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Abstract: The Cayley transform maps the unit disk onto the upper half-plane, conformally and isometrically. In this
paper, we generalize the Cayley transform in three-dimensional homogeneous geometries which are fiber bundles over
the hyperbolic plane. Obtained generalizations are isometries between existing models in corresponding homogeneous

geometries. Particularly, constructed isometry between two models of ˜SL(2,R) geometry is nontrivial and enables
comparison and transfer of known and even future results between these two models.
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1. Introduction
Homogeneous geometries came into focus in 1982 when Thurston formulated the geometrization conjecture for
three-manifolds. The Thurston conjecture states that every compact orientable three-manifold has a canonical
decomposition into pieces, each of which admits a canonical geometric structure from among the 8 maximal
simply connected homogeneous Riemannian three-dimensional geometries.

Among these eight 3D homogeneous geometries, H2 × R and ˜SL(2,R) are specific because they are

structured as line bundles over the hyperbolic plane. Particularly, the ˜SL(2,R) is the least researched and
generally, because of its unique features, presents a rich area for future investigation.

The Cayley transform is an isometry (differentiable bijection with a differentiable inverse which preserves
distance) between the disk model and the upper half-plane model of the hyperbolic plane. In this paper, we

generalize the Cayley transform in H2 × R and ˜SL(2,R) geometries. In the literature, two models of each
of these two homogeneous geometries can be found. For more details about these models, see [11] and [15].
Moreover, the obtained generalizations of the Cayley transform are isometries between existing models in these
two geometries.

The isometry between models of H2×R geometry is relatively trivial. However, we mention this isometry
to expose the nature of the relation between these two existing models.

The main result is the construction of an isometry between the hyperboloid model and the right half-space

model of ˜SL(2,R) geometry. This result enables comparison and transfer of known results between these two
models.
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This paper is organized as follows. In Section 2, we recall important facts related to the Cayley transform
and 2D and 3D homogeneous geometries. In Section 3, a short description of the open cylinder and right half-
space model of H2×R geometry and isometry between these two models is given. Finally, in Section 4, we first

describe the hyperboloid and the right half-space model of ˜SL(2,R) geometry in detail and then construct an
isometry between these two models.

2. Preliminaries
2.1. The Cayley transform
It is well known that there are several models of the hyperbolic plane: Poincaré half-plane model, Poincaré
disk model, Klein model, hyperboloid model, hemisphere model, etc. Each of these models has its own metric,
geodesics, isometries, and so on. Moreover, all these models are isometrically equivalent, although some of
isometries among them is not easy to determine. For more about this topic, you can see [2] or [10].

In the following sections, we will use two models of the hyperbolic plane H2 : the disk model D and the
upper half-plane model U .

The Poincaré disk model is a unit disk D = {(u, v) : u2 + v2 < 1} with the metric

(ds)2
D
=

(du)2 + (dv)2

(1− u2 − v2)2
. (2.1)

The upper half-plane model is an upper half-plane
U = {(x, y) ∈ R2 : y > 0} with the metric

(ds)2
U
=

(
dx

2y

)2

+

(
dy

2y

)2

. (2.2)

The Cayley transform is the linear fractional transformation

z 7→ (−i)z + i
z − i

that maps the disk model D of the hyperbolic plane isometrically and conformally to the upper half-plane
model U of the hyperbolic plane.

Therefore, the Cayley transform is explicitly given by

(u, v) 7→ (x, y) =

(
2u

u2 + (v − 1)2
,
1− u2 − v2

u2 + (v − 1)2

)
. (2.3)

Converting the rectangular coordinates (u, v) to the polar coordinates (r, ϑ) by

u = tanh r cosϑ v = tanh r sinϑ, (2.4)

the Cayley transform between the disk model (using the polar coordinates) and the upper half-plane model of
the hyperbolic plane is explicitly given by

x =
2 tanh r cosϑ

tanh2 r − 2 tanh r sinϑ+ 1
, (2.5)

y =
1− tanh2 r

tanh2 r − 2 tanh r sinϑ+ 1
.
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By pullback of the metric (2.1), using (2.4), we obtain the metric of the disk model in polar coordinates

(ds)2
D
= (dr)2 + sinh2 r cosh2 r(dϑ)2. (2.6)

This fact is proven later.

