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Abstract: In the present work, we investigate estimates of the deviations of the periodic functions from the linear
operators constructed on the basis of its Fourier series in reflexive weighted Orlicz spaces with Muckenhoupt weights.
In particular, the orders of approximation of Zygmund and Abel-Poisson means of Fourier trigonometric series were
estimated by the k − th modulus of smoothness in reflexive weighted Orlicz spaces with Muckenhoupt weights.

Key words: Boyd indices, weighted Orlicz space, Muckenhoupt weight, modulus of smoothness, Zygmund mean, Abel-
Poisson mean

1. Introduction
Let M(u) be a continuous increasing convex function on [0,∞) such that M(u)/u → 0 if u → 0, and
M(u)/u → ∞ if u → ∞ . We denote by N the complementary of M in Young’s sense, i.e. N(u) =

max {uv −M(v) : v ≥ 0} if u ≥ 0. We will say that M satisfies the ∆2−condition if M(2u) ≤ cM(u) for any
u ≥ u0 ≥ 0 with some constant c , independent of u.

Let T denote the interval [−π, π] , C the complex plane, and Lp(T) , 1 ≤ p ≤ ∞ , the Lebesgue space of
measurable complex-valued functions on T .

For a given Young function M , let L̃M (T) denote the set of all Lebesgue measurable functions f : T → C
for which ∫

T

M (|f(x)|) dx < ∞.

Let N be the complementary Young function of M . It is well known [16,29] that the linear span of

L̃M (T) equipped with the Orlicz norm

∥f∥LM (T) := sup


∫
T

|f(x)g(x)| dx : g ∈ L̃N (T),
∫
T

N (|g(x)|) dx ≤ 1


becomes a Banach space. This space is denoted by LM (T) and is called an Orlicz space [16]. The Orlicz spaces
are known as the generalizations of the Lebesgue spaces Lp(T), 1 < p < ∞.
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If we choose M(u) = up/p (1 < p < ∞) , then the complementary function is N(u) = uq/q with
1/p+ 1/q = 1 and we have the relation

p−1/p ∥u∥Lp(T) ≤ ∥u∥LM (T) ≤ q1/q ∥u∥Lp(T) ,

where ∥u∥Lp(T) =

(∫
T
|u(x)|p dx

)1/p

denotes the usual norm of the Lp(T) space.

The Orlicz space LM (T) is reflexive if and only if the N− function M and its complementary function
N both satisfy the ∆2−condition [29].

Let M−1 : [0,∞) → [0,∞) be the inverse function of the N− function M. The lower and upper indices

αM := lim
t→+∞

− logh(t)
log t , βM := lim

t→o+
− logh(t)

log t

of the function

h : (0,∞) → (0,∞], h(t) := lim
y→∞

sup M−1(y)

M−1(ty)
, t > 0,

first considered by Matuszewska and Orlicz [24], are called the Boyd indices of the Orlicz spaces LM (T) .
It is known that the indices αM and βM satisfy 0 ≤ αM ≤ βM ≤ 1, αN + βM = 1 , αM + βN = 1 and

the space LM (T) is reflexive if and only if 0 < αM ≤ βM < 1. The detailed information about the Boyd indices
can be found in [1,2,19,25].

A measurable function ω : T → [0,∞] is called a weight function if the set ω−1 ({0,∞}) has Lebesgue
measure zero. With any given weight ω , we associate the ω -weighted Orlicz space LM (T, ω) consisting of all
measurable functions f on T such that

∥f∥LM (T,ω) := ∥fω∥LM (T) .

Let 1 < p < ∞, 1/p+ 1/p′ = 1 and let ω be a weight function on T . ω is said to satisfy Muckenhoupt’s
Ap -condition on T [4,5,10] if

sup
J

 1

|J |

∫
J

ωp (t) dt

1/p 1

|J |

∫
J

ω−p′ (t) dt

1/p′

< ∞,

where J is any subinterval of T and |J | denotes its length.
Let us denote by Ap (T) the set of all weight functions satisfying Muckenhoupt’s Ap -condition on T .
Note that by [20, Lemma 3.3] and [21, Section 2.3] if LM (T) is reflexive and ω weight function satisfying

the condition ω ∈ A1/αM
(T) ∩A1/βM

(T) , then the space LM (T, ω) is also reflexive.
Let LM (T, ω) be a weighted Orlicz space, let 0 < αM ≤ βM < 1 and let ω ∈ A 1

αM

(T)∩A 1
βM

(T) . For

f ∈ LM (T, ω) , we set

(νhf) (x) :=
1

2h

h∫
−h

f (x+ t) dt, 0 < h < π, x ∈ T.
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By reference [10, Lemma 1] the shift operator νh is a bounded linear operator on LM (T, ω) :

∥νh (f)∥LM (T,ω) ≤ C ∥f∥LM (T,ω) .

