Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2018) 42: 3232 - 3241
© TÜBİTAK
doi:10.3906/mat-1807-155

On spanning sets and generators of near-vector spaces

Karin-Therese HOWELL ${ }^{1 *}{ }^{(0)}$, Sogo Pierre SANON ${ }^{2}$ (D)
${ }^{1}$ Department of Mathematical Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
${ }^{2}$ Department of Mathematical Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa

| Received: 20.07.2018 | Accepted/Published Online: 30.10 .2018 | - | Final Version: 27.11.2018 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper we study the quasi-kernel of certain constructions of near-vector spaces and the span of a vector. We characterize those vectors whose span is one-dimensional and those that generate the whole space.

Key words: Field, nearfield, vector space, near-vector space

1. Introduction

The near-vector spaces we study in this paper were first introduced by André in 1974 [1]. His near-vector spaces have less linearity than normal vector spaces. They have been studied in several papers, including [2-6]. More recently, since André did a lot of work in geometry, their geometric structure has come under investigation. In order to construct some incidence structures a good understanding of the span of a vector is necessary. It very quickly became clear that near-vector spaces exhibit some strange behavior, where the span of a vector need not be one-dimensional and it is possible for a single vector to generate the entire space.

In this paper we begin by giving the preliminary material of near-vector spaces. In Section 3 we take a closer look at the class of near-vector spaces of the form $\left(F^{n}, F\right)$, where F is a nearfield and n is a natural number, constructed using van der Walt's important construction theorem in [9] for finite dimensional nearvector spaces. We give conditions for when the quasi-kernel will be the whole space. In the last section we prove that when for a near-vector space $(V, A), v \in V$, span v will equal $v A$. We introduce the dimension of a vector and prove that in the case of a field, it is always less than or equal to the number of maximal regular subspaces in the decomposition of V. We define a generator for V and give a condition for when v will be a generator for V. Finally, we characterize the near-vector spaces that have generators.

2. Preliminary material

Definition 2.1 A (right) nearfield is a set F together with two binary operations + and \cdot such that

1. $(F,+)$ is a group;
2. $(F \backslash\{0\}, \cdot)$ is a group;
3. $(a+b) \cdot c=a \cdot c+b \cdot c$ for all $a, b, c \in F$.
*Correspondence: kthowell@sun.ac.za
2010 AMS Mathematics Subject Classification: 16Y30, 12K05

HOWELL and SANON/Turk J Math

Left nearfields are defined analogously and satisfy the left distributive law. We will use right nearfields throughout this paper. We also have the following definition.

Definition 2.2 Let F be a nearfield. We define the kernel of F to be the set of all distributive elements of F, i.e.

$$
F_{d}:=\{a \in F \mid a \cdot(b+c)=a \cdot b+a \cdot c \text { for every } b, c \in F\}
$$

If F is a nearfield, F_{d} is a subfield of it [8]; moreover, F is a vector space over F_{d}. We refer the reader to [7] and [8] for more on nearfields.

Definition 2.3 ([1]) A near-vector space is a pair (V, A) that satisfies the following conditions:

1. $(V,+)$ is a group and A is a set of endomorphisms of V;
2. A contains the endomorphisms 0 , id, and $-i d$;
3. $A^{*}=A \backslash\{0\}$ is a subgroup of the group $\operatorname{Aut}(V)$;
4. If $x \alpha=x \beta$ with $x \in V$ and $\alpha, \beta \in A$, then $\alpha=\beta$ or $x=0$, i.e. A acts fixed point free on V;
5. The quasi-kernel $Q(V)$ of V generates V as a group. Here, $Q(V)=\{x \in V \mid \forall \alpha, \beta \in A, \exists \gamma \in$ A such that $x \alpha+x \beta=x \gamma\}$.

We will write $Q(V)^{*}$ for $Q(V) \backslash\{0\}$ throughout this paper. The dimension of the near-vector space, $\operatorname{dim}(V)$, is uniquely determined by the cardinality of an independent generating set for $Q(V)$, called a basis of V (see [1]).

Definition 2.4 ([6]) We say that two near-vector spaces $\left(V_{1}, A_{1}\right)$ and (V_{2}, A_{2}) are isomorphic (written $\left(V_{1}, A_{1}\right) \cong\left(V_{2}, A_{2}\right)$) if there are group isomorphisms $\theta:\left(V_{1},+\right) \rightarrow\left(V_{2},+\right)$ and $\eta:\left(A_{1}^{*}, \cdot\right) \rightarrow\left(A_{2}^{*}, \cdot\right)$ such that $\theta(x \alpha)=\theta(x) \eta(\alpha)$ for all $x \in V_{1}$ and $\alpha \in A_{1}^{*}$.

We will write a near-vector space isomorphism as a pair (θ, η).

