

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2018) 42: 3232 – 3241 © TÜBİTAK doi:10.3906/mat-1807-155

Research Article

On spanning sets and generators of near-vector spaces

Karin-Therese HOWELL^{1*}, Sogo Pierre SANON²

¹Department of Mathematical Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa ²Department of Mathematical Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa

Received: 20.07.2018	•	Accepted/Published Online: 30.10.2018	•	Final Version: 27.11.2018
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: In this paper we study the quasi-kernel of certain constructions of near-vector spaces and the span of a vector. We characterize those vectors whose span is one-dimensional and those that generate the whole space.

Key words: Field, nearfield, vector space, near-vector space

1. Introduction

The near-vector spaces we study in this paper were first introduced by André in 1974 [1]. His near-vector spaces have less linearity than normal vector spaces. They have been studied in several papers, including [2–6]. More recently, since André did a lot of work in geometry, their geometric structure has come under investigation. In order to construct some incidence structures a good understanding of the span of a vector is necessary. It very quickly became clear that near-vector spaces exhibit some strange behavior, where the span of a vector need not be one-dimensional and it is possible for a single vector to generate the entire space.

In this paper we begin by giving the preliminary material of near-vector spaces. In Section 3 we take a closer look at the class of near-vector spaces of the form (F^n, F) , where F is a nearfield and n is a natural number, constructed using van der Walt's important construction theorem in [9] for finite dimensional near-vector spaces. We give conditions for when the quasi-kernel will be the whole space. In the last section we prove that when for a near-vector space (V, A), $v \in V$, span v will equal vA. We introduce the dimension of a vector and prove that in the case of a field, it is always less than or equal to the number of maximal regular subspaces in the decomposition of V. We define a generator for V and give a condition for when v will be a generator for V. Finally, we characterize the near-vector spaces that have generators.

2. Preliminary material

Definition 2.1 A (right) nearfield is a set F together with two binary operations + and \cdot such that

- 1. (F, +) is a group;
- 2. $(F \setminus \{0\}, \cdot)$ is a group;
- 3. $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in F$.

^{*}Correspondence: kthowell@sun.ac.za

²⁰¹⁰ AMS Mathematics Subject Classification: 16Y30, 12K05

Left nearfields are defined analogously and satisfy the left distributive law. We will use right nearfields throughout this paper. We also have the following definition.

Definition 2.2 Let F be a nearfield. We define the kernel of F to be the set of all distributive elements of F, *i.e.*

$$F_d := \{ a \in F | a \cdot (b+c) = a \cdot b + a \cdot c \text{ for every } b, c \in F \}.$$

If F is a nearfield, F_d is a subfield of it [8]; moreover, F is a vector space over F_d . We refer the reader to [7] and [8] for more on nearfields.

Definition 2.3 ([1]) A near-vector space is a pair (V, A) that satisfies the following conditions:

- 1. (V, +) is a group and A is a set of endomorphisms of V;
- 2. A contains the endomorphisms 0, id, and -id;
- 3. $A^* = A \setminus \{0\}$ is a subgroup of the group Aut(V);
- 4. If $x\alpha = x\beta$ with $x \in V$ and $\alpha, \beta \in A$, then $\alpha = \beta$ or x = 0, i.e. A acts fixed point free on V;
- 5. The quasi-kernel Q(V) of V generates V as a group. Here, $Q(V) = \{x \in V | \forall \alpha, \beta \in A, \exists \gamma \in A \text{ such that } x\alpha + x\beta = x\gamma\}.$

We will write $Q(V)^*$ for $Q(V) \setminus \{0\}$ throughout this paper. The dimension of the near-vector space, dim(V), is uniquely determined by the cardinality of an independent generating set for Q(V), called a *basis* of V (see [1]).

Definition 2.4 ([6]) We say that two near-vector spaces (V_1, A_1) and (V_2, A_2) are isomorphic (written $(V_1, A_1) \cong (V_2, A_2)$) if there are group isomorphisms $\theta : (V_1, +) \to (V_2, +)$ and $\eta : (A_1^*, \cdot) \to (A_2^*, \cdot)$ such that $\theta(x\alpha) = \theta(x)\eta(\alpha)$ for all $x \in V_1$ and $\alpha \in A_1^*$.