The function

Ωk
M,ω (δ, f) := sup

0<hi≤δ
1≤i≤k

∥∥∥∥∥
k∏

i=1

(I − νhi
) f

∥∥∥∥∥
LM (T,ω)

, δ > 0, k = 1, 2, ...

is called k -th modulus of smoothness of f ∈ LM (T, ω) , where I is the identity operator.
It can easily be shown that Ωk

M,ω (·, f) is a continuous, nonnegative, and nondecreasing function satisfying
the conditions

lim
δ→0

Ωk
M,ω (δ, f) = 0, Ωk

M,ω (δ, f + g) ≤ Ωk
M,ω (δ, f) + Ωk

M,ω (δ, g) , δ > 0

for f, g ∈ LM (T, ω) .
Let

a0
2

+

∞∑
k=1

Ak(x, f) (1.1)

be the Fourier series of the function f ∈ L1(T) , where Ak(x, f) := (ak (f) cos kx+ bk (f) sin kx) , αk(f) and
bk(f) are Fourier coefficients of the function f ∈ L1(T).

We suppose that {λ(n)
ν } (λ

(n)
0 = 1; λ

(n)
ν = 0, ν > n) are system of numbers and we consider the sequence

of the functions {λν(r)} defined in the set E ⊂ R , satisfying the conditions that

λ0(r) = 1, lim
r−→r0

λν(r) = 1

for an arbitrary fixed r0 ∈ E and ν = 0, 1, 2, .... , we set

Rn(f, λ
(n)
ν )(x) = f(x)− [

a0
2

+

n∑
ν=1

λ(n)
ν Aν(x, f)],

Rr(f, λν(r))(x) = f(x)− [
a0
2

+

∞∑
ν=1

λν(r)Aν(x, f)].

The Zygmund means and Abel-Poisson means of the series (1.1 ) are defined respectively as [5,32]

Zn,k(x, f) =
a0
2

+

n∑
ν=1

(1− νk

(n+ 1)k
)Aν(x, f), n = 0, 1, 2, ..., k = 1, 2, ...,

Ur(x, f) =
a0
2

+

∞∑
ν=1

rνAν(x, f), 0 ≤ r < 1.
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The best approximation of f ∈ LM (T, ω) in the class Πn of trigonometric polynomials of degree not
exceeding n is defined by

En (f)M,ω := inf
{
∥f − Tn∥LM (T,ω) : Tn ∈ Πn

}
.

Note that the existence of T ∗
n ∈ Πn such that

En (f)M,ω = ∥f − T ∗
n∥LM (T,ω)

follows, for example, from Theorem 1.1 in [7].
We use the constants c, c1, c2, ... (in general, different in different relations) which depend only on the

quantities that are not important for the questions of interest
We need the following theorem [5]:

Theorem 1.1 Let LM (T) be a reflexive Orlicz space and let ω ∈ A 1
αM

(T) ∩ A 1
βM

(T) . Let {λk}∞0 be a

sequence of numbers such that

| λk|≤ c1 and
2m−1∑

k=2m−1

| λk−λk+1|≤ c2, (1.2)

where c2 > 0 does not depend on k and m. If f ∈ LM (T ,ω) has the Fourier series

a0
2
+

∞∑
k=1

Ak(x, f),

then there exists a function F ∈ LM (T ,ω) with the Fourier series

λ0a0
2

+

∞∑
k=1

λkAk(x, f)

and
∥ F ∥LM (T,ω)≤ c3 ∥ f ∥LM (T,ω) ·

2. Main results
The problems of approximation theory in weighted and nonweighted Lebesgue spaces, as well as weighted and
nonweighted Orlicz spaces were investigated by several authors (see, for example, [3–5,7–15,17,18,22,23,26–
28,30–34]).

Note that the approximation problems by trigonometric polynomials in weighted Lebesgue spaces with
weights belonging to the Muckenhoupt class Ap(T) were studied in [4,22,23].

Detailed information on weighted polynomial approximation can be found in [6,26].
In the present paper, we estimate the norms of Rn(f, λ) and Rr(f, λ) in the weighted Orlicz spaces LM (T ,ω). Similar

problems in different spaces were investigated in [3,5,15,18,27,30,32–34].
Our main results are the following.
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Theorem 2.1 Let LM (T ,ω) be a reflexive Orlicz space and ω ∈ A 1
αM

(T)∩A 1
βM

(T) . If the system of numbers

{λ(n)
ν }, (λ

(n)
0 = 1; λ

(n)
ν = 0, ν > n) for some natural number k satisfy the conditions

n2k
∣∣∣1− λ(n)

ν

∣∣∣ ≤ c4ν
2k,

2µ−1∑
ν=2µ−1

n2k | ∆λ
(n)
ν |

ν2k
≤ c5, (µ = 1, 2, ...,m; n ≥ 2m), (2.1)

where | ∆λ
(n)
ν |=

∣∣∣λ(n)
ν − λ

(n)
ν+1

∣∣∣ , then for f ∈ LM (T ,ω) the estimate

∥∥∥Rn(f, λ
(n)
ν )
∥∥∥
LM (T,ω)

= ∥ f(x)− [
a0
2

+

n∑
ν=1

λ(n)
ν Aν(x, f)] ∥LM (T, ω)

≤ c6Ω
k
M,ω(

1

n+ 1
, f) (2.2)

holds with a constant c6 > 0 and does not depend on n.