Example 2.5 ([5]) Consider the field $\left(G F\left(3^{2}\right),+,.\right)$ with

$$
G F\left(3^{2}\right):=\{0,1,2, \gamma, 1+\gamma, 2+\gamma, 2 \gamma, 1+2 \gamma, 2+2 \gamma\}
$$

where γ is a zero of $x^{2}+1 \in \mathbb{Z}_{3}[x]$. In [8], p. 257, it was observed that $\left(G F\left(3^{2}\right)\right.$, + , ○), with

$$
x \circ y:=\left\{\begin{array}{cc}
x \cdot y & \text { if } y \text { is a square in }\left(G F\left(3^{2}\right),+, \cdot\right) \\
x^{3} \cdot y & \text { otherwise }
\end{array}\right.
$$

and

$$
+:(a+b \gamma)+(c+d \gamma)=(a+c) \bmod 3+((b+d) \bmod 3) \gamma
$$

is a (right) nearfield, but not a field.

HOWELL and SANON/Turk J Math

\circ	0	1	2	γ	$1+\gamma$	$2+\gamma$	2γ	$1+2 \gamma$	$2+2 \gamma$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	γ	$1+\gamma$	$2+\gamma$	2γ	$1+2 \gamma$	$2+2 \gamma$
2	0	2	1	2γ	$2+2 \gamma$	$1+2 \gamma$	γ	$2+\gamma$	$1+\gamma$
γ	0	γ	2γ	2	$1+2 \gamma$	$1+\gamma$	1	$2+2 \gamma$	$2+\gamma$
$1+\gamma$	0	$1+\gamma$	$2+2 \gamma$	$2+\gamma$	2	2γ	$1+2 \gamma$	γ	1
$2+\gamma$	0	$2+\gamma$	$1+2 \gamma$	$2+2 \gamma$	γ	2	$1+\gamma$	1	2γ
2γ	0	2γ	γ	1	$2+\gamma$	$2+2 \gamma$	2	$1+\gamma$	$1+2 \gamma$
$1+2 \gamma$	0	$1+2 \gamma$	$2+\gamma$	$1+\gamma$	2γ	1	$2+2 \gamma$	2	γ
$2+2 \gamma$	0	$2+2 \gamma$	$1+\gamma$	$1+2 \gamma$	1	γ	$2+\gamma$	2γ	2

The distributive elements of $\left(G F\left(3^{2}\right),+, \circ\right)$, denoted by $\left(G F\left(3^{2}\right),+, \circ\right)_{d}$, are the elements $0,1,2$. From now on when there is no room for confusion, we will write $x \circ y$ as $x y$. Now let $F=\left(G F\left(3^{2}\right),+, \circ\right)$, with $\alpha \in F$ acting as an endomorphism of $V=F^{3}$ by defining $\left(x_{1}, x_{2}, x_{3}\right) \alpha=\left(x_{1} \alpha, x_{2} \alpha, x_{3} \alpha\right)$. Thus, $Q(V)=\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \mathcal{V}_{3}$, with $\mathcal{V}_{1}=\left(1, d_{1}, d_{2}\right) F, \mathcal{V}_{2}=\left(d_{1}, 1, d_{2}\right) F$ and $\mathcal{V}_{3}=\left(d_{1}, d_{2}, 1\right) F$, with $d_{1}, d_{2} \in F_{d}$. We will refer back to this example later in the paper.

In [9] it was proved that finite-dimensional near-vector spaces can be characterized in the following way:

Theorem 2.6 ([9]) Let $(G,+)$ be a group and let $A=D \cup\{0\}$, where D is a fixed point free group of automorphism of G. Then (G, A) is a finite-dimensional near-vector space if and only if there exist a finite number of nearfields F_{1}, \ldots, F_{m}, semigroup isomorphisms $\psi_{i}:(A, \circ) \rightarrow\left(F_{i}, \cdot\right)$, and an additive group isomorphism $\Phi: G \rightarrow F_{1} \oplus \ldots \oplus F_{m}$ such that if $\Phi(g)=\left(x_{1}, \ldots, x_{m}\right)$, then $\Phi(g \alpha)=\left(x_{1} \psi_{1}(\alpha), \ldots, x_{m} \psi_{m}(\alpha)\right)$ for all $g \in G, \alpha \in A$.

Using this theorem we can specify a finite-dimensional near-vector space by taking n copies of a nearfield F for which there are semigroup isomorphisms $\psi_{i}:(F, \cdot) \rightarrow(F, \cdot), i \in\{1, \ldots, n\}$. We then take $V:=F^{n}, n$ a positive integer, as the additive group of the near-vector space and define the scalar multiplication by:

$$
\left(x_{1}, \ldots, x_{n}\right) \alpha:=\left(x_{1} \psi_{1}(\alpha), \ldots, x_{n} \psi_{n}(\alpha)\right)
$$

for all $\alpha \in F$ and $i \in\{1, \ldots, n\}$. This is the type of construction we will use throughout this paper and we will use $\left(F^{n}, F\right)$ to denote an instance of a near-vector space of this form.