We will write a near-vector space isomorphism as a pair (θ, η) .

Example 2.5 ([5]) Consider the field $(GF(3^2), +, \cdot)$ with

$$GF(3^2) := \{0, 1, 2, \gamma, 1 + \gamma, 2 + \gamma, 2\gamma, 1 + 2\gamma, 2 + 2\gamma\},\$$

where γ is a zero of $x^2 + 1 \in \mathbb{Z}_3[x]$. In [8], p. 257, it was observed that $(GF(3^2), +, \circ)$, with

$$x \circ y := \begin{cases} x \cdot y & \text{if } y \text{ is a square in } (GF(3^2), +, \cdot) \\ x^3 \cdot y & \text{otherwise} \end{cases}$$

and

$$+: (a + b\gamma) + (c + d\gamma) = (a + c)mod\beta + ((b + d)mod\beta)\gamma$$

is a (right) nearfield, but not a field.

HOWELL and SANON/Turk J Math

0	0	1	2	γ	$1+\gamma$	$2 + \gamma$	2γ	$1+2\gamma$	$2+2\gamma$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	γ	$1 + \gamma$	$2 + \gamma$	2γ	$1+2\gamma$	$2+2\gamma$
2	0	2	1	2γ	$2+2\gamma$	$1+2\gamma$	γ	$2 + \gamma$	$1 + \gamma$
γ	0	γ	2γ	2	$1+2\gamma$	$1 + \gamma$	1	$2+2\gamma$	$2 + \gamma$
$1 + \gamma$	0	$1 + \gamma$	$2+2\gamma$	$2 + \gamma$	2	2γ	$1+2\gamma$	γ	1
$2 + \gamma$	0	$2 + \gamma$	$1+2\gamma$	$2+2\gamma$	γ	2	$1 + \gamma$	1	2γ
2γ	0	2γ	γ	1	$2 + \gamma$	$2+2\gamma$	2	$1 + \gamma$	$1+2\gamma$
$1+2\gamma$	0	$1+2\gamma$	$2 + \gamma$	$1 + \gamma$	2γ	1	$2+2\gamma$	2	γ
$2+2\gamma$	0	$2+2\gamma$	$1 + \gamma$	$1+2\gamma$	1	γ	$2 + \gamma$	2γ	2

The distributive elements of $(GF(3^2), +, \circ)$, denoted by $(GF(3^2), +, \circ)_d$, are the elements 0,1,2. From now on when there is no room for confusion, we will write $x \circ y$ as xy. Now let $F = (GF(3^2), +, \circ)$, with $\alpha \in F$ acting as an endomorphism of $V = F^3$ by defining $(x_1, x_2, x_3)\alpha = (x_1\alpha, x_2\alpha, x_3\alpha)$. Thus, $Q(V) = \mathcal{V}_1 \cup \mathcal{V}_2 \cup \mathcal{V}_3$, with $\mathcal{V}_1 = (1, d_1, d_2)F$, $\mathcal{V}_2 = (d_1, 1, d_2)F$ and $\mathcal{V}_3 = (d_1, d_2, 1)F$, with $d_1, d_2 \in F_d$. We will refer back to this example later in the paper.

In [9] it was proved that finite-dimensional near-vector spaces can be characterized in the following way:

Theorem 2.6 ([9]) Let (G, +) be a group and let $A = D \cup \{0\}$, where D is a fixed point free group of automorphism of G. Then (G, A) is a finite-dimensional near-vector space if and only if there exist a finite number of nearfields F_1, \ldots, F_m , semigroup isomorphisms $\psi_i : (A, \circ) \to (F_i, \cdot)$, and an additive group isomorphism $\Phi : G \to F_1 \oplus \ldots \oplus F_m$ such that if $\Phi(g) = (x_1, \ldots, x_m)$, then $\Phi(g\alpha) = (x_1\psi_1(\alpha), \ldots, x_m\psi_m(\alpha))$ for all $g \in G$, $\alpha \in A$.

Using this theorem we can specify a finite-dimensional near-vector space by taking n copies of a nearfield F for which there are semigroup isomorphisms $\psi_i : (F, \cdot) \to (F, \cdot), i \in \{1, \ldots, n\}$. We then take $V := F^n$, n a positive integer, as the additive group of the near-vector space and define the scalar multiplication by:

$$(x_1,\ldots,x_n)\alpha := (x_1\psi_1(\alpha),\ldots,x_n\psi_n(\alpha)),$$

for all $\alpha \in F$ and $i \in \{1, ..., n\}$. This is the type of construction we will use throughout this paper and we will use (F^n, F) to denote an instance of a near-vector space of this form.

The concept of regularity is a central notion in the study of near-vector spaces.

Definition 2.7 ([1]) A near-vector space is regular if any two vectors of $Q(V)^*$ are compatible, i.e. if for any two vectors u and v of $Q(V)^*$ there exists a $\lambda \in A \setminus \{0\}$ such that $u + v\lambda \in Q(V)$.

Theorem 2.8 ([1]) Let F be a (right) nearfield and let I be a nonempty index set. Then the set

$$F^{(I)} := \{(n_i)_{i \in I} | n_i \in F, n_i \neq 0 \text{ for at most a finite number of } i \in I\}$$

with the scalar multiplication defined by

$$(n_i)\lambda := (n_i\lambda)$$

gives that $(F^{(I)}, F)$ is a near-vector space.

We describe the quasi-kernel of $F^{(I)}$:

Theorem 2.9 (1) We have

$$Q(F^{(I)}) = \{ (d_i)\lambda | \lambda \in F, d_i \in F_d \text{ for all } i \in I \}.$$

We can also show that the quasi-kernel is not the entire space.

Theorem 2.10 Letting F be a proper (right) nearfield and let I be a nonempty index set, then the near-vector space $(F^{(I)}, F)$ has $Q(F^{(I)}) \neq F^{(I)}$.

Proof Consider the element $v = (a_1, 1, ..., 0) \in V$, where $a_1 \notin F_d$. We show that v is in $V \setminus Q(V)$. Suppose that $v \in Q(V)$, and then $(a_1, 1, ..., 0) = (d_1\lambda, d_2\lambda, ..., 0)$. Thus, we get that $a_1 = d_1\lambda$, $1 = d_2\lambda$ and since F is a nearfield, we can solve this and get that $\lambda = d_2^{-1}$. Substituting this in the first equation we get that $a_1 = d_1d_2^{-1}$, and since F_d is a field, this gives that $a_1 \in F_d$, a contradiction.

The following theorem gives a characterization of regularity in terms of the near-vector space $(F^{(I)}, F)$.

Theorem 2.11 ([1]) A near-vector space (V, F), with F a nearfield and $V \neq 0$, is a regular near-vector space if and only if V is isomorphic to $F^{(I)}$ for some index set I.

The following theorem is central in the theory of near-vector spaces.

Theorem 2.12 ([1]) (The Decomposition Theorem) Every near-vector space V is the direct sum of regular near-vector spaces V_j ($j \in J$) such that each $u \in Q(V)^*$ lies in precisely one direct summand V_j . The subspaces V_j are maximal regular near-vector spaces.

3. Spanning sets and generators

In [5] a study of the subspaces of near-vector spaces was initiated. In this section we add to these results. We begin with some basic definitions.

Definition 3.1 ([5]) If (V, A) is a near-vector space and $\emptyset \neq V' \subseteq V$ is such that V' is the subgroup of (V, +) generated additively by $XA = \{xa \mid x \in X, a \in A\}$, where X is an independent subset of Q(V), then we say that (V', A) is a subspace of (V, A), or simply V' is a subspace of V if A is clear from the context.

From the definition, since X is a basis for V', the dimension of V' is |X|. It is clear that V is a subspace of itself since it is generated by XA where X denotes a basis of Q(V) and we define the trivial subspace, $\{0\}$, to be the space generated by the empty subset of Q(V).