Corollary 2.1 Let LM (T ,ω) be a reflexive Orlicz space and ω ∈ A 1
αM

(T) ∩ A 1
βM

(T) . If λ
(n)
ν = 1 − νk

(n+1)k
,

k ≥ 1, λ
(n)
ν = 0, ν > n, then for f ∈ LM (T ,ω) the estimate

∥ f − Zn,k(·, f) ∥LM (T,ω)≤ c7Ω
k
M,ω(

1

n+ 1
, f),

holds with a constant c7 > 0 and does not depend on n.

Note that Corollary 2.1 for Zygmund means of order 2 and modulus of continuity ΩM,ω(
1

n+1 , f), (k = 1) was
obtained in [5].

Theorem 2.2 Let LM (T) be an Orlicz space and ω ∈ A 1
αM

(T)∩A 1
βM

(T) . If the sequence of functions{λν(r)}

defined in the set E ⊂ R , such that λ0(r) = 1, limλν(r
r→r0

) = 1, for the arbitrary fixed ν = 0, 1, 2, ... satisfying

the conditions

| λν(r) |≤ c8,

2µ−1∑
ν=2µ−1

| λν(r)− λν+1(r) |≤ c9, (µ = 1, 2, ...) (2.3)

and for some natural number k

[1− λν(r)]

| r − r0 |2k
≤ c10ν

k,
1

| r − r0 |2k
2µ−1∑

ν=2µ−1

|∆λν(r)|
ν2k

≤ c11 (2.4)

and further for any fixed r ∈ E, for the arbitrary f ∈ LM (T ,ω) , the series

a0
2

+

∞∑
ν=1

λν(r)Aν(x, f)
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converges in the space LM (T ,ω) , then the estimate

∥Rr(f, λν(r))∥LM (T,ω) = ∥ f(x)− [
a0
2

+

∞∑
ν=1

λν(r)Aν(x, f)] ∥LM (T, ω)

≤ c12Ω
k
M,ω(| r − r0 |, f). (2.5)

holds.

Corollary 2.2. Let LM (T) be an Orlicz space and ω ∈ A 1
αM

(T) ∩ A 1
βM

(T) . If λν(r) = rν (ν = 0, 1, 2, ...),

then for f ∈ LM (T, ω), the estimate

∥ f − Ur(x, f) ∥LM (T,ω)≤ c13Ω
k
M,ω(1− r, f), 0 ≤ r ≤ 1,

holds with a constant c13 > 0 and does not depend on r.

Note that similar estimate for modulus of continuity ΩM,ω(
1

n+1 , f), (k = 1) was proved in [5].

3. Proofs of the theorems

Proof of Theorem 2.1 Let 2m ≤ n < 2m+1. Using the subadditivity of the norm, we get

∥ f −
n∑

ν=0

λ(n)
ν Aν(·, f) ∥LM (T,ω)

≤ ∥
n∑

ν=0

(1− λ(n)
ν )Aν(·, f) ∥LM (T,ω)

+ ∥
∞∑

ν=n+1

Aν(·, f) ∥LM (T,ω)= I1 + I2. (3.1)

We put

µ
(n)
ν,k =

1− λ
(n)
ν

sin2k ν
2n

, ν = 1, 2, ..., n.

We show that, for the sequence {µ(n)
ν,k} , the conditions (1.2) of Theorem 1.1 are satisfied. Under the

assumptions of Theorem 1.1, the inequality

| µ(n)
ν,k |≤ (2π)2k

n2k
∣∣∣1− λ

(n)
ν

∣∣∣
ν2k

≤ c14

holds.
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On the other hand, the following inequality can be written

| µ
(n)
ν,k − µ

(n)
ν+1,k |=|

λ
(n)
ν+1 sin2k ν

2n − λ
(n)
ν sin2k ν+1

2n

sin2k ν
2n sin2k ν+1

2n

|

≤ (2nπ)4k |
(λ

(n)
ν+1 − λ

(n)
ν ) sin2k (ν+1)

2n − λ
(n)
ν+1[sin2k (ν+1)

2n − sin2k ν
2n ]

ν2k(ν + 1)2k
|

≤ c15

(
n2k | λ(n)

ν+1 − λ
(n)
ν |

ν2k
+

n2k | λ(n)
ν+1 |

ν2k

)
. (3.2)

According to (3.2) and (1.2) we have, for s ≥ m,

2s+1−1∑
ν=2s

| µ(n)
ν,r − µ

(n)
ν+1,r |≤ c16,

where m such that 2m ≤ n < 2m+1.

