7 (/ |v] dm—i—H(t)) . (4.26)
Q2 Qo
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From (4.24)—(4.26) we get
11
(leuutdx—i—fQ thdx—fr ud dI‘g) <
D =7)
2227 (o, 1ol do+ H(®) + 5y fo, wd do] +

p—1
2(p+1)(1-0) 1-20

+ €2z [2(1_—0)’7 (fm o ™ da+ H (1 ) ey Ja, U dl’} +

p—1
2(p+1)(1—0) 9 p+1
+ 14| + [21(130)7 (le lu|  dx+ H(t )+ Tger] Ir, 52 dFQ} )

< |94

Using this in (4.23), we obtain

1 __p=1l
2(p+1)(1—-0) (1—20)y

e G - _
07 (1) < Cy |1+2]0] S+ |0 2(10)]H(t)+

2(1-

p—1
42(p+1)(1 ) o 2(p+D)(1—0) —20
+Co [ Q2o [l dm+Co|Qz| S fgzl o

__p—1l b1 —_p—-1
12 ‘2(P+1)(1*U) 2(P+1)(1 o) 2(P+1)(1 )

+Coltr—— [, u2d$+co‘170) Jo, 2d:c+Com‘70) Ji, 8% dT

or

611"()<Cl< ()+/Qlu|p“dx+

Pt 2 2 2
+/ [v] dx—l—/ utdx—i—/ vtdac—i—/ §%dly |,
Qo Q4 Qo 1

where

p—1
Oy = Cy max {1 P |Q1|2(p+1)(1—a) (21(—12700))7_"_

p—1 p—1
2(p+1)(1—-0) (1—20)~ 2(p+1)(1—0) (1—20)y
+ |Q2| 2(1—0o) ? |Ql| l—-0

p—-1 2 131711 2 ;)1711
‘Q |2(p+1)(1—a) (1-20)~ 191] (p+1)(1—-0) Q] (p+1)(1-0)
2 2(1—0) ° 2(1—0) ’ 2(1—0) :

Putting Cy = e min{1; 0;; 62}, from (4.22) we get

e'(t) > Cy (H(t)+/ ufP T dx—i—/ Blias dx—i—/ ufdm—i—/ U?d$>.
Q1 Qo Q Qo

It follows from (4.27) and (4.28) that

1

o' (1) =050 (1),
where C3 = g—f Integrating both sides of this inequality over [0, t] yields

l1—0o

o) > (@1"“ (0) = &7 t) G

1—0c
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(o

(1o

Noting that © (0) > 0, there exists T3 = 1=9)8 ") gych that © (t) = 400 as t — T1. In other words,

Cso

the solution of problem (1.1)—(1.8) blows up in finite time.

Theorem 2.5 is proved.
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