Definition 3.2 Letting (V, A) be a near-vector space, then the span of a set S of vectors is defined to be the intersection W of all subspaces of V that contain S, denoted span S.

It is straightforward to verify that W is a subspace, called the subspace spanned by S, or conversely, S is called a spanning set of W and we say that S spans W. Moreover, if we define span $\emptyset = \{0\}$, then it is not difficult to check that span S is the set of all possible linear combinations of S.

For a vector space (V, F) the span of a single vector v is always of the form vF, but in general this is not true for near-vector spaces. The following two results were recently proved:

{

Lemma 3.3 Let (V, A) be a near-vector space. Then for all $v \in V$, $span\{v\} = vA$ if and only if Q(V) = V.

One might wonder if it is possible for a nonzero $w \in V \setminus Q(V)$ to have span $\{w\} = vA$ for some $v \in Q(V)$.

Lemma 3.4 Let (V, A) be a near-vector space. Then for all nonzero $w \in V \setminus Q(V)$, $span\{w\} \neq vA$ for some $v \in Q(V)$.

}

We are interested in what the span of a vector outside of Q(V) looks like.

Let (V, A) be a near-vector space, not necessarily finite-dimensional. By definition, the quasi-kernel Q(V) generates V, so for any $v \in V$, there is $u_1, \ldots, u_m \in Q(V) \setminus \{0\}$ and $\alpha_1, \ldots, \alpha_m \in A \setminus \{0\}$, such that $v = u_1 \alpha_1 + \cdots + u_m \alpha_m$. This expression is not unique. We can also have $u'_1, \ldots, u'_l \in Q(V) \setminus \{0\}$ and $\alpha'_1, \ldots, \alpha'_l \in A \setminus \{0\}$ such that $v = u'_1 \alpha'_1 + \cdots + u'_l \alpha'_l$ with $m \neq l$.

For $v \in V \setminus \{0\}$, we consider

$$n = \min\left\{m \in \mathbb{N} \mid v = \sum_{i=1}^{m} u_i \alpha_i, \text{ with } u_i \in Q(V) \setminus \{0\}, \alpha_i \in A \setminus \{0\}, i = 1, \dots, m\right\}.$$

Definition 3.5 For $v \in V \setminus \{0\}$ we define the dimension of v to be

$$n = \min\left\{m \in \mathbb{N} \mid v = \sum_{i=1}^{m} u_i \alpha_i, \text{ with } u_i \in Q(V) \setminus \{0\}, \alpha_i \in A \setminus \{0\}, i = 1, \dots, m\right\},\$$

and we denote it by dim(v) = n and dim(v) = 0 if v is the zero vector.

Theorem 3.6 We have that $dim(span\{v\}) = dim(v)$.

Proof Let n = dim(v) and $\{u_1, \ldots, u_n\} \subset Q(V)$, such that $v = \sum_{i=1}^n u_i \alpha_i$ for some $\alpha_i \in A \setminus \{0\}$. Then

 $span\{v\} \subset span\{u_1,\ldots,u_n\} =: W$, since $span\{v\}$ is the smallest subset of V that contains v. Since n is minimal, $\{u_1, \ldots, u_n\}$ is a linearly independent subset of Q(V). Hence, dim(W) = n and $dim(span\{v\}) \leq n$.

Let us assume that $dim(span\{v\}) < n$. Since $v \in span\{v\}$, there are $u_1, \ldots, u_m \in Q(V) \setminus \{0\}$ and $\beta_1, \ldots, \beta_m \in A \setminus \{0\}$ such that $v = \sum_{i=1}^m v_i \beta_i$, with m < n. This a contradiction since n is the smallest integer

that satisfies this condition. Hence, $dim(span\{v\}) = dim(v)$.

We know that any subspace of W of V is generated by XA, with X a linearly independent subset of Q(V). For $span\{v\}$, v a vector in $V \setminus \{0\}$, the subset X is given by any linearly independent set $\{u_1,\ldots,u_n\} \subset Q(V)$, such that n = dim(v) and $v = \sum_{i=1}^n u_i \alpha_i$ for some $\alpha_i \in A \setminus \{0\}$.