Remark 2.1 In the next sections, by the Cayley transform we assume the transformation given by formulas in
(2.5).

2.2. On homogeneous geometries
First, we recall definitions of isometry, homogeneous manifold, and model geometry.

A diffeomorphism Ψ : M → N between two Riemannian manifolds (M, gM ) and (N, gN ) is called an
isometry if Ψ∗gN = gM , i.e. g

M
(u, v)p = g

N
(Ψp(u),Ψp(v)), ∀p ∈ M and ∀u, v ∈ TpM.

The Riemannian manifold (M, g) is called homogeneous if for any x, y ∈ M there is an isometry
Φ : M → M such that y = Φ(x).

A model geometry is a simply connected smooth manifold X together with a transitive action of a Lie
group on X with compact stabilizers.

It is known that there are only three 2D complete, simply connected Riemannian manifolds with constant
sectional curvature, i.e. every compact connected surface is locally isometric to Euclidean plane E2 , the
hyperbolic plane H2 , or sphere S2 . These geometries have constant sectional curvatures 0,−1, 1 , respectively.

In 1982, Thurston formulated a geometrization conjecture for three-manifolds (see [18]) which states that
every compact orientable three-manifold has a canonical decomposition into pieces, each of which admits a
canonical geometric structure from among the 8 maximal simply connected homogeneous Riemannian three-
dimensional geometries:

E3, S3, H3, S2 × R, H2 × R, ˜SL(2,R), Nil, Sol.

The geometrization conjecture implies several other conjectures, such as the Poincaré conjecture and Thurston’s
elliptization conjecture.

In 2003, Perelman, a Russian mathematician, sketched a proof of the full geometrization conjecture
using the Ricci flow with surgery. He showed that, although the Ricci flow in general produces singularities,
it is possible to continue the Ricci flow past the singularity by using surgery to change the topology of the
manifold. Roughly speaking, the Ricci flow contracts positive curvature regions (characteristic for S3 and
S2 × R geometries) and expands negative curvature regions (characteristic for H3 and other homogeneous
geometries).

Usually, the 3D homogeneous geometries are classified into the constant curvature geometries (E3 , H3 ,

S3 ), the product geometries (H2 × R , S2 × R), and the twisted product geometries (Nil , Sol , ˜SL(2,R)).
Two different approaches to the 3D homogeneous geometries can be found in [11] and [15].

3. Generalization of the Cayley transform in H2 × R

The space H2×R is the Cartesian product of the hyperbolic plane and the real line equipped with the product
metric. So, it is a trivial line bundle over the hyperbolic plane.
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There are two models of H2 × R geometry. The first one, which we will call the open cylinder model,
represents a slight modification of the model introduced in [11]. We will call the second one the right-half space
model which is described in [15] in detail.

3.1. Open cylinder model of H2 × R

The open cylinder model of H2 ×R geometry is obtained as a direct product of the Poincaré disk model of the
hyperbolic plane and a real line. The metric is product metric given by

(ds)2
C
= (dr)2 + sinh2 r cosh2 r(dϑ)2 + (dt)2. (3.1)

Remark 3.1 In the model given in [11], the author also used cylindrical coordinates but gave a slightly different
metric:

(ds)2 = (dt)2 + (dr)2 + sinh2 r(dϑ)2.

It is possible to obtain this metric if we substitute tanh r with tanh r
2 in the forthcoming formulas (3.3). This

metric is used in [16] where geodesic ball packing in H2 × R is considered.

3.2. Right half-space model of H2 × R

The right half-space model of H2×R geometry is obtained as a direct product of the Poincaré upper half-plane
and a real line. Hence, the metric is a product metric given by

(ds)2
R
=

(
dx
2y

)2
+

(
dy
2y

)2
+ (dz)2. (3.2)

Dillen and Munteanu used this model in [4] to study surfaces in H2 × R and in [3], they studied the
constant angle surfaces in H2 × R.

3.3. Isometry between two models of H2 × R geometry

The isometry between the two models is given in following proposition and represents a relatively trivial
generalization of the Cayley transform.