The concept of regularity is a central notion in the study of near-vector spaces.

Definition 2.7 ([1]) A near-vector space is regular if any two vectors of $Q(V)^{*}$ are compatible, i.e. if for any two vectors u and v of $Q(V)^{*}$ there exists a $\lambda \in A \backslash\{0\}$ such that $u+v \lambda \in Q(V)$.

Theorem 2.8 ([1]) Let F be a (right) nearfield and let I be a nonempty index set. Then the set

$$
F^{(I)}:=\left\{\left(n_{i}\right)_{i \in I} \mid n_{i} \in F, n_{i} \neq 0 \text { for at most a finite number of } i \in I\right\}
$$

with the scalar multiplication defined by

$$
\left(n_{i}\right) \lambda:=\left(n_{i} \lambda\right)
$$

gives that $\left(F^{(I)}, F\right)$ is a near-vector space.

We describe the quasi-kernel of $F^{(I)}$:

Theorem 2.9 ([1]) We have

$$
Q\left(F^{(I)}\right)=\left\{\left(d_{i}\right) \lambda \mid \lambda \in F, d_{i} \in F_{d} \text { for all } i \in I\right\}
$$

We can also show that the quasi-kernel is not the entire space.

Theorem 2.10 Letting F be a proper (right) nearfield and let I be a nonempty index set, then the near-vector space $\left(F^{(I)}, F\right)$ has $Q\left(F^{(I)}\right) \neq F^{(I)}$.

Proof Consider the element $v=\left(a_{1}, 1, \ldots, 0\right) \in V$, where $a_{1} \notin F_{d}$. We show that v is in $V \backslash Q(V)$. Suppose that $v \in Q(V)$, and then $\left(a_{1}, 1, \ldots, 0\right)=\left(d_{1} \lambda, d_{2} \lambda, \ldots, 0\right)$. Thus, we get that $a_{1}=d_{1} \lambda, 1=d_{2} \lambda$ and since F is a nearfield, we can solve this and get that $\lambda=d_{2}^{-1}$. Substituting this in the first equation we get that $a_{1}=d_{1} d_{2}^{-1}$, and since F_{d} is a field, this gives that $a_{1} \in F_{d}$, a contradiction.

The following theorem gives a characterization of regularity in terms of the near-vector space $\left(F^{(I)}, F\right)$.

Theorem 2.11 ([1]) A near-vector space (V, F), with F a nearfield and $V \neq 0$, is a regular near-vector space if and only if V is isomorphic to $F^{(I)}$ for some index set I.

The following theorem is central in the theory of near-vector spaces.

Theorem 2.12 ([1]) (The Decomposition Theorem) Every near-vector space V is the direct sum of regular near-vector spaces $V_{j}(j \in J)$ such that each $u \in Q(V)^{*}$ lies in precisely one direct summand V_{j}. The subspaces V_{j} are maximal regular near-vector spaces.

3. Spanning sets and generators

In [5] a study of the subspaces of near-vector spaces was initiated. In this section we add to these results. We begin with some basic definitions.

Definition 3.1 ([5]) If (V, A) is a near-vector space and $\emptyset \neq V^{\prime} \subseteq V$ is such that V^{\prime} is the subgroup of $(V,+)$ generated additively by $X A=\{x a \mid x \in X, a \in A\}$, where X is an independent subset of $Q(V)$, then we say that $\left(V^{\prime}, A\right)$ is a subspace of (V, A), or simply V^{\prime} is a subspace of V if A is clear from the context.

From the definition, since X is a basis for V^{\prime}, the dimension of V^{\prime} is $|X|$. It is clear that V is a subspace of itself since it is generated by $X A$ where X denotes a basis of $Q(V)$ and we define the trivial subspace, $\{0\}$, to be the space generated by the empty subset of $Q(V)$.

Definition 3.2 Letting (V, A) be a near-vector space, then the span of a set S of vectors is defined to be the intersection W of all subspaces of V that contain S, denoted span S.

It is straightforward to verify that W is a subspace, called the subspace spanned by S, or conversely, S is called a spanning set of W and we say that S spans W. Moreover, if we define span $\emptyset=\{0\}$, then it is not difficult to check that span S is the set of all possible linear combinations of S.

