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Abstract: We consider the stretching operator (Twf) (z) = f(wz) and the multiple shift operator Snf = znf on
the Hardy spaces Hp(D) (1 ≤ p < +∞) . We describe in terms of so-called Berezin symbols their lattice of invariant
subspaces. We also define a new class of operators on the reproducing kernel Hilbert space H(Ω), which in a particular
case contains all compact operators, and discuss in terms of Berezin symbols their invariant subspaces.

Key words: Invariant subspaces, multiple shift operator, Berezin symbol, stretching operator

1. Introduction
In this article, we describe invariant subspaces of a multiple shift operator on the Hardy space Hp = Hp(D)
(1 ≤ p < ∞) of all analytic functions f on the unit disk D := {z ∈ C : |z| < 1} such that

∥f∥p :=

 sup
0≤r<1

1

2π

2π∫
0

∣∣f (
reit

)∣∣p dt


1
p

< +∞.

The usual shift operator S is defined on Hp by

(Sf)(z) = zf(z).

The multiple shift operator is Sn with n ≥ 2 : (Snf)(z) = znf. A subspace (closed) E in Hp is called a
nontrivial invariant subspace for an operator A ∈ B(Hp), the Banach algebra of all bounded linear operators
acting on Hp, if {0} ̸= E ̸= Hp and AE ⊆ E, i.e. Af ∈ E whenever f ∈ E.

The description of invariant subspaces of the shift operator S on some Hilbert or Banach spaces of
analytic functions on D is well investigated and readers can consult, for instance, [5, 6, 9−11, 17] and their
references. However, the same question for the multiple shift operator Sn, n ≥ 2, apparently is not well
studied. Here we will describe Sn -invariant subspaces in terms of so-called Berezin symbols for any n ≥ 1

(Theorem 2) . In terms of Berezin symbols we also discuss invariant subspaces of some class of operators on the
so-called standard reproducing kernel Hilbert space in the sense of Nordgren and Rosenthal [18] (Theorem 5) .

Furthermore, we describe invariant subspaces of some stretching operators (Twf) (z) = f(wz), where w ∈ D
(Theorem 1) .
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Recall that a reproducing kernel Hilbert space H = H(Ω) is the Hilbert space of complex-valued functions
on some set Ω, say, in the complex plane C , such that the evaluation functionals ϕλ(f) := f(λ), λ ∈ Ω, are
continuous on H . Then, by the classical Riesz representation theorem, for each λ ∈ Ω there exists a unique
function Kλ ∈ H such that f(λ) = ⟨f,Kλ⟩ for each f ∈ H . The collection {Kλ : λ ∈ Ω} is called the

reproducing kernel for the space H . K̂λ := Kλ

∥Kλ∥ is the normalized reproducing kernel of H . Prototypical

reproducing kernel Hilbert spaces are Hardy, Bergman, and Fock–Hilbert spaces. A detailed presentation of the
theory of reproducing kernel Hilbert spaces and reproducing kernel is given, for instance, in [1, 9, 18, 19] . For
an operator A ∈ B(H), the Berezin symbol A is defined by (see Berezin [3, 4])

Ã(λ) :=
⟨
AK̂λ(z), K̂λ(z)

⟩
, λ, z ∈ Ω,

where the inner product ⟨, ⟩ is taken in the space H . It is clear that sup
λ∈Ω

∣∣∣Ã(λ)
∣∣∣ ≤ ∥A∥ . Ber(A) := Range(Ã)

is called the Berezin set of operator A and it is obvious that Ber(A) is contained in the numerical range
W (A) := {⟨Ax, x⟩ : x ∈ H and ∥x∥H = 1} .

It is also clear that
ber(A) := sup

λ∈Ω

∣∣∣Ã(λ)
∣∣∣ ,

which is called the Berezin number of A , satisfies
ber(A) ≤ w(A) := sup {| ⟨Ax, x⟩ | : x ∈ H and ∥x∥ = 1} (the numerical radius)≤ ∥A∥ .

Note that these new numerical values of operators on the reproducing kernel space H(Ω) were introduced
originally by Karaev [12] ; see also [7, 8, 13−16] for more fact about Berezin sets and Berezin numbers of
operators.

2. Berezin symbols and invariant subspaces of stretching and multiple shift operators
Let D ⊂ C be the open unit disk in the complex plane and w ∈ D . Let Tw : Hp → Hp be the stretching
operator defined by (Twf) (z) = f(wz) ∀z ∈ D. It is well known that Tw is compact, and if p = 2 , then Tw is
self-adjoint if and only if w ∈ R.

Here we use the Berezin symbols and diagonal operators technique to describe the lattices of invariant
subspaces of the stretching operator Tw with w ∈ (0, 1), and multiple shift operators Sn with n ≥ 1 acting on
the Hardy space Hp, 1 ≤ p < +∞.

For any bounded sequence (an) of complex numbers, let D(an) be a corresponding diagonal operator
defined on the Hardy–Hilbert space H2 by D(an)z

k = akz
k, k = 0, 1, 2, ..., with respect to the orthonormal

basis (zn)n≥1 in H2. The following describes Lat(Tw) in terms of Berezin symbols.

Theorem 1 Let w ∈ D ∩ R+, 1 ≤ p < +∞ , and Tw : Hp → Hp be the stretching operator. Let E ⊂ Hp be

a nontrivial closed subspace. Then TwE ⊂ E (i.e. E ∈ Lat(Tw)) if and only if for every f =
∞∑
k=0

f̂(k)zk ∈ E

there exists a function g = g
f
∈ E such that

D̃(f̂(k)eik arg(z))

(√
|z|w

)
= (1− |z|w) g(z)

for all z in D ; here f̂(k) =
f
(k)

(0)

k! is the k th Taylor coefficient of f.
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Proof Indeed, let z : D → D and u : D → D be two arbitrary independent variables in D , and let

kλ(u) =
1

1−λu
, λ, u ∈ D , be the reproducing kernel of H2. Since for any h =

∞∑
k=0

ĥ(k)zk ∈ Hp, (1 ≤ p < +∞) ,∣∣∣ĥ(k)∣∣∣ ≤ Cp for all k = 0, 1, 2, ... and some Cp > 0 (for 1 < p ≤ 2, it follows, for example, also from the

known Hausdorff–Young theorem [21] that if g ∈ Hp (1 < p ≤ 2) , then
∞∑
k=0

|ĝ(k)|
p

p−1 < +∞) the diagonal

operator Dĥ(k)eik arg(z)) is bounded on H2 for arbitrary fixed z in D . By considering this, and also by using

that z = |z| eik arg(z), where 0 ≤ arg(z) < 2π , then we have for any f ∈ E that

(Twf) (z) = Tw

∞∑
k=0

f̂(k)zk =

∞∑
k=0

f̂(k)zkwk

=
∞∑
k=0

f̂(k)eik arg(z) (|z|w)k

=

(
1−

(√
|z|w

)2
) ∞∑

k=0

f̂(k)eik arg(z)
((√

|z|w
)2

)k

1−
(√

|z|w
)2

=

(
1−

(√
|z|w

)2
)⟨ ∞∑

k=0

(√
|z|w

)k (
f̂(k)eik arg(z)

)
uk, 1

1−
√

|z|wu

⟩
1−

√
|z|w

2

=

(
1−

(√
|z|w

)2
)⟨

D(f̂(k)eik arg(z))

∞∑
k=0

(√
|z|w

)k

uk, 1

1−
√

|z|wu

⟩
1− |z|w

=

⟨
D(f̂(k)eik arg(z))k̂

√
|z|w(u), k

√
|z|w(u)

⟩
1− |z|w

=
D̃(f̂(k)eik arg(z))

(√
|z|w

)
1− |z|w

.