By Lemma 3.3, we have that:

Proposition 3.7 For any $v \in V$, dim(v) = 1 if and only of $v \in Q(V) \setminus \{0\}$.

Also, if V is finite-dimensional, of dimension n, then $dim(v) \leq n$, and if dim(v) = n, then $span\{v\} = V$. Thus, we define:

Definition 3.8 Let (V, A) be a near-vector space. If $v \in V$ such that $span\{v\} = V$, then v is called a generator of V.

Isomorphisms preserve generators:

Theorem 3.9 Let (V_1, A_1) and (V_2, A_2) be isomorphic near-vector spaces and $v \in V_1$. Then $dim(v) = dim(\theta(v))$, where (θ, η) is the isomorphism.

Proof Let dim(v) = k and $dim(\theta(v)) = k'$. Then there exist $u_1, \ldots, u_k \in Q(V_1) \setminus \{0\}$ and $\alpha_1, \ldots, \alpha_k \in A_1 \setminus \{0\}$ such that $v = \sum_{i=1}^k u_i \alpha_i$. We have

$$\theta(v) = \theta\left(\sum_{i=1}^{k} u_i \alpha_i\right) = \sum_{i=1}^{k} \theta\left(u_i \alpha_i\right) = \sum_{i=1}^{k} \theta\left(u_i\right) \eta\left(\alpha_i\right)$$

It follows that $dim(\theta(v)) \leq k$.

Assume that $k' = \dim(\theta(v)) < k$. There are $v_1, \ldots, v_{k'} \in Q(V_2) \setminus \{0\}$ and $\beta_1, \ldots, \beta_{k'} \in A_2 \setminus \{0\}$ such that $\theta(v) = \sum_{i=1}^k v_i \beta_i$. Since (θ, η) is an isomorphism, we have

$$\theta(v) = \sum_{i=1}^{k'} \theta\left(v_i^{'}\right) \eta\left(\beta_i^{'}\right) = \sum_{i=1}^{k'} \theta\left(v_i^{'}\beta_i^{'}\right) = \theta\left(\sum_{i=1}^{k'} v_i^{'}\beta_i^{'}\right).$$

It follows that $v = \sum_{i=1}^{k'} v'_i \beta'_i$ and $dim(v) \le k' < k$, which is a contradiction.

Corollary 3.10 Let (V_1, A_1) and (V_2, A_2) be isomorphic near-vector spaces. v is a generator of V_1 if and only if $\theta(v)$ is a generator of V_2 , where (θ, η) is the isomorphism.

For F a field, using the following recently proved result, we can show more.

{

Theorem 3.11 Let $F = GF(p^r)$ and $V = F^n$ be a near-vector space with scalar multiplication defined for all $\alpha \in F$ by

$$(x_1,\ldots,x_n)\alpha := (x_1\psi_1(\alpha),\ldots,x_n\psi_n(\alpha)),$$

where the ψ'_i s are automorphisms of (F, \cdot) . If $Q(V) \neq V$ and $V = V_1 \oplus \cdots \oplus V_k$ is the canonical decomposition of V, then $Q(V) = Q_1 \cup \cdots \cup Q_k$ where $Q_i = V_i$ for each $i \in \{1, \ldots, k\}$.

Theorem 3.12 Let F be a field and $V = F^n$ be a near-vector space over F with scalar multiplication defined for all $(x_1, \ldots, x_n) \in F$ and $\alpha \in F$ by

$$(x_1,\ldots,x_n)\alpha := (x_1\psi_1(\alpha),\ldots,x_n\psi_n(\alpha)),$$

where the ψ'_i s are automorphisms of (F, \cdot) for $i \in \{1, \ldots, n\}$ and they can be equal. If $V_1 \oplus \cdots \oplus V_k$ is the canonical decomposition of V, then for all $v \in V$, $\dim(v) \leq k$.