HOWELL and SANON/Turk J Math

For a vector space (V, F) the span of a single vector v is always of the form $v F$, but in general this is not true for near-vector spaces. The following two results were recently proved:
$\{$
Lemma 3.3 Let (V, A) be a near-vector space. Then for all $v \in V, \operatorname{span}\{v\}=v A$ if and only if $Q(V)=V$.
One might wonder if it is possible for a nonzero $w \in V \backslash Q(V)$ to have $\operatorname{span}\{w\}=v A$ for some $v \in Q(V)$.
Lemma 3.4 Let (V, A) be a near-vector space. Then for all nonzero $w \in V \backslash Q(V)$, $\operatorname{span}\{w\} \neq v A$ for some $v \in Q(V)$.
\}
We are interested in what the span of a vector outside of $Q(V)$ looks like.
Let (V, A) be a near-vector space, not necessarily finite-dimensional. By definition, the quasi-kernel $Q(V)$ generates V, so for any $v \in V$, there is $u_{1}, \ldots, u_{m} \in Q(V) \backslash\{0\}$ and $\alpha_{1}, \ldots, \alpha_{m} \in A \backslash\{0\}$, such that $v=u_{1} \alpha_{1}+\cdots+u_{m} \alpha_{m}$. This expression is not unique. We can also have $u_{1}^{\prime}, \ldots, u_{l}^{\prime} \in Q(V) \backslash\{0\}$ and $\alpha_{1}^{\prime}, \ldots, \alpha_{l}^{\prime} \in A \backslash\{0\}$ such that $v=u_{1}^{\prime} \alpha_{1}^{\prime}+\cdots+u_{l}^{\prime} \alpha_{l}^{\prime}$ with $m \neq l$.

For $v \in V \backslash\{0\}$, we consider

$$
n=\min \left\{m \in \mathbb{N} \mid v=\sum_{i=1}^{m} u_{i} \alpha_{i}, \text { with } u_{i} \in Q(V) \backslash\{0\}, \alpha_{i} \in A \backslash\{0\}, i=1, \ldots, m\right\}
$$

Definition 3.5 For $v \in V \backslash\{0\}$ we define the dimension of v to be

$$
n=\min \left\{m \in \mathbb{N} \mid v=\sum_{i=1}^{m} u_{i} \alpha_{i}, \text { with } u_{i} \in Q(V) \backslash\{0\}, \alpha_{i} \in A \backslash\{0\}, i=1, \ldots, m\right\}
$$

and we denote it by $\operatorname{dim}(v)=n$ and $\operatorname{dim}(v)=0$ if v is the zero vector.
Theorem 3.6 We have that $\operatorname{dim}(\operatorname{span}\{v\})=\operatorname{dim}(v)$.
Proof Let $n=\operatorname{dim}(v)$ and $\left\{u_{1}, \ldots, u_{n}\right\} \subset Q(V)$, such that $v=\sum_{i=1}^{n} u_{i} \alpha_{i}$ for some $\alpha_{i} \in A \backslash\{0\}$. Then $\operatorname{span}\{v\} \subset \operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\}=: W$, since $\operatorname{span}\{v\}$ is the smallest subset of V that contains v. Since n is minimal, $\left\{u_{1}, \ldots, u_{n}\right\}$ is a linearly independent subset of $Q(V)$. Hence, $\operatorname{dim}(W)=n$ and $\operatorname{dim}(\operatorname{span}\{v\}) \leqslant n$.

Let us assume that $\operatorname{dim}(\operatorname{span}\{v\})<n$. Since $v \in \operatorname{span}\{v\}$, there are $u_{1}, \ldots, u_{m} \in Q(V) \backslash\{0\}$ and $\beta_{1}, \ldots, \beta_{m} \in A \backslash\{0\}$ such that $v=\sum_{i=1}^{m} v_{i} \beta_{i}$, with $m<n$. This a contradiction since n is the smallest integer that satisfies this condition. Hence, $\operatorname{dim}(\operatorname{span}\{v\})=\operatorname{dim}(v)$.

We know that any subspace of W of V is generated by $X A$, with X a linearly independent subset of $Q(V)$. For $\operatorname{span}\{v\}, v$ a vector in $V \backslash\{0\}$, the subset X is given by any linearly independent set $\left\{u_{1}, \ldots, u_{n}\right\} \subset Q(V)$, such that $n=\operatorname{dim}(v)$ and $v=\sum_{i=1}^{n} u_{i} \alpha_{i}$ for some $\alpha_{i} \in A \backslash\{0\}$.

By Lemma 3.3, we have that:

HOWELL and SANON/Turk J Math

Proposition 3.7 For any $v \in V, \operatorname{dim}(v)=1$ if and only of $v \in Q(V) \backslash\{0\}$.
Also, if V is finite-dimensional, of dimension n, then $\operatorname{dim}(v) \leqslant n$, and if $\operatorname{dim}(v)=n$, then $\operatorname{span}\{v\}=V$. Thus, we define:

Definition 3.8 Let (V, A) be a near-vector space. If $v \in V$ such that $\operatorname{span}\{v\}=V$, then v is called a generator of V.

Isomorphisms preserve generators:

Theorem 3.9 Let $\left(V_{1}, A_{1}\right)$ and $\left(V_{2}, A_{2}\right)$ be isomorphic near-vector spaces and $v \in V_{1}$. Then $\operatorname{dim}(v)=$ $\operatorname{dim}(\theta(v))$, where (θ, η) is the isomorphism.