Hence,

(Twf) (z) =
D̃(f̂(k)eik arg(z))

(√
|z|w

)
1− |z|w

(1)

for every z ∈ D . It follows from (1) that Twf ∈ E if and only if there exists a function g = g
f
∈ E such that

D̃(f̂(k)eik arg(z))

(√
|z|w

)
= (1− |z|w) g(z), which proves the theorem. 2

The next theorem describes Lat(Sn) in terms of Berezin symbols.

Theorem 2 Let E ⊂ Hp, (1 ≤ p < +∞) , be a nontrivial closed subspace and n ≥ 1 be any integer. Then
SnE ⊂ E if and only if for every f ∈ E there exists a function g = g

f
∈ E such that

D̃(f̂(k−n)eik arg(z))

(√
|z|

)
= (1− |z|) g(z), ∀z ∈ D.
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Proof Let f ∈ E be arbitrary. Then we have

(Snf) (z) = znf(z) =

∞∑
k=0

f̂(k)zk+n =

∞∑
k=n

f̂(k − n)zk

=

∞∑
k=n

f̂(k − n)eik arg(z) |z|k =

(1− |z|)
∞∑
k=0

f̂(k − n)eik arg(z) |z|k

(1− |z|)
,

and here we put f̂(−n) = f̂(−(n− 1)) = ... = f̂(−1) = 0. Then, as in the proof of Theorem 1 , we obtain that

(Snf) (z) =
D̃(f̂(k−n)eik arg(z))

(√
|z|

)
1− |z|

, z ∈ D. (2)

It follows now from (2) that Snf ∈ E if and only if

D̃(f̂(k−n)eik arg(z))

(√
|z|

)
1− |z|

∈ E,

and thus Snf ∈ E if and only if there exists a function g = g
f
∈ E such that

D̃(f̂(k−n)eik arg(z))

(√
|z|

)
= (1− |z|) g(z), ∀z ∈ D.

This proves the theorem. 2

Our next result characterizes S-invariant (usual shift-invariant) subspaces in terms of Berezin sets. Before
stating it, let us note the following.

The class ℓ∞A := ℓ∞A (D) consists of analytic functions f(z) =
∞∑

n=0
f̂(n)zn on D with

(
f̂(n)

)
n≥0

∈ ℓ∞ (the

classical space of all bounded sequences of complex numbers).
Given any subspace E ⊂ ℓ∞A , we put

BE :=
∪
f∈E

θ∈[0,2π)

Ber
(
D(f̂(n−1)einθ)

)

and
BSE :=

∪
g∈SE

η∈[0,2π)

Ber
(
D(ĝ(n)einη)

)
.

We need the following lemma due to Ash and Karaev [2] .

Lemma 1 If f ∈ ℓ∞A , then Range ((1− |z|) f) =
∪

θ∈[0,2π)

Ber
(
D(f̂(n)einθ)

)
, and here θ ∈ [0, 2π) is an

argument of z in its polar decomposition z = |z|ei arg(z).
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Theorem 3 Let E ⊂ Hp, 1 ≤ p < +∞, be a nontrivial closed subspace. Then SE ⊂ E if and only if
BE ⊆ BSE .

Proof We have from Theorem 2 for n = 1 that SE ⊂ E if and only if for any f ∈ E there exists a function
g = g

f
∈ E such that

D̃(f̂(k−1)eik arg(z))

(√
|z|

)
= (1− |z|) g(z), (∀z ∈ D) . (3)

By virtue of Lemma 1, we have then that

Range ((1− |z|) g(z)) =
∪

θ∈[0,2π)

Ber
(
D(ĝ(n)einθ)

)
.

Hence, for any z ∈ D there exists ϑ = ϑz ∈ D such that

(1− |z|)g(z) = D̃(ĝ(n)ein arg(ϑ))(
√
|ϑ|). (4)

Since

zf =
D̃(ĝ(n)ein arg(z))(

√
|z|)

1− |z|
= g(z),

we have that g ∈ zE, and hence ĝ(0) = g(0) = 0. Also, by considering that

zf(z) =

∞∑
k=0

f̂(k)zk+1 = g(z) =

∞∑
k=0

ĝ(k)zk,

we have f̂(k − 1) = ĝ(k) for all k ≥ 1. By considering this and formulas (3) and (4), we have

D̃(f̂(k−1)eik arg(z))(
√
|z|) = D̃(ĝ(k)eik arg(ϑ)(

√
|ϑ|).