Proof Let $v \in V$ and suppose that dim(v) > k, say dim(v) = k', where k' > k. Then $v = \sum_{i=1}^{k'} u_i \lambda_i$, where $u_i \in Q(V) \setminus \{0\}$, $\lambda_i \in F$ for $i \in 1, ..., k'$. However, for all $i \in 1, ..., k'$, $u_i \in Q_j$ for some j with $1 \leq j \leq k$, since by Theorem 3.11, $Q(V) = Q_1 \cup \cdots \cup Q_k$ and k' > k. Suppose, without loss of generality, that u_s and $u_{s'}$ are in Q_j , and then $u_s \lambda_s + u_{s'} \lambda_{s'} \in Q_j$, since $Q_j = V_j$ (F is a field). Now we have that v can be written with fewer than k' elements, i.e. $v = u_1 \lambda_1 + \cdots + u_k \lambda_k$, a contradiction.

Thus, in the case where F is a field, unless the dimension of V is less than or equal to 1, or equal to k, where k is the number of maximal regular subspaces in the canonical decomposition of the near-vector space, we cannot have any generators. If the dimension of V is exactly k then the maximal regular spaces have dimension 1 and any element of the form $(1, \ldots, 1)$ will be generator of V.

3.1. Generators for regular near-vector spaces

When F is a proper nearfield, we have the following result:

Theorem 3.13 Let F be a proper nearfield and $V' = F^n$ be a near-vector space over F with scalar multiplication defined for all $(x_1, \ldots, x_n) \in V', \alpha \in F$ by

$$(x_1,\ldots,x_n)\alpha := (x_1\alpha,\ldots,x_n\alpha).$$

 $v = (a_1, \ldots, a_n)$ is a generator of V' if and only for $d_1, \ldots, d_n \in F_d$,

$$\sum_{i=1}^{n} d_i a_i = 0 \Leftrightarrow d_1 = d_2 = \ldots = d_n = 0$$

Proof Let us assume that there are $d_1, \ldots, d_n \in F_d$ such that $\sum_{i=1}^n d_i a_i = 0$ and $d_{i_0} \neq 0$. We show that dim(v) < n. Without loss of generality let us assume that $i_0 = 1$. Then $a_1 = \sum_{i=2}^n d_1^{-1} d_i a_i$, so we get

$$(a_1, \dots, a_n) = \left(\sum_{i=2}^n d_1^{-1} d_i a_i, a_2, \dots, a_n\right)$$
$$= \sum_{i=2}^n u_i, \text{ with } u_i = \left(d_1^{-1} d_i a_i, \dots, 0, a_i, 0, \dots, 0\right).$$

Since $Q(V') = \{(d_1, \ldots, d_n) \mid a \mid d_1, \ldots, d_n \in F_d, \alpha \in F\}, u_i \in Q(V')$ for all $i = 2, \ldots, n$. It follows that dim(v) < n. Therefore, dim(v) = n implies that for $d_1, \ldots, d_n \in F_d$,

$$\sum_{i=1}^{n} d_i a_i = 0 \Leftrightarrow d_1 = d_2 = \ldots = d_n = 0.$$

3238

Now let us assume that for $d_1, \ldots, d_n \in F_d$,

$$\sum_{i=1}^n d_i a_i = 0 \Leftrightarrow d_1 = d_2 = \ldots = d_n = 0,$$

and that dim(v) < n. Thus, v can be written as a linear combination of less than k vectors of the quasi-kernel with k < n, so there is

$$(\alpha_i)_{1 \le i \le k} \subseteq F$$
 and $(d_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le k}} \subseteq F_d$,

such that

$$(a_1, \dots, a_n) = \sum_{i=1}^k (d_{1,i}, \dots, d_{n,i}) \alpha_i.$$

Hence, we get the following system of n equations with k unknowns:

$$\begin{cases} d_{1,1}x_1 + d_{1,2}x_2 + \dots + d_{1,k}x_k = a_1 \\ d_{2,1}x_1 + d_{2,2}x_2 + \dots + d_{2,k}x_k = a_2 \\ \vdots \\ d_{n,1}x_1 + d_{n,2}x_2 + \dots + d_{n,k}x_k = a_n \end{cases}$$