Proof Let $\operatorname{dim}(v)=k$ and $\operatorname{dim}(\theta(v))=k^{\prime}$. Then there exist $u_{1}, \ldots, u_{k} \in Q\left(V_{1}\right) \backslash\{0\}$ and $\alpha_{1}, \ldots, \alpha_{k} \in A_{1} \backslash\{0\}$ such that $v=\sum_{i=1}^{k} u_{i} \alpha_{i}$. We have

$$
\theta(v)=\theta\left(\sum_{i=1}^{k} u_{i} \alpha_{i}\right)=\sum_{i=1}^{k} \theta\left(u_{i} \alpha_{i}\right)=\sum_{i=1}^{k} \theta\left(u_{i}\right) \eta\left(\alpha_{i}\right) .
$$

It follows that $\operatorname{dim}(\theta(v)) \leq k$.
Assume that $k^{\prime}=\operatorname{dim}(\theta(v))<k$. There are $v_{1}, \ldots, v_{k^{\prime}} \in Q\left(V_{2}\right) \backslash\{0\}$ and $\beta_{1}, \ldots, \beta_{k^{\prime}} \in A_{2} \backslash\{0\}$ such that $\theta(v)=\sum_{i=1}^{k} v_{i} \beta_{i}$. Since (θ, η) is an isomorphism, we have

$$
\theta(v)=\sum_{i=1}^{k^{\prime}} \theta\left(v_{i}^{\prime}\right) \eta\left(\beta_{i}^{\prime}\right)=\sum_{i=1}^{k^{\prime}} \theta\left(v_{i}^{\prime} \beta_{i}^{\prime}\right)=\theta\left(\sum_{i=1}^{k^{\prime}} v_{i}^{\prime} \beta_{i}^{\prime}\right)
$$

It follows that $v=\sum_{i=1}^{k^{\prime}} v_{i}^{\prime} \beta_{i}^{\prime}$ and $\operatorname{dim}(v) \leq k^{\prime}<k$, which is a contradiction.

Corollary 3.10 Let $\left(V_{1}, A_{1}\right)$ and $\left(V_{2}, A_{2}\right)$ be isomorphic near-vector spaces. v is a generator of V_{1} if and only if $\theta(v)$ is a generator of V_{2}, where (θ, η) is the isomorphism.

For F a field, using the following recently proved result, we can show more.
\{
Theorem 3.11 Let $F=G F\left(p^{r}\right)$ and $V=F^{n}$ be a near-vector space with scalar multiplication defined for all $\alpha \in F$ by

$$
\left(x_{1}, \ldots, x_{n}\right) \alpha:=\left(x_{1} \psi_{1}(\alpha), \ldots, x_{n} \psi_{n}(\alpha)\right)
$$

where the $\psi_{i}^{\prime} s$ are automorphisms of (F, \cdot). If $Q(V) \neq V$ and $V=V_{1} \oplus \cdots \oplus V_{k}$ is the canonical decomposition of V, then $Q(V)=Q_{1} \cup \cdots \cup Q_{k}$ where $Q_{i}=V_{i}$ for each $i \in\{1, \ldots, k\}$.
\}

Theorem 3.12 Let F be a field and $V=F^{n}$ be a near-vector space over F with scalar multiplication defined for all $\left(x_{1}, \ldots, x_{n}\right) \in F$ and $\alpha \in F$ by

$$
\left(x_{1}, \ldots, x_{n}\right) \alpha:=\left(x_{1} \psi_{1}(\alpha), \ldots, x_{n} \psi_{n}(\alpha)\right)
$$

where the $\psi_{i}^{\prime} s$ are automorphisms of (F, \cdot) for $i \in\{1, \ldots, n\}$ and they can be equal. If $V_{1} \oplus \cdots \oplus V_{k}$ is the canonical decomposition of V, then for all $v \in V, \operatorname{dim}(v) \leq k$.

Proof Let $v \in V$ and suppose that $\operatorname{dim}(v)>k$, say $\operatorname{dim}(v)=k^{\prime}$, where $k^{\prime}>k$. Then $v=\sum_{i=1}^{k^{\prime}} u_{i} \lambda_{i}$, where $u_{i} \in Q(V) \backslash\{0\}, \lambda_{i} \in F$ for $i \in 1, \ldots, k^{\prime}$. However, for all $i \in 1, \ldots, k^{\prime}, u_{i} \in Q_{j}$ for some j with $1 \leq j \leq k$, since by Theorem 3.11, $Q(V)=Q_{1} \cup \cdots \cup Q_{k}$ and $k^{\prime}>k$. Suppose, without loss of generality, that u_{s} and $u_{s^{\prime}}$ are in Q_{j}, and then $u_{s} \lambda_{s}+u_{s^{\prime}} \lambda_{s^{\prime}} \in Q_{j}$, since $Q_{j}=V_{j}$ (F is a field). Now we have that v can be written with fewer than k^{\prime} elements, i.e. $v=u_{1} \lambda_{1}+\cdots+u_{k} \lambda_{k}$, a contradiction.