This shows that SE ⊂ E if and only if for every f ∈ E there exists g ∈ zE such that Ber(D̃(f̂(k−1)eikθ)) ⊆

Ber(D̃(ĝ(k)eikη)) for al θ ∈ [0, 2π). Thus, SE ⊂ E if and only if∪
f∈E

θ∈[0,2π)

Ber(D(f̂(k−1)eikθ)) ⊆
∪

g∈zE
η∈[0,2π)

Ber(D(ĝ(k)eikη)),

or equivalently, BE ⊆ BzE = BSE , as desired. 2

3. On the invariant subspaces of some class of operators on the reproducing kernel Hilbert space
In this section, we again use the Berezin symbols technique in the study of invariant subspaces of some operator
class on the so-called standard in the sense of Nordgren and Rosenthal’s [18] reproducing kernel Hilbert space.
Following Nordgren and Rosenthal [18], we recall that a reproducing kernel Hilbert space H = H(Ω) is called
standard if the underlying set Ω is a subset of a topological space and the boundary ∂Ω is nonempty and

has the property that
{
K̂λn

}
converges weakly to 0 whenever {λn} is a sequence in Ω that converges to a

point in ∂Ω. The common reproducing kernel Hilbert spaces of analytic functions, including H2(Hardy space),
L2
a(Bergman space), D2(Dirichlet space) , and F (C)(Fock space), are standard in this sense.
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Definition 1 We say that an operator A : H(Ω) → H(Ω) on the reproducing kernel Hilbert space H = H(Ω)

belongs to the class B0(H) if lim
λ→ζ∈∂Ω

A∗K̂λ = 0 in strong operator topology for any point ζ.

We remark that if H(Ω) is a standard reproducing kernel Hilbert space, then all compact operators are
contained in class B0(H).

Theorem 4 Let H = H(Ω) be a reproducing kernel Hilbert space and A ∈ B0(H) be an operator. If E ⊂ H is
a (closed) subspace and AE ⊂ E, then

lim
λ→ζ∈∂Ω

∣∣∣(AKE,λ)(λ)− Ã(λ)KE,λ(λ)
∣∣∣

∥Kλ∥2H
= 0,

where KE,λ := PEKλ is the reproducing kernel of the subspace E, where PE : H →E is an orthogonal projection

and Ã is the Berezin symbol of operator A.

Proof The proof is similar to that of Theorem 4 in the author’s previous paper [20], where a similar result is
proved for compact operators; however, for completeness reasons, we provide it here. For this aim, let (ej(z))j≥1

be an orthonormal basis in E (since H is a reproducing kernel Hilbert space, it is separable, and since E is a
closed subspace of H , E is also separable). Then it is clear that

PEf =

∞∑
j=1

⟨f, ej⟩ ej

for every f ∈ H . Now by setting

g := A(PEKλ)− Ã(λ)(PEKλ),

we have that

g = (A− Ã(λ)IH)

∞∑
j=1

⟨Kλ, ej⟩ ej ,

from which

g(λ) = ⟨g,Kλ⟩ =

⟨
(A− Ã(λ))