with $(\alpha_1, \ldots, \alpha_k)$ as the solution. Since the equation has a solution, the matrix

$$A = \begin{pmatrix} d_{1,1} & d_{1,2} & d_{1,3} & \dots & d_{1,k} \\ d_{2,1} & d_{2,2} & d_{2,3} & \dots & d_{2,k} \\ \vdots & \ddots & & \vdots \\ & & & & d_{n-1,k} \\ d_{n,1} & d_{n,2} & \dots & d_{n,k-1} & d_{n,k} \end{pmatrix}$$

has rank k in F_d . Therefore, there exist $\delta_1, \ldots, \delta_n \in F_d$ not all zero such that $\sum_{i=1}^n \delta_i a_i = 0$. This is a contradiction.

Let F be a proper near field and $V^{''} = F^n$ be a regular near-vector space over F.

Theorem 3.14 $v = (a_1, \ldots, a_n)$ is a generator of V'' if and only if for $d_1, \ldots, d_n \in F_d$,

$$\sum_{i=1}^{n} d_i a_i = 0 \Leftrightarrow d_1 = \dots = d_n = 0.$$

Proof It follows from the fact that (V'', F) is isomorphic to (V', F) by Theorem 2.11.

Theorem 3.15 Let $V = F^n$ be a near-vector space with $|F| = |F_d|^m$ and

$$(x_1,\ldots,x_n)\alpha := (x_1\alpha,\ldots,x_n\alpha)$$

for all $(x_1, \ldots, x_n) \in V$ and $\alpha \in F$. v is a generator of V if and only if $m \ge n$.

Proof Suppose that there is $v = (a_1, \ldots, a_n) \in V$ such that dim(v) = n. By Theorem 3.13 we have that for any $d_i \in F_d$, $i = 1, \ldots, n$, $\sum_{i=1}^n d_i a_i = 0$ implies $d_i = 0$ for all i. It follows that $\{a_1, \ldots, a_n\}$ is a linearly

independent set of vectors in the vector space F over $F_d.$ Hence, $m \geq n.$

To show the converse we assume that m < n. Then for any $v = (a_1, \ldots, a_n) \in V$ there are d_1, \ldots, d_n not all zero with $\sum_{i=1}^n d_i a_i = 0$. Hence, we cannot have $v \in V$ such that dim(v) = n.

Example 3.16 Let us consider the Dickson nearfield F = DF(3,2) and $V = F^2$ a near-vector space with $(x, y)\alpha := (x\alpha, y\alpha)$. Then the element $v = (1, \gamma)$ has dimension 2. In fact, v is not in any of the subspaces. Suppose that $v \in V_1$, with V_1 a one-dimensional subspace of V. Let w be a basis of V'. It follows that $v = w\lambda$, with $\lambda \in F$, since the quasi-kernel is closed under scalar multiplication $v \in Q(V)$, but $v \notin Q(V)$. Hence, the smallest subspace of V that contains v is V itself. Hence, v is a generator of V and $\dim(v) = 2$. Using Theorem 3.15 we can also see that $\dim(v) = 2$. For any $d_1, d_2 \in F_d$, $d_1 + d_2\gamma = 0$ implies that $d_1 = d_2 = 0$, since $\{1, \gamma\}$ is a basis of the vector space F over F_d .

For three copies of F, $V = F^3$, it is not possible to have an element that generates V.

3.2. Generators for general near-vector spaces

In this subsection we consider the case where F is a proper nearfield and $V = F^n$ is a near-vector space over

F with the canonical decomposition $V = \bigoplus_{i=1}^{n} V_i$.