Thus, in the case where F is a field, unless the dimension of V is less than or equal to 1 , or equal to k, where k is the number of maximal regular subspaces in the canonical decomposition of the near-vector space, we cannot have any generators. If the dimension of V is exactly k then the maximal regular spaces have dimension 1 and any element of the form $(1, \ldots, 1)$ will be generator of V.

3.1. Generators for regular near-vector spaces

When F is a proper nearfield, we have the following result:

Theorem 3.13 Let F be a proper nearfield and $V^{\prime}=F^{n}$ be a near-vector space over F with scalar multiplication defined for all $\left(x_{1}, \ldots, x_{n}\right) \in V^{\prime}, \alpha \in F$ by

$$
\left(x_{1}, \ldots, x_{n}\right) \alpha:=\left(x_{1} \alpha, \ldots, x_{n} \alpha\right)
$$

$v=\left(a_{1}, \ldots, a_{n}\right)$ is a generator of V^{\prime} if and only for $d_{1}, \ldots, d_{n} \in F_{d}$,

$$
\sum_{i=1}^{n} d_{i} a_{i}=0 \Leftrightarrow d_{1}=d_{2}=\ldots=d_{n}=0
$$

Proof Let us assume that there are $d_{1}, \ldots, d_{n} \in F_{d}$ such that $\sum_{i=1}^{n} d_{i} a_{i}=0$ and $d_{i_{0}} \neq 0$. We show that $\operatorname{dim}(v)<n$. Without loss of generality let us assume that $i_{0}=1$. Then $a_{1}=\sum_{i=2}^{n} d_{1}^{-1} d_{i} a_{i}$, so we get

$$
\begin{aligned}
\left(a_{1}, \ldots, a_{n}\right)= & \left(\sum_{i=2}^{n} d_{1}^{-1} d_{i} a_{i}, a_{2}, \ldots, a_{n}\right) \\
& =\sum_{i=2}^{n} u_{i}, \text { with } u_{i}=\left(d_{1}^{-1} d_{i} a_{i}, \ldots, 0, a_{i}, 0, \ldots, 0\right)
\end{aligned}
$$

Since $Q\left(V^{\prime}\right)=\left\{\left(d_{1}, \ldots, d_{n}\right) \alpha \mid d_{1}, \ldots, d_{n} \in F_{d}, \alpha \in F\right\}, u_{i} \in Q\left(V^{\prime}\right)$ for all $i=2, \ldots, n$. It follows that $\operatorname{dim}(v)<n$. Therefore, $\operatorname{dim}(v)=n$ implies that for $d_{1}, \ldots, d_{n} \in F_{d}$,

$$
\sum_{i=1}^{n} d_{i} a_{i}=0 \Leftrightarrow d_{1}=d_{2}=\ldots=d_{n}=0
$$

Now let us assume that for $d_{1}, \ldots, d_{n} \in F_{d}$,

$$
\sum_{i=1}^{n} d_{i} a_{i}=0 \Leftrightarrow d_{1}=d_{2}=\ldots=d_{n}=0
$$

and that $\operatorname{dim}(v)<n$. Thus, v can be written as a linear combination of less than k vectors of the quasi-kernel with $k<n$, so there is

$$
\left(\alpha_{i}\right)_{1 \leq i \leq k} \subseteq F \text { and }\left(d_{i, j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq k}} \subseteq F_{d}
$$

such that

$$
\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{k}\left(d_{1, i}, \ldots, d_{n, i}\right) \alpha_{i}
$$

Hence, we get the following system of n equations with k unknowns:

$$
\left\{\begin{array}{l}
d_{1,1} x_{1}+d_{1,2} x_{2}+\cdots+d_{1, k} x_{k}=a_{1} \\
d_{2,1} x_{1}+d_{2,2} x_{2}+\cdots+d_{2, k} x_{k}=a_{2} \\
\vdots \\
d_{n, 1} x_{1}+d_{n, 2} x_{2}+\cdots+d_{n, k} x_{k}=a_{n}
\end{array}\right.
$$

with $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ as the solution. Since the equation has a solution, the matrix

$$
A=\left(\begin{array}{ccccc}
d_{1,1} & d_{1,2} & d_{1,3} & \ldots & d_{1, k} \\
d_{2,1} & d_{2,2} & d_{2,3} & \ldots & d_{2, k} \\
\vdots & & \ddots & & \vdots \\
& & & & d_{n-1, k} \\
d_{n, 1} & d_{n, 2} & \ldots & d_{n, k-1} & d_{n, k}
\end{array}\right)
$$

has rank k in F_{d}. Therefore, there exist $\delta_{1}, \ldots, \delta_{n} \in F_{d}$ not all zero such that $\sum_{i=1}^{n} \delta_{i} a_{i}=0$. This is a contradiction.