Proposition 3.2 An isometry σ : C → R between the open cylinder model C and the right half-space model R
of H2 × R geometry is given by the following formulas:

x =
2 tanh r cosϑ

tanh2 r − 2 tanh r sinϑ+ 1
,

y =
1− tanh2 r

tanh2 r − 2 tanh r sinϑ+ 1
, (3.3)

z = t.

Proof The statement follows directly from the fact that the direct product of two isometries is an isometry.
Since we did not prove an existence of isometry between the disk model and the upper half-plane model of the
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Figure. The hyperboloid and the right half-space models of ˜SL(2,R) geometry.

hyperbolic plane in the previous section, we will here prove an existence of an isometry between two models of
H2 × R geometry.

Differentiation of (3.3) gives

dx =
2 cosϑ

sinh2 2r(coth 2r − sinϑ)2
dr +

1− coth 2r sinϑ

(coth 2r − sinϑ)2
dϑ,

dy =
2(−1 + coth 2r sinϑ)

sinh 2r(coth 2r − sinϑ)2
dr +

cosϑ
sinh 2r(coth 2r − sinϑ)2

dϑ,

dz = dt.

After substituting these relations in (3.2) and long but straightforward computations, we obtain the metric
(3.1). 2

4. Generalization of the Cayley transform in ˜SL(2,R) geometry

Generalization of the Cayley transform is more complicated in ˜SL(2,R) geometry than in H2 × R . In the

literature, there are only two models of ˜SL(2,R) geometry, each of which is useful in certain contexts. The
first one is usually called the hyperboloid model and we will call the second one the right-half space model.

As we mentioned before, the ˜SL(2,R) is the least researched among homogeneous geometries, and thus
we will explain both models here in detail. The hyperboloid model is used in the [5, 7, 12, 13, 17] and the right
half-space model in [1, 8, 9, 14].

4.1. Hyperboloid model of ˜SL(2,R) geometry

The hyperboloid model of ˜SL(2,R) geometry was introduced by Emil Molnár in [11] and described in detail in
[5], where geodesics, the fibre translation group, and translation curves (with corresponding spheres) are given.
Moreover, E. Molnár proposed a projective spherical model of homogeneous geometries as a unified geometrical
model believing that this model could be a starting point for a possible attack on the Thurston conjecture.
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In the proposed model of ˜SL(2,R) geometry, the idea is to start with the collineation group which acts
on projective 3-space P3(R) and projective sphere PS3(R) and preserves a hyperboloid polarity, i.e. a scalar
product of signature (−−++). Using the one-sheeted solid hyperboloid

H : −x0x0 − x1x1 + x2x2 + x3x3 < 0,

with an appropriate choice of a subgroup of the collineation group of H as an isometry group, the universal

covering space H̃ of the hyperboloid H will give the so-called hyperboloid model of ˜SL(2,R) geometry.

As we mentioned, in Molnár’s approach, one starts with the one parameter group of matrices
cosφ sinφ 0 0
− sinφ cosφ 0 0

0 0 cosφ − sinφ
0 0 sinφ cosφ

 (4.1)

which acts on P3(R) and leaves the polarity of signature (− − ++) and the hyperboloid solid H invariant.
By the right action of this group on the point (x0;x1;x2;x3) , we obtain its orbit

(x0 cosφ− x1 sinφ;x0 sinφ+ x1 cosφ;x2 cosφ+ x3 sinφ;−x2 sinφ+ x3 cosφ) (4.2)

which is the unique line (fibre) through the given point. This action is called the fibre translation and φ is
called the fibre coordinate.

The mentioned subgroup of collineations acts transitively on the points of H̃ and maps the origin
E0(1; 0; 0; 0) onto X(x0;x1;x2;x3) ∈ P3(R). It is represented by the matrix

T : (tji ) :=


x0 x1 x2 x3

−x1 x0 x3 −x2

x2 x3 x0 x1

x3 −x2 −x1 x0

 . (4.3)

Therefore, by using pullback transform on the base differential forms, one obtains the following global quadratic
differential form

(ds)2 =
{[

−(dx0)x1 + (dx1)x0 − (dx2)x3 + (dx3)x2
]2

+
[
−(dx0)x2 − (dx1)x3 + (dx2)x0 + (dx3)x1

]2 (4.4)

+
[
−(dx0)x3 + (dx1)x2 − (dx2)x1 + (dx3)x0

]2}
·
[
−(x0)2 − (x1)2 + (x2)2 + (x3)2

]−2
.

