Turk J Math
(2018) 42: 2891 - 2896
© TÜBİTAK
doi:10.3906/mat-1507-100

On a new subclass of bi-univalent functions defined by using Salagean operator

Bilal ŞEKER* ${ }^{*}$

Department of Mathematics, Faculty of Science, Dicle University, Diyarbakır, Turkey

| Received: 28.07 .2015 | Accepted/Published Online: 23.03 .2017 | Final Version: 27.11 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this manuscript, by using the Salagean operator, new subclasses of bi-univalent functions in the open unit disk are defined. Moreover, for functions belonging to these new subclasses, upper bounds for the second and third coefficients are found.

Key words: Univalent functions, bi-univalent functions, coefficient bounds and coefficient estimates, Salagean operator

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and satisfy the normalization condition $f(0)=f^{\prime}(0)-1=0$. Let \mathcal{S} denote the subclass of functions in \mathcal{A}, which are univalent in \mathbb{U} (for details, see [5]).

In 1983, Salagean [10] introduced the following differential operator:

$$
D^{n}: \mathcal{A} \rightarrow \mathcal{A}
$$

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =D f(z)=z f^{\prime}(z)
\end{aligned}
$$

and

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)
$$

For the functions given by (1.1), we can easily find that

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}\right)
$$

It is known that every univalent function f has an inverse f^{-1} satisfying

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

[^0]
ŞEKER/Turk J Math

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. We denote by Σ the class of all bi-univalent functions in \mathbb{U} given by the Taylor-Maclaurin series expansion (1.1).

For more information about functions in the class Σ, see [11] (see also [3, 8, 9, 13]).
In recent years, the aforementioned study of Srivastava et al. [11] essentially revived the investigation of various subclasses of the bi-univalent function class Σ; it was followed by such studies as those by Ali et al. [2], Srivastava et al. [12], and Jahangiri and Hamidi [7] (see also [1, 4, 6], and the references cited in each of them).

The aim of the this paper is to introduce two new subclasses of the function class Σ related to the Salagean differential operator and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses. We have to remember here the following lemma so as to derive our basic results:

Lemma 1.1 [5] If $p \in \mathcal{P}$ then $\left|c_{k}\right| \leq 2$ for each k, where \mathcal{P} is the family of functions p analytic in \mathbb{U} for which $\operatorname{Re}\{p(z)\}>0, p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ for $z \in \mathbb{U}$.

2. Coefficient bounds for the function class $H_{\Sigma}^{m, n}(\alpha)$

By introducing the function class $H_{\Sigma}^{m, n}(\alpha)$, we start by means of the following definition.
Definition 2.1 A function $f(z)$ given by (1.1) is said to be in the class $H_{\Sigma}^{m, n}(\alpha)\left(0<\alpha \leq 1, m, n \in \mathbb{N}_{0}, m>\right.$ n) if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and }\left|\arg \left(\frac{D^{m} f(z)}{D^{n} f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{D^{m} g(w)}{D^{n} g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

where the function $g(w)$ is given by (1.2).
For functions in the class $H_{\Sigma}^{m, n}(\alpha)$, we start by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.
Theorem 2.2 Let the function $f(z)$ given by (1.1) be in the class $H_{\Sigma}^{m, n}(\alpha)$ $\left(0<\alpha \leq 1, m, n \in \mathbb{N}_{0}, m>n\right)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2 \alpha\left(3^{m}-3^{n}\right)+\left(2^{m}-2^{n}\right)^{2}-\alpha\left(2^{2 m}-2^{2 n}\right)}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 \alpha}{3^{m}-3^{n}}+\frac{4 \alpha^{2}}{\left(2^{m}-2^{n}\right)^{2}} \tag{2.4}
\end{equation*}
$$

ŞEKER/Turk J Math

Proof It can be written that the inequalities (2.1) and (2.2) are equivalent to

$$
\begin{equation*}
\frac{D^{m} f(z)}{D^{n} f(z)}=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D^{m} g(w)}{D^{n} g(w)}=[q(w)]^{\alpha} \tag{2.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ are in \mathcal{P} and have the forms

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots . \tag{2.8}
\end{equation*}
$$

Now, equating the coefficients in (2.5) and (2.6), we obtain

$$
\begin{gather*}
\left(2^{m}-2^{n}\right) a_{2}=\alpha p_{1} \tag{2.9}\\
\left(3^{m}-3^{n}\right) a_{3}-2^{n}\left(2^{m}-2^{n}\right) a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.10}\\
-\left(2^{m}-2^{n}\right) a_{2}=\alpha q_{1} \tag{2.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(3^{m}-3^{n}\right)\left(2 a_{2}^{2}-a_{3}\right)-2^{n}\left(2^{m}-2^{n}\right) a_{2}^{2}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{2.12}
\end{equation*}
$$

From (2.9) and (2.11), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left(2^{m}-2^{n}\right)^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.14}
\end{equation*}
$$

Also, from (2.10), (2.12), and (2.14), we find that

$$
\left[2\left(3^{m}-3^{n}\right)-2^{n}\left(2^{m}-2^{n}\right)\right] a_{2}^{2}=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right)=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2} \frac{2\left(2^{m}-2^{n}\right)^{2} a_{2}^{2}}{\alpha^{2}}
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{2 \alpha\left(3^{m}-3^{n}\right)+\left(2^{m}-2^{n}\right)^{2}-\alpha\left(2^{2 m}-2^{2 n}\right)} . \tag{2.15}
\end{equation*}
$$

If we apply Lemma 1.1 for the coefficients p_{2} and q_{2}, we have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2 \alpha\left(3^{m}-3^{n}\right)+\left(2^{m}-2^{n}\right)^{2}-\alpha\left(2^{2 m}-2^{2 n}\right)}}
$$

This gives the desired estimate for $\left|a_{2}\right|$ as asserted in (2.3).

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.12) from (2.10), we get

$$
\begin{gather*}
2\left(3^{m}-3^{n}\right)\left(a_{3}-a_{2}^{2}\right)=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) \\
a_{3}=\frac{\alpha\left(p_{2}-q_{2}\right)}{2\left(3^{m}-3^{n}\right)}+\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2\left(2^{m}-2^{n}\right)^{2}} . \tag{2.16}
\end{gather*}
$$

We apply Lemma 1.1 one more time for the coefficients p_{2}, p_{2}, q_{1}, and q_{2}, obtaining

$$
\left|a_{3}\right| \leq \frac{2 \alpha}{\left(3^{m}-3^{n}\right)}+\frac{4 \alpha^{2}}{\left(2^{m}-2^{n}\right)^{2}}
$$

This completes the proof of Theorem 2.1.

3. Coefficient bounds for the function class $H_{\Sigma}^{m, n}(\beta)$

Definition 3.1 A function $f(z)$ given by (1.1) is said to be in the class $H_{\Sigma}^{m, n}(\beta)\left(0 \leq \beta<1, m, n \in \mathbb{N}_{0}, m>\right.$ $n)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and } \operatorname{Re}\left(\frac{D^{m} f(z)}{D^{n} f(z)}\right)>\beta \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{m} g(w)}{D^{n} g(w)}\right)>\beta \quad(w \in \mathbb{U}) \tag{3.2}
\end{equation*}
$$

where the function $g(w)$ is given by (1.2).

Theorem 3.2 Let the function $f(z)$ given by (1.1) be in the class $H_{\Sigma}^{m, n}(\beta)$ $\left(0 \leq \beta<1, m, n \in \mathbb{N}_{0}, m>n\right)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq\left(\frac{2(1-\beta)}{\left(3^{m}-3^{n}\right)-2^{n}\left(2^{m}-2^{n}\right)}\right)^{\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{\left(2^{m}-2^{n}\right)^{2}}+\frac{2(1-\beta)}{\left(3^{m}-3^{n}\right)} \tag{3.4}
\end{equation*}
$$

Proof It follows from (3.1) and (3.2) that there exists $p(z) \in \mathcal{P}$ and $q(z) \in \mathcal{P}$ such that

$$
\begin{equation*}
\frac{D^{m} f(z)}{D^{n} f(z)}=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D^{m} g(w)}{D^{n} g(w)}=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