Therefore, the conditions (1.2) of Theorem 1.1 are satisfied. Then using Theorem 1.1, we obtain

I1 = ∥
n∑

ν=1

µ(n)
ν,rAν(·, f) sin2k ν

2n
∥LM (T,ω)

≤ c17 ∥
n∑

ν=1

Aν(·, f) sin2k ν

2n
∥LM (T,ω) . (3.3)

According to [10] , the following inequalities hold

(2n)−2k ∥ S(2k)
n (·, f) ∥LM (T,ω) ≤ c18Ω

k
M,ω(

1

n+ 1
, f). (3.4)

∥ f − Sn(·, f) ∥LM (T,ω) ≤ c19En(f)M,ω, (3.5)

En(f)M,ω ≤ c20Ω
k
M,ω(

1

n+ 1
, f). (3.6)

From (3.3) and (3.4) , we get

I1 ≤ c17 ∥
n∑

ν=1

Aν(·, f) sin2k ν

2n
∥LM (T,ω)

≤ c21 ∥
n∑

ν=1

Aν(·, f)(
ν

2n
)2k ∥LM (T,ω)

≤ c22(2n)
−2k ∥

n∑
ν=1

Aν(·, f)ν2k ∥LM (T,ω)

≤ c23(2n)
−2k ∥ S(2k)

n (·, f) ∥LM (T,ω) ≤ c24Ω
k
M,ω(

1

n+ 1
, f). (3.7)
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Using inequality (3.5) , we have

I2 =

∞

∥
∑

ν=n+1

Aν(·, f) ∥LM (T,ω)≤ c25En(f)M,ω. (3.8)

Then by (3.8) and (3.6) , we obtain

I2 ≤ c26Ω
k
M,ω(

1

n+ 1
, f). (3.9)

Now combining (3.1), (3.7) , and (3.9) , we obtain the inequality (2.2) of Theorem 2.1.
Proof of Theorem 2.2. According to the subadditivity of the norm, we get

∥Rn(f, λν(r))∥LM (T,ω) ≤ ∥
[ 1
|r−r0| ]∑
ν=1

(1− λν(r))Aν(·, f)] ∥LM (T,ω) +

∥
∞∑

ν=[ 1
|r−r0| ]+1

(1− λν(r))Aν(·, f)] ∥LM (T,ω)

= I1 + I2, (3.10)

where [ 1
|r−r0| ] is the integer part of real number 1

|r−r0| .

The following holds

I1 = ∥
[ 1
|r−r0| ]∑
ν=1

(1− λν(r))Aν(·, f)] ∥LM (T,ω)

= ∥
[ 1
|r−r0| ]∑
ν=1

(1−λν(r))

sin2k ν|r−r0|
2

Aν(·, f) sin2k ν | r − r0 |
2

∥LM (T,ω) . (3.11)

We set

µν,r =
1− λν(r)

sin2k ν|r−r0|
2

,

where 1 ≤ ν ≤ [ 1
|r−r0| ].

According to relation (2.4) , the system of numbers {µν,r} satisfies the conditions (1.2) of Theorem 1.1.
Then selecting m , such that 2m ≤ [| 1

|r−r0| |] < 2m+1, from (3.11) and (3.4) , we have

I1 ≤ ∥
2m+1∑
ν=1

µν,rAν(·, f)] sin2k ν | r − r0 |
2

∥LM (T,ω) ≤

≤ c27 ∥
∞∑
ν=1

Aν(·, f)] sin2k ν | r − r0 |
2

∥LM (T,ω)

≤ c28Ω
k
M,ω(| r − r0 |, f). (3.12)
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According to (2.3) for the system of numbers {1 − λν(r)}, the conditions of Theorem 1.1 are satisfied.
Then applying Theorem 1.1, we obtain

I2 = ∥
∞∑

ν=[ 1
|r−r0| ]+1

(1− λν(r))Aν(·, f)] ∥LM (T,ω)

≤ c29 ∥
∞∑

ν=[ 1
|r−r0| ]+1

Aν(·, f)] ∥LM (T,ω) . (3.13)

By (3.5) and (3.13) , we get
I2 ≤ c30Ω

k
M,ω(| r − r0 |, f). (3.14)

Now combining (3.10), (3.12) , and (3.14) , we obtain the inequality (2.5) of Theorem 2.2.
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