A bijection between H and SL(2,R) which maps

(x0;x1;x2;x3) 7→
(
d b
c a

)
is provided by the following coordinate transformations:

a = x0 + x3, b = x1 + x2, c = −x1 + x2, d = x0 − x3. (4.5)
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This is an isomorphism between fiber translations (4.3) and
(
d b
c a

)
with the usual multiplication opera-

tions.
Similarly, as the fibre (4.2) is obtained by acting of the group (4.1) on the point (x0;x1;x2;x3) in H̃ , a

fibre in ˜SL(2,R) is obtained by acting of the group
(

cosφ sinφ
− sinφ cosφ

)
on the ”point”

(
d b
c a

)
∈ SL(2,R) .

Next, the transformation formulas which introduce hyperboloid coordinates (r, ϑ, φ)

x0 = cosh r cosφ, x2 = sinh r cos(ϑ− φ), (4.6)

x1 = cosh r sinφ, x3 = sinh r sin(ϑ− φ),

are determined by the isometry group of the space H̃ . Notice that

−x0x0 − x1x1 + x2x2 + x3x3 = − cosh2 r + sinh2 r = −1.

In hyperboloid coordinates, (r, ϑ) are polar coordinates of the intersection point of a fiber and the
hyperbolic (disk model) base plane and φ is a fiber coordinate.

Substituting the formulas (4.6) in (4.4), the following Riemannian metric in the hyperboloid model of
˜SL(2,R) geometry is obtained

(ds)2
H
= (dr)2 + cosh2 r sinh2 r(dϑ)2 +

(
(dφ) + sinh2 r(dϑ)

)2
. (4.7)

One can easily see that the metric (4.7) is invariant under rotations about the fiber through the origin
and translations along fibers.

The Euclidean coordinates which correspond to the hyperboloid coordinates (r, ϑ, φ) are given by

x = tanφ,

y = tanh r · cos(ϑ− φ)

cosφ , (4.8)

z = tanh r · sin(ϑ− φ)

cosφ ,

where r ∈ [0,∞) , ϑ ∈ [−π, π) and φ ∈ (−π
2 ,

π
2 ) with extension to R for the universal covering. These formulas

are important for visualization of surfaces in E3.

4.2. Right half-space model of ˜SL(2,R) geometry

In this section, we recall the right half-space model R of ˜SL(2,R) geometry.

The right half-space model of ˜SL(2,R) geometry is explained in detail in [15]. Kokubu in [9] and Inoguchi
in [8] used this model to examine some minimal surfaces. This model was also used in [1] where Belkhalfa et al.
proved that the only parallel surfaces in SL(2,R) are rotational CMC surfaces. Recently, this model is used
in [14] where constant angle surfaces are determined.
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Let G denote the real special linear group defined by

G = SL(2,R) =
{(

a b
c d

)
: ad− bc = 1

}
.

G has the following three subgroups:

K =

{(
cos θ sin θ
− sin θ cos θ

)}
, A =

{( 1√
y 0

0
√
y

)
: y > 0

}
, N =

{(
1 x
0 1

)}
.

By Iwasawa decomposition, SL(2,R) = KAN , i.e. every element of SL(2,R) can be decomposed
uniquely as (

a b
c d

)
=

(
cos θ sin θ
− sin θ cos θ

)( 1√
y 0

0
√
y

)(
1 x
0 1

)
, (4.9)

for some x ∈ R , y ∈ R+ , and θ ∈ S1, and (x, y, θ) may be considered as a global coordinate system of the
group SL(2,R).

Let us denote by g the Lie algebra of G

g = sl(2,R) = {X ∈ gl(2,R) : trX = 0}.

If we define an inner product on g by ⟨X,Y ⟩ = 1
2 tr(XTY ) , this product will induce a left-invariant metric on

SL(2,R) .

The right half-space metric of ˜SL(2,R) geometry is given by

(ds)2
R
=

(
dx
2y

)2
+

(
dy
2y

)2
+

(
dx
2y + dθ

)2
. (4.10)

The coordinates x ∈ R and y ∈ R+ are the coordinates of the hyperbolic base plane. θ ∈ S1 is the fibre
coordinate.