Let F be a proper nearfield and $V^{\prime \prime}=F^{n}$ be a regular near-vector space over F.

Theorem $3.14 v=\left(a_{1}, \ldots, a_{n}\right)$ is a generator of $V^{\prime \prime}$ if and only if for $d_{1}, \ldots, d_{n} \in F_{d}$,

$$
\sum_{i=1}^{n} d_{i} a_{i}=0 \Leftrightarrow d_{1}=\cdots=d_{n}=0
$$

Proof It follows from the fact that $\left(V^{\prime \prime}, F\right)$ is isomorphic to $\left(V^{\prime}, F\right)$ by Theorem 2.11.

Theorem 3.15 Let $V=F^{n}$ be a near-vector space with $|F|=\left|F_{d}\right|^{m}$ and

$$
\left(x_{1}, \ldots, x_{n}\right) \alpha:=\left(x_{1} \alpha, \ldots, x_{n} \alpha\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in V$ and $\alpha \in F . v$ is a generator of V if and only if $m \geq n$.

HOWELL and SANON/Turk J Math

Proof Suppose that there is $v=\left(a_{1}, \ldots, a_{n}\right) \in V$ such that $\operatorname{dim}(v)=n$. By Theorem 3.13 we have that for any $d_{i} \in F_{d}, i=1, \ldots, n, \sum_{i=1}^{n} d_{i} a_{i}=0$ implies $d_{i}=0$ for all i. It follows that $\left\{a_{1}, \ldots, a_{n}\right\}$ is a linearly independent set of vectors in the vector space F over F_{d}. Hence, $m \geq n$.

To show the converse we assume that $m<n$. Then for any $v=\left(a_{1}, \ldots, a_{n}\right) \in V$ there are d_{1}, \ldots, d_{n} not all zero with $\sum_{i=1}^{n} d_{i} a_{i}=0$. Hence, we cannot have $v \in V$ such that $\operatorname{dim}(v)=n$.

Example 3.16 Let us consider the Dickson nearfield $F=D F(3,2)$ and $V=F^{2}$ a near-vector space with $(x, y) \alpha:=(x \alpha, y \alpha)$. Then the element $v=(1, \gamma)$ has dimension 2. In fact, v is not in any of the subspaces. Suppose that $v \in V_{1}$, with V_{1} a one-dimensional subspace of V. Let w be a basis of V^{\prime}. It follows that $v=w \lambda$, with $\lambda \in F$, since the quasi-kernel is closed under scalar multiplication $v \in Q(V)$, but $v \notin Q(V)$. Hence, the smallest subspace of V that contains v is V itself. Hence, v is a generator of V and $\operatorname{dim}(v)=2$. Using Theorem 3.15 we can also see that $\operatorname{dim}(v)=2$. For any $d_{1}, d_{2} \in F_{d}, d_{1}+d_{2} \gamma=0$ implies that $d_{1}=d_{2}=0$, since $\{1, \gamma\}$ is a basis of the vector space F over F_{d}.

For three copies of $F, V=F^{3}$, it is not possible to have an element that generates V.

3.2. Generators for general near-vector spaces

In this subsection we consider the case where F is a proper nearfield and $V=F^{n}$ is a near-vector space over F with the canonical decomposition $V=\bigoplus_{i=1}^{k} V_{i}$.

Lemma 3.17 If $v_{i} \in V_{i} \backslash\{0\}$ and $v_{j} \in V_{j} \backslash\{0\}$ with $i \neq j$, then

$$
\operatorname{dim}\left(v_{i}+v_{j}\right)=\operatorname{dim}\left(v_{i}\right)+\operatorname{dim}\left(v_{j}\right)
$$

Proof Let $\operatorname{dim}\left(v_{i}\right)=l_{i}, \operatorname{dim}\left(v_{j}\right)=l_{j}$. It is not difficult to check that $\operatorname{dim}\left(v_{i}+v_{j}\right) \leq l_{i}+l_{j}$. Suppose that $l=\operatorname{dim}\left(v_{i}+v_{j}\right)<l_{i}+l_{j}$. There are $u_{1}, \ldots, u_{l} \in Q\left(V_{i}\right) \backslash\{0\} \cup Q\left(V_{j}\right) \backslash\{0\}$ and $\alpha_{1}, \ldots, \alpha_{l} \in F \backslash\{0\}$ such that $v_{i}+v_{j}=\sum_{m=1}^{l} u_{m} \alpha_{m}$. It follows that we write v_{i} as $v_{i}=\sum_{m=1}^{l^{\prime}} u_{m} \alpha_{m}$, with $l^{\prime}<l_{i}$ or $v_{j}=\sum_{m=1}^{l^{\prime \prime}} u_{m} \alpha_{m}$ with $l^{\prime \prime}<l_{j}$, since $V_{i} \cap V_{j}=\{0\}$. This is a contradiction since $\operatorname{dim}\left(v_{i}\right)=l_{i}, \operatorname{dim}\left(v_{j}\right)=l_{j}$ and we should have $l_{i} \geqslant l^{\prime}$ and $l_{j} \geqslant l^{\prime \prime}$.