ŞEKER/Turk J Math

where $p(z)$ and $q(w)$ have the forms (2.7) and (2.8), respectively. Equating coefficients in (3.5) and (3.6) yields

$$
\begin{gather*}
\left(2^{m}-2^{n}\right) a_{2}=(1-\beta) p_{1} \tag{3.7}\\
\left(3^{m}-3^{n}\right) a_{3}-2^{n}\left(2^{m}-2^{n}\right) a_{2}^{2}=(1-\beta) p_{2} \tag{3.8}\\
-\left(2^{m}-2^{n}\right) a_{2}=(1-\beta) q_{1} \tag{3.9}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(3^{m}-3^{n}\right)\left(2 a_{2}^{2}-a_{3}\right)-2^{n}\left(2^{m}-2^{n}\right) a_{2}^{2}=(1-\beta) q_{2} \tag{3.10}
\end{equation*}
$$

From (3.7) and (3.9), we get

$$
\begin{gather*}
p_{1}=-q_{1} \tag{3.11}\\
2\left(2^{m}-2^{n}\right)^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{3.12}
\end{gather*}
$$

Also, from (3.8) and (3.10), we find that

$$
\begin{equation*}
2\left[\left(3^{m}-3^{n}\right)-2^{n}\left(2^{m}-2^{n}\right)\right] a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right) \tag{3.13}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
& \left|a_{2}^{2}\right| \leq \frac{(1-\beta)\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{2\left[\left(3^{m}-3^{n}\right)-2^{n}\left(2^{m}-2^{n}\right)\right]} \\
& \left|a_{2}^{2}\right| \leq \frac{2(1-\beta)}{\left(3^{m}-3^{n}\right)-2^{n}\left(2^{m}-2^{n}\right)}
\end{aligned}
$$

which is the bound on $\left|a_{2}\right|$ as given in (3.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.10) from (3.8), we get

$$
2\left(3^{m}-3^{n}\right)\left(a_{3}-a_{2}^{2}\right)=(1-\beta)\left(p_{2}-q_{2}\right)
$$

or equivalently

$$
a_{3}=a_{2}^{2}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2\left(3^{m}-3^{n}\right)}
$$

Upon substituting the value of a_{2}^{2} from (3.12), we have

$$
a_{3}=\frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2\left(2^{m}-2^{n}\right)^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2\left(3^{m}-3^{n}\right)} .
$$

Applying Lemma 1.1, once again for the coefficients p_{2}, p_{2}, q_{1}, and q_{2}, we obtain

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{\left(2^{m}-2^{n}\right)^{2}}+\frac{2(1-\beta)}{\left(3^{m}-3^{n}\right)}
$$

which is the bound on $\left|a_{3}\right|$ as asserted in (3.4).

ŞEKER/Turk J Math

References

[1] Akın G, Sümer Eker S. Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative. CR Acad Scı I-Math 2014; 352: 1005-1010.
[2] Ali RM, Lee SK, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl Math Lett 2012; 25: 344-351.
[3] Brannan DA, Taha TS. On some classes of bi-univalent functions. Studia Univ. Babeş-Bolyai Math 1986; 31: 70-77.
[4] Deniz E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J Class Anal 2013; 2: 49-60.
[5] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Vol. 259. Berlin, Germany: Springer, 1983.
[6] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Appl Math Lett 2011; 24: 1569-1573.
[7] Jahangiri JM, Hamidi SG. Coefficient estimates for certain classes of bi-univalent functions. Int J Math Math Sci 2013; 2013: 190560.
[8] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
[9] Netanyahu ME. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch Rational Mech Anal 1969; 32: 100-112.
[10] Salagean GS. Subclasses of univalent functions. Lect Notes Math 1983; 1013: 362-372.
[11] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Letters 2010; 23: 1188-1192.
[12] Srivastava HM, Süumer Eker S, Ali RM. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015; 29: 1839-1845.
[13] Taha TS. Topics in univalent function theory. PhD, University of London, London, UK, 1981.

[^0]: *Correspondence: bilal.seker@dicle.edu.tr
 2000 AMS Mathematics Subject Classification: 30C45