The homogeneous space SL(2,R)/SO(2) is diffeomorphic to the upper half-plane H2 and the upper
half-plane metric (2.2) induces the Poincaré metric on the hyperbolic plane H2. Also, one can see that the right
half-space metric is invariant under translations along fibers.

The Iwasawa decomposition (4.9) induces bijection between SL(2,R) and R given by(
a b
c d

)
=

(
1√
y cos θ x√

y cos θ +√
y sin θ

− 1√
y sin θ − x√

y sin θ +
√
y cos θ

)
, (4.11)

with the inverse

x =
ab+ cd

a2 + c2
, y =

1

a2 + c2
, θ = arctan

(
− c

a

)
. (4.12)

Remark 4.1 The function which maps g ∈ SL(2,R) to a triple of matrices (k, a, n) from (4.9) is continuous
with a continuous inverse, i.e. topologically K ∼= S1 , A ∼= R+ ∼= R and N ∼= R , and therefore SL(2,R) ∼=

S1 ×R2. Due to the fact that the plane R2 is homeomorphic to the open disk D , we conclude that ˜SL(2,R) is

topologically homeomorphic to the interior of a torus solid. Hence, we can imagine ˜SL(2,R) as a solid torus,
fibering by circles over the disk D (see [6]).
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4.3. Isometry between two models of ˜SL(2,R) geometry

Theorem 4.2 The hyperboloid model of ˜SL(2,R) geometry with the metric (4.7) is isometric to the right

half-space model of ˜SL(2,R) geometry with the metric (4.10).

Proof First, we explain the construction of bijection between the hyperboloid model H and the right half-space
model R .

By the equations in (4.5) and (4.6), the bijection between SL(2,R) and H is determined and by the
equation in (4.11), the bijection between SL(2,R) and R is determined. Composing these bijections, we obtain
the bijection between H and R .

Beware that different notations of matrix elements are used in the hyperboloid model and in the Iwasawa
decomposition. After proper renaming of the equations (4.12), we obtain the right half-space coordinates
(x, y, θ) expressed by matrix components d, b, c, a in the following way:

x =
ac+ bd

c2 + d2
, y =

1

c2 + d2
, θ = arctan

(
− c

d

)
. (4.13)

Substituting first (4.6) in (4.5) and then in (4.13), we obtain relations between the hyperboloid and the right
half-space coordinates.

The function π : H → U which (r, ϑ, φ) 7→ (x, y, θ) is given by

x =
cosϑ

coth 2r − sinϑ
,

y =
1

sinh 2r(coth 2r − sinϑ)
, (4.14)

θ = arctan
(

sinφ− tanh r · cos(φ− ϑ)

cosφ+ tanh r · sin(φ− ϑ)

)
.

First notice that the first two formulas in (4.14) coincide with the Cayley transform (2.5) and therefore
(4.14) presents generalization of (2.5).

The inverse π−1(x, y, θ) = (r, ϑ, φ) is given by

r = Artanh

√
x2 + (y − 1)2

x2 + (y + 1)2
,

ϑ = arctan
(
x2 + y2 − 1

2x

)
, (4.15)

φ = arctan
(
x+ (y + 1) tan θ

(y + 1)− x tan θ

)
.

The obtained functions are smooth and therefore π is a diffeomorphism.
Next, we prove that π∗ is an isometry between the right half-space and the hyperboloid model, i.e.

π∗gR = gH .
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Differentiation of (4.14) gives

dx =
2 cosϑ

sinh2 2r(coth 2r − sinϑ)2
dr +

1− coth 2r sinϑ

(coth 2r − sinϑ)2
dϑ,

dy =
2(−1 + coth 2r sinϑ)

sinh 2r(coth 2r − sinϑ)2
dr +

cosϑ
sinh 2r(coth 2r − sinϑ)2

dϑ,

dθ =
− cosϑ

cosh2 2r(1− 2 sinϑ tanh r + tanh2 r)
dr +

tanh r(sinϑ− tanh r)

1− 2 sinϑ tanh r + tanh2 r
dϑ+ dφ.

Finally, substituting these expressions in (4.10), after a long but straightforward calculations, we obtain the
formula (4.7). 2
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