∞∑
j=1

⟨Kλ, ej⟩ ej ,Kλ

⟩

=

⟨ ∞∑
j=1

⟨Kλ, ej⟩ ej , (A∗ − Ã(λ))Kλ

⟩

=

⟨ ∞∑
j=1

⟨Kλ, ej⟩ ej , (A∗ − Ã∗(λ))Kλ

⟩
.
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Therefore, by applying the Cauchy–Schwarz inequality, we obtain from the latter that

|g(λ)| ≤

∥∥∥∥∥∥
∞∑
j=1

⟨Kλ, ej⟩ ej

∥∥∥∥∥∥
H

∥∥∥(A∗ − Ã∗(λ))Kλ

∥∥∥
H

≤ ∥Kλ∥H
∥∥∥(A∗ − Ã∗(λ))Kλ

∥∥∥
H

= ∥Kλ∥2H

∥∥∥∥(A∗ − Ã∗(λ))
Kλ

∥Kλ∥H

∥∥∥∥
H

= ∥Kλ∥2H
∥∥∥(A∗ − Ã∗(λ))K̂λ

∥∥∥
H

.

Since (A∗ − Ã∗(λ))K̂λ ⊥ K̂λ, we obtain

∥∥∥(A∗ − Ã∗(λ))K̂λ

∥∥∥2
H

=
⟨
A∗ − Ã∗(λ))K̂λ, A

∗ − Ã∗(λ))K̂λ

⟩
=

∥∥∥A∗K̂λ

∥∥∥2
H
− Ã∗(λ)

⟨
K̂λ, A

∗K̂λ

⟩
−
⟨
A∗K̂λ, Ã∗(λ)K̂λ

⟩
+Ã∗(λ)

⟨
K̂λ, Ã∗(λ)K̂λ

⟩
=

∥∥∥A∗K̂λ

∥∥∥2
H
− Ã∗(λ)

⟨
AK̂λ, K̂λ

⟩
−Ã∗(λ)

⟨
A∗K̂λ, K̂λ

⟩
+ Ã∗(λ)Ã∗(λ)

=
∥∥∥A∗K̂λ

∥∥∥2
H
− Ã∗(λ)Ã(λ)− Ã(λ)Ã∗(λ)

+Ã∗(λ)Ã∗(λ)

=
∥∥∥A∗K̂λ

∥∥∥2
H
− 2

∣∣∣Ã∗(λ)
∣∣∣2 + ∣∣∣Ã∗(λ)

∣∣∣2
=

∥∥∥A∗K̂λ

∥∥∥2
H
−

∣∣∣Ã∗(λ)
∣∣∣2 ,

and hence ∥∥∥(A∗ − Ã∗(λ))K̂λ

∥∥∥
H

=

√∥∥∥A∗K̂λ

∥∥∥2
H
−

∣∣∣Ã∗(λ)
∣∣∣2

for all λ ∈ Ω. Thus, we have

|g(λ)| ≤
∥∥∥K̂λ

∥∥∥2
H

√∥∥∥A∗K̂λ

∥∥∥2
H
−
∣∣∣Ã∗(λ)

∣∣∣2
for all λ ∈ Ω. Now, by considering that

∣∣∣Ã∗(λ)
∣∣∣ ≤ ∥∥∥A∗K̂λ

∥∥∥
H

and A ∈ B0(H), we obtain that

lim
λ→ζ

(∥∥∥A∗K̂λ

∥∥∥2
H
−

∣∣∣Ã∗(λ)
∣∣∣2) = 0
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for all points ζ ∈ ∂Ω, or equivalently

lim
λ→ζ

∣∣∣(AKE,λ)(λ)− Ã(λ)KE,λ(λ)
∣∣∣∥∥∥K̂λ

∥∥∥2
H

= 0

for any point ζ ∈ ∂Ω. The proof is completed. 2

Since on the standard reproducing kernel Hilbert space every compact operator vanishes on the boundary,
the following is an immediate corollary of Theorem 4.

Corollary 1 Let H = H(Ω) be a standard reproducing kernel Hilbert space on Ω, and let K ∈ B(H) be a
compact operator. Let E ⊂ H be a nontrivial subspace. If KE ⊂ E, then

∣∣∣(KKE,λ)(λ)− (K̃KE,λ)(λ)
∣∣∣ = o

(∥∥∥K̂λ

∥∥∥2
H

)
as λ → ζ ∈ ∂Ω for any ζ.
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