Corollary 3.18 If $v_{i} \in V_{i} \backslash\{0\}$ and $v_{j} \in V_{j} \backslash\{0\}$ with $i \neq j$, then

$$
\operatorname{span}\left\{v_{i}+v_{j}\right\}=\operatorname{span}\left\{v_{i}\right\} \oplus \operatorname{span}\left\{v_{j}\right\}
$$

Proof We have $\operatorname{span}\left\{v_{i}\right\} \cap \operatorname{span}\left\{v_{j}\right\}=\{0\}$, since $\operatorname{span}\left\{v_{i}\right\} \subseteq V_{i}, \operatorname{span}\left\{v_{j}\right\} \subseteq V_{j}$ and $V_{i} \cap V_{j}=\{0\}$. We have $\operatorname{span}\left\{v_{i}+v_{j}\right\} \subseteq \operatorname{span}\left\{v_{i}\right\} \oplus \operatorname{span}\left\{v_{j}\right\}$. Since $\operatorname{dim}\left(v_{i}+v_{j}\right)=\operatorname{dim}\left(v_{i}\right)+\operatorname{dim}\left(v_{j}\right), \operatorname{span}\left\{v_{i}+v_{j}\right\}=$ $\operatorname{span}\left\{v_{i}\right\} \oplus \operatorname{span}\left\{v_{j}\right\}$.

HOWELL and SANON/Turk J Math

Corollary 3.19 Let $v_{1}, \ldots, v_{m} \in V$ such that they are all in distinct maximal regular subspaces. We have

$$
\begin{aligned}
\operatorname{dim}\left(v_{1}+\cdots+v_{m}\right) & =\operatorname{dim}\left(v_{1}\right)+\cdots+\operatorname{dim}\left(v_{m}\right) \\
\operatorname{span}\left\{v_{1}+\cdots+v_{m}\right\} & =\operatorname{span}\left\{v_{1}\right\} \oplus \cdots \oplus \operatorname{span}\left\{v_{m}\right\}
\end{aligned}
$$

Theorem 3.20 A vector $v \in V$ is a generator of V if and only if there are $v_{i} \in V_{i}$ generators of V_{i} for all $i=1, \ldots, k$, such that $v=v_{1}+\cdots+v_{k}$.

Proof We have $\operatorname{span}\{v\}=\operatorname{span}\left\{v_{1}+\ldots+v_{k}\right\}=\operatorname{span}\left\{v_{1}\right\} \oplus \cdots \oplus \operatorname{span}\left\{v_{k}\right\}$. If v is a generator of v we have $\operatorname{span}\{v\}=V$ and so $\operatorname{span}\left\{v_{1}\right\} \oplus \cdots \oplus \operatorname{span}\left\{v_{k}\right\}=V$. Hence, $\operatorname{span}\left\{v_{i}\right\}=V_{i}$ for all $i=1 \ldots, k$. Thus, v_{i} is a generator of V_{i} for all i. Likewise, if v_{i} is a generator of V_{i} for all i, then v is a generator of V.

Acknowledgment

The authors would like to express their gratitude for funding by the National Research Foundation (Grant Number 93050) and Stellenbosch University.

References

[1] André J. Lineare Algebra über Fastkörpern. Math Z 1974;136: 295-313 (in German).
[2] Chistyakov D, Howell KT, Sanon SP. On representation theory and near-vector spaces. Linear Multilinear A (in press).
[3] Dorfling S, Howell KT, Sanon SP. The decomposition of finite dimensional Near-vector spaces. Commun Algebra 2018; 46: 3033-3046.
[4] Howell KT. Contributions to the theory of near-vector spaces. PhD, University of the Free State, Bloemfontein, South Africa, 2008.
[5] Howell KT. On subspaces and mappings of Near-vector spaces. Commun Algebra 2015; 43: 2524-2540.
[6] Howell KT, Meyer JH. Near-vector spaces determined by finite fields. J Algebra 2010; 398: 55-62.
[7] Meldrum JDP. Near-Rings and Their Links with Groups. New York, NY, USA: Advanced Publishing Program, 1985.
[8] Pilz G. Near-Rings: The Theory and Its Applications, Revised Edition. New York, NY, USA: North Holland, 1983.
[9] van der Walt APJ. Matrix near-rings contained in 2-primitive near-rings with minimal subgroups. J Algebra 1992: 148: 296-304.