Lemma 3.17 If $v_i \in V_i \setminus \{0\}$ and $v_j \in V_j \setminus \{0\}$ with $i \neq j$, then

$$\dim(v_i + v_j) = \dim(v_i) + \dim(v_j).$$

Proof Let $dim(v_i) = l_i, dim(v_j) = l_j$. It is not difficult to check that $dim(v_i + v_j) \leq l_i + l_j$. Suppose that $l = dim(v_i + v_j) < l_i + l_j$. There are $u_1, \ldots, u_l \in Q(V_i) \setminus \{0\} \cup Q(V_j) \setminus \{0\}$ and $\alpha_1, \ldots, \alpha_l \in F \setminus \{0\}$ such that $v_i + v_j = \sum_{m=1}^{l} u_m \alpha_m$. It follows that we write v_i as $v_i = \sum_{m=1}^{l'} u_m \alpha_m$, with $l' < l_i$ or $v_j = \sum_{m=1}^{l''} u_m \alpha_m$ with $l'' < l_j$, since $V_i \cap V_j = \{0\}$. This is a contradiction since $dim(v_i) = l_i, dim(v_j) = l_j$ and we should have $l_i \geq l'$ and $l_j \geq l''$.

Corollary 3.18 If $v_i \in V_i \setminus \{0\}$ and $v_j \in V_j \setminus \{0\}$ with $i \neq j$, then

$$span\{v_i + v_j\} = span\{v_i\} \oplus span\{v_j\}.$$

Proof We have $span\{v_i\} \cap span\{v_j\} = \{0\}$, since $span\{v_i\} \subseteq V_i$, $span\{v_j\} \subseteq V_j$ and $V_i \cap V_j = \{0\}$. We have $span\{v_i + v_j\} \subseteq span\{v_i\} \oplus span\{v_j\}$. Since $dim(v_i + v_j) = dim(v_i) + dim(v_j)$, $span\{v_i + v_j\} = span\{v_i\} \oplus span\{v_j\}$. **Corollary 3.19** Let $v_1, \ldots, v_m \in V$ such that they are all in distinct maximal regular subspaces. We have

$$dim(v_1 + \dots + v_m) = dim(v_1) + \dots + dim(v_m),$$
$$span\{v_1 + \dots + v_m\} = span\{v_1\} \oplus \dots \oplus span\{v_m\}.$$

Theorem 3.20 A vector $v \in V$ is a generator of V if and only if there are $v_i \in V_i$ generators of V_i for all i = 1, ..., k, such that $v = v_1 + \cdots + v_k$.

Proof We have $span\{v\} = span\{v_1 + \ldots + v_k\} = span\{v_1\} \oplus \cdots \oplus span\{v_k\}$. If v is a generator of v we have $span\{v\} = V$ and so $span\{v_1\} \oplus \cdots \oplus span\{v_k\} = V$. Hence, $span\{v_i\} = V_i$ for all $i = 1, \ldots, k$. Thus, v_i is a generator of V_i for all i. Likewise, if v_i is a generator of V_i for all i, then v is a generator of V. \Box

Acknowledgment

The authors would like to express their gratitude for funding by the National Research Foundation (Grant Number 93050) and Stellenbosch University.

References

- [1] André J. Lineare Algebra über Fastkörpern. Math Z 1974;136: 295-313 (in German).
- [2] Chistyakov D, Howell KT, Sanon SP. On representation theory and near-vector spaces. Linear Multilinear A (in press).
- [3] Dorfling S, Howell KT, Sanon SP. The decomposition of finite dimensional Near-vector spaces. Commun Algebra 2018; 46: 3033-3046.
- [4] Howell KT. Contributions to the theory of near-vector spaces. PhD, University of the Free State, Bloemfontein, South Africa, 2008.
- [5] Howell KT. On subspaces and mappings of Near-vector spaces. Commun Algebra 2015; 43: 2524-2540.
- [6] Howell KT, Meyer JH. Near-vector spaces determined by finite fields. J Algebra 2010; 398: 55-62.
- [7] Meldrum JDP. Near-Rings and Their Links with Groups. New York, NY, USA: Advanced Publishing Program, 1985.
- [8] Pilz G. Near-Rings: The Theory and Its Applications, Revised Edition. New York, NY, USA: North Holland, 1983.
- [9] van der Walt APJ. Matrix near-rings contained in 2-primitive near-rings with minimal subgroups. J Algebra 1992: 148: 296-304.