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Abstract: We find all the eta quotients in the spaces M1

(
Γ0(12),

(d
·

))
(d = −3,−4) of modular forms and determine

their Fourier coefficients, where
(d
·

)
is the Legendre–Jacobi–Kronecker symbol.
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1. Introduction
Let N , N0 , Z , and C denote the sets of positive integers, nonnegative integers, integers, and complex numbers,
respectively. Let N ∈ N, k ∈ Z , and χ be a Dirichlet character of modulus dividing N . Let Γ0(N) be the
modular subgroup defined by

Γ0(N) =

{(
a b
c d

) ∣∣ a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)

}
.

Let Mk(Γ0(N), χ) denote the space of modular forms of weight k with multiplier system χ for Γ0(N) , and
Ek(Γ0(N), χ) and Sk(Γ0(N), χ) denote the subspaces of Eisenstein forms and cusp forms of Mk(Γ0(N), χ) ,
respectively. It is known that

Mk(Γ0(N), χ) = Ek(Γ0(N), χ)⊕ Sk(Γ0(N), χ); (1.1)

see, for example, [9, p. 83]. The Dedekind eta function η(z) is the holomorphic function defined on the upper
half plane H = {z ∈ C | Im(z) > 0} by

η(z) = eπiz/12
∞∏
n=1

(1− e2πinz).

A product of the form

f(z) =
∏

1≤δ|N

ηrδ(δz), (1.2)

where rδ ∈ Z , not all zero, is called an eta quotient.
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Let χ and ψ be Dirichlet characters. For n ∈ N we define σ(χ,ψ)(n) by

σ(χ,ψ)(n) =
∑

1≤m|n

χ(m)ψ(n/m). (1.3)

If n ̸∈ N we set σ(χ,ψ)(n) = 0 . Let χ0 denote the trivial character, that is χ0(m) = 1 for all m ∈ Z . We note

that σ(χ0,χ0)(n) coincides with the number of divisors function σ0(n) =
∑

1≤m|n

1 . We define three characters by

χ1(m) =
(−3

m

)
, χ2(m) =

(−4

m

)
, χ3(m) =

(12
m

)
, (m ∈ Z), (1.4)

which are all the nontrivial characters modulo 12 , where
(d
·

)
is the Legendre–Jacobi–Kronecker symbol.

The cusps of Γ0(N) can be represented by rational numbers a/c , where a ∈ Z , c ∈ N , c|N , and
gcd(a, c) = 1 ; see [8, p. 320] and [3, p. 103]. We can choose the representatives of cusps of Γ0(12) as

1, 1/2, 1/3, 1/4, 1/6, 1/12. (1.5)

Let f(z) be an eta quotient given by (1.2). A formula for the order va/c(f) of f(z) at the cusp a/c (see [8, p.
320] and [7, Proposition 3.2.8]) is given by

va/c(f) =
N

24 gcd(c2, N)

∑
1≤δ|N

gcd(δ, c)2 · rδ
δ

. (1.6)

It follows from the dimension formulae [9, Section 6.3] that the only nontrivial modular spaces of level
12 with trivial cuspidal subspaces are M2(Γ0(12), χ0) , M1(Γ0(12), χ1) , M1(Γ0(12), χ2) , and M2(Γ0(12), χ3) .
We also see that

dim(M1(Γ0(12), χ1)) = dim(E1(Γ0(12), χ1)) = 3, (1.7)

dim(M1(Γ0(12), χ2)) = dim(E1(Γ0(12), χ2)) = 2. (1.8)

All the eta quotients in M2(Γ0(12), χ0) and M2(Γ0(12), χ3) and their Fourier coefficients are given in
[10] and [1], respectively. In this paper we find all the eta quotients in M1(Γ0(12), χ1) and M1(Γ0(12), χ2) , and
determine their Fourier coefficients.

2. Preliminary results

Throughout the remainder of this paper we use the notation q = q(z) = e2πiz with z ∈ H . We define the
Eisenstein series Eχ1,χ0

(q) and Eχ2,χ0
(q) by

Eχ1, χ0(q) =
1

6
+

∞∑
n=1

σ(χ1,χ0)(n)q
n, Eχ2,χ0

(q) =
1

4
+

∞∑
n=1

σ(χ2,χ0)(n)q
n.

In view of (1.2) for N = 12 we define an eta quotient f(z) by

f(z) = ηr1(z)ηr2(2z)ηr3(3z)ηr4(4z)ηr6(6z)ηr12(12z). (2.1)
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Theorem 2.1 Let f(z) ∈ M1(Γ0(12), χ1) be an eta quotient given by (2.1) , and let f(z) =

∞∑
n=0

anq
n be its

Fourier series expansion. Then

f(z) = b1Eχ1,χ0(q) + b2Eχ1,χ0(q
2) + b3Eχ1,χ0(q

4)

for unique scalars b1, