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Abstract: By means of the hypergeometric series approach, we present a new proof of Sun’s conjecture on trigonometric
series, which is simpler than the original one due to Sun and Meng. Several further infinite series identities are shown
as examples.
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1. Introduction and motivation
For an integer n and an indeterminate x , define the rising and falling factorials, respectively, by the following
quotients of Euler’s Γ -function:

(x)n =
Γ(x+ n)

Γ(x)
and ⟨x⟩n =

Γ(1 + x)

Γ(1 + x− n)
,

where for the former we shall utilize the abbreviated multiparameter notation below:[
A, B, · · · , C
α, β, · · · , γ

]
n

=
(A)n(B)n · · · (C)n
(α)n(β)n · · · (γ)n

.

According to Bailey [1, §2.1], the classical hypergeometric series reads as

1+pFp

[
a0, a1, a2, · · · , ap

b1, b2, · · · , bp

∣∣∣ z] =

∞∑
k=0

(a0)k(a1)k(a2)k · · · (ap)k
k!(b1)k(b2)k · · · (bp)k

zk.

By introducing the integer sequence

Sn =

(
6n
3n

)(
3n
n

)
2(2n+ 1)

(
2n
n

) ,
Sun [6] proposed the following conjecture.

Conjecture 1 There are positive integers T1, T2, T3... such that

1

24
−

∞∑
k=1

Tkx
2k +

∞∑
k=0

Skx
2k+1 =

cos ( 23 arccos (6
√
3x))

12
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for all real x with |x| ≤ 1/6
√
3 . Also, Tp ≡ −2 (mod p) for any prime p .

Sun and Meng [5] gave an analytic proof for this conjecture. In this paper, we shall present a simpler proof by
employing the following well-known hypergeometric series formulae (see, for example, Chu [3, Eqs. 8 and 10]
and Chu and Zheng [4, Eqs. 1.3a and 1.3b]):

2F1

[
x
2 , −

x
2

1
2

∣∣∣ y2] = cos (x arcsin y), (1.1)

2F1

[
1+x
2 , 1−x

2
3
2

∣∣∣ y2] =
sin (x arcsin y)

xy
. (1.2)

The rest of this short paper will be organized as follows. In the next section, a new proof of Conjecture
1 will be given. Then we shall derive, in the third section, further similar results by the hypergeometric series
approach.

2. Proof of the conjecture
As a warm-up, we first give a simpler proof of Sun’s conjecture 1 by means of the hypergeometric series approach.
According to the relations(

n

k

)
=

n!

k!(n− k)!
and (a)kn = kkn

(a
k

)
n

(a+ 1

k

)
n
· · ·

(a+ k − 1

k

)
n

the sequence Sn can be rewritten in the following form:

Sn =
108n

2

[
1
6 ,

5
6

1, 3
2

]
n

.

Then we can evaluate, by (1.2), the following series:

∞∑
k=0

Skx
2k+1 =

x

2
· 2F1

[
1
6 ,

5
6
3
2

∣∣∣ (6√3x)2

]
=

sin ( 23 arcsin 6
√
3x)

8
√
3

.

For x ∈ [−1, 1] , recall the trigonometric identity

arcsinx+ arccosx =
π

2
. (2.1)

We can reformulate the difference

cos ( 23 arccos 6
√
3x)

12
−

∞∑
k=0

Skx
2k+1

=
cos (π3 − 2

3 arcsin 6
√
3x)

12
−

sin ( 23 arcsin 6
√
3x)

8
√
3

=
1

12

{
cos

(π
3
− 2

3
arcsin 6

√
3x

)
− sin π

3
sin

(2
3

arcsin 6
√
3x

)}
=

1

12
cos π

3
cos

(2
3

arcsin 6
√
3x

)
=

1

24
cos

(2
3

arcsin 6
√
3x

)
,
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where we have utilized the trigonometric identity

cos(α− β) = cosα cosβ + sinα sinβ.

In view of (1.1), we can expand the last trigonometric function into the Maclaurin series

1

24
cos

(2
3

arcsin 6
√
3x

)
=

1

24
2F1

[
1
3 , −

1
3

1
2

∣∣∣ (6√3x)2

]

=

∞∑
k=0

16k

24(1− 3k)

(
3k

k

)
x2k.

Therefore, we find that the {Tk} sequence in Conjecture 1 is explicitly given by

Tk =
16k

24(3k − 1)

(
3k

k

)
for k = 1, 2, · · · .

Observing that

Tk =
2

2 + 3(k − 1)

(
2 + 3(k − 1)

k − 1

)
16k−1 for k = 1, 2, · · · ,

we confirm that {Tk} are integers because for λ = 1, 2, · · · and n = 0, 1, 2, · · · , the ternary Catalan numbers{
λ

λ+3n

(
λ+3n

n

)}
are integers (cf. Chu [2]). In addition, we have, for any prime p , the following congruence:

Tp =
2× 16p−1

3p− 1

(
3p− 1

p− 1

)
= 2× 16p−1

p−1∏
k=2

(3p
k

− 1
)

=2× 16p−1(−1)p (mod p) = −2 (mod p)

, thanks to Fermat’s little theorem. This completes the proof of Conjecture 1, which is simpler than that due
to Sun and Meng [5].

Analogously, by examining the trigonometric relation

cos( 23 arcsin 6
√
3x)

24
−

sin ( 23 arcsin 6
√
3x)

8
√
3

=
cos(π3 + 2

3 arcsin 6
√
3x)

12
,

we can show the following counterpart result.

Theorem 2 Under the same condition of Conjecture 1, the following identity holds:

1

24
−

∞∑
k=1

Tkx
2k −

∞∑
k=0

Skx
2k+1 =

cos (π3 + 2
3 arcsin (6

√
3x))

12
.

3. Further infinite series identities
Based on the hypergeometric series (1.1) and (1.2), we can derive further identities similar to those displayed
in Conjecture 1 and Theorem 2. Six examples will be illustrated in this section.
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Letting x = 1
3 in (1.1) and (1.2), we have

2F1

[
2
3 ,

1
3
3
2

∣∣∣ y2] =
3

y
sin (

1

3
arcsin y),

2F1

[
1
6 , −

1
6

1
2

∣∣∣ y2] = cos (1
3

arcsin y).

Then for the two sequences defined by

S(1)
n =

[
2
3 ,

1
3

1, 3
2

]
n

= (
4

27
)n

(
3n
n

)
1 + 2n

,

T (1)
n =

[
1
6 ,−

1
6

1, 1
2

]
n

=
1

108n(1− 6n)

(
6n
3n

)(
3n
n

)(
2n
n

) ,

we get the following two infinite series identities.

Example 1 For |y| ≤ 1 , there hold the identities

1

3

∞∑
n=0

S(1)
n y2n+1 +

∞∑
n=0

T (1)
n y2n =

√
2 sin (

1

3
arcsin y +

π

4
),

1

3

∞∑
n=0

S(1)
n y2n+1 −

∞∑
n=0

T (1)
n y2n =

√
2 sin (

1

3
arcsin y − π

4
).

Analogously, letting x = 1
2 in (1.1) and (1.2), we get

2F1

[
3
4 ,

1
4
3
2

∣∣∣ y2] =
2

y
sin (

1

2
arcsin y),

2F1

[
1
4 , −

1
4

1
2

∣∣∣ y2] = cos (1
2

arcsin y).

Then for the two sequences defined by

S(2)
n =

[
3
4 ,

1
4

1, 3
2

]
n

= (
1

16
)n

(
4n
2n

)
1 + 2n

,

T (2)
n =

[
1
4 ,−

1
4

1, 1
2

]
n

= (
1

16
)n

(
4n
2n

)
1− 4n

,

we find the following two infinite series identities.
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Example 2 For |y| ≤ 1 , there hold the identities

1

2

∞∑
n=0

S(2)
n y2n+1 +

∞∑
n=0

T (2)
n y2n =

√
2 cos (1

2
arccos y),

1

2

∞∑
n=0

S(2)
n y2n+1 −

∞∑
n=0

T (2)
n y2n = −

√
2 sin (

1

2
arccos y).

There exist two companion series (cf. Chu [3, Eqs. 9 and 11] and Chu and Zheng [4, Eqs. 2.1 and 3.2]) similar
to (1.1) and (1.2):

2F1

[
1 + x, 1− x

3
2

∣∣∣ y2] =
sin (2x arcsin y)

2xy
√

1− y2
, (3.1)

2F1

[
1
2 + x, 1

2 − x
1
2

∣∣∣ y2] =
cos (2x arcsin y)√

1− y2
. (3.2)

They are utilized below to establish four pairs of infinite series identities.
First, by letting x = 1

3 in (3.1) and (3.2),

2F1

[
4
3 ,

2
3
3
2

∣∣∣ y2] =
3 sin ( 23 arcsin y)

2y
√
1− y2

,

2F1

[
5
6 ,

1
6
1
2

∣∣∣ y2] =
cos ( 23 arcsin y)√

1− y2
,

and then defining the sequences

S(3)
n =

[
4
3 ,

2
3

1, 3
2

]
n

= (
4

27
)n
(
3n+ 1

n

)
,

T (3)
n =

[
5
6 ,

1
6

1, 1
2

]
n

=
1

108n

(
6n
3n

)(
3n
n

)(
2n
n

) ,

we derive the following two infinite series identities.

Example 3 For |y| ≤ 1 , there hold the identities

2

3

∞∑
n=0

S(3)
n y2n+1 +

∞∑
n=0

T (3)
n y2n =

√
2

1− y2
sin (

2

3
arcsin y +

π

4
),

2

3

∞∑
n=0

S(3)
n y2n+1 −

∞∑
n=0

T (3)
n y2n =

√
2

1− y2
sin (

2

3
arcsin y − π

4
).
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Secondly, by letting x = 2
3 in (3.1) and (3.2),

2F1

[
5
3 ,

1
3
3
2

∣∣∣ y2] =
3 sin ( 43 arcsin y)

4y
√
1− y2

,

2F1

[
7
6 , −

1
6

1
2

∣∣∣ y2] =
cos ( 43 arcsin y)√

1− y2
,

and then defining the sequences

S(4)
n =

[
5
3 ,

1
3

1, 3
2

]
n

= (
4

27
)n

3n+ 2

4n+ 1

(
3n

n

)
,

T (4)
n =

[
7
6 ,−

1
6

1, 1
2

]
n

=
1

108n
6n+ 1

1− 6n

(
6n
3n

)(
3n
n

)(
2n
n

) ,

we get the following two infinite series identities.

Example 4 For |y| ≤ 1 , there hold the identities

4

3

∞∑
n=0

S(4)
n y2n+1 +

∞∑
n=0

T (4)
n y2n =

√
2

1− y2
sin (

4

3
arcsin y +

π

4
),

4

3

∞∑
n=0

S(4)
n y2n+1 −

∞∑
n=0

T (4)
n y2n =

√
2

1− y2
sin (

4

3
arcsin y − π

4
).

Thirdly, by letting x = 1
4 in (3.1) and (3.2),

2F1

[
5
4 ,

3
4
3
2

∣∣∣ y2] =
2 sin ( 12 arcsin y)

y
√

1− y2
,

2F1

[
3
4 ,

1
4
1
2

∣∣∣ y2] =
cos ( 12 arcsin y)√

1− y2
,

and then defining the sequences

S(5)
n =

[
5
4 ,

3
4

1, 3
2

]
n

=
1

16n

(
4n+ 1

2n

)
,

T (5)
n =

[
3
4 ,

1
4

1, 1
2

]
n

=
1

16n

(
4n

2n

)
,

we have the following two infinite series identities.
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Example 5 For |y| ≤ 1 , there hold the identities

1

2

∞∑
n=0

S(5)
n y2n+1 +

∞∑
n=0

T (5)
n y2n =

√
2

1− y2
cos (1

2
arccos y),

1

2

∞∑
n=0

S(5)
n y2n+1 −

∞∑
n=0

T (5)
n y2n = −

√
2

1− y2
sin (

1

2
arccos y).

Finally, by letting x = 3
4 in (3.1) and (3.2),

2F1

[
7
4 ,

1
4
3
2

∣∣∣ y2] =
2 sin ( 32 arcsin y)

3y
√
1− y2

,

2F1

[
5
4 , −

1
4

1
2

∣∣∣ y2] =
cos ( 32 arcsin y)√

1− y2
,

and then defining the sequences

S(6)
n =

[
7
4 ,

1
4

1, 3
2

]
n

= (
1

16
)n

n+ 1

3(4n+ 1)

(
4n+ 3

2n+ 1

)
,

T (6)
n =

[
5
4 ,−

1
4

1, 1
2

]
n

=
1

16n
2n+ 1

1− 4n

(
4n+ 1

2n

)
,

we find the following two infinite series identities.

Example 6 For |y| ≤ 1 , there hold the identities

3

2

∞∑
n=0

S(6)
n y2n+1 +

∞∑
n=0

T (6)
n y2n =

√
2

1− y2
sin (

3

2
arccos y),

3

2

∞∑
n=0

S(6)
n y2n+1 −

∞∑
n=0

T (6)
n y2n =

√
2

1− y2
cos (3

2
arccos y).
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of China (Youth Grant No. 11601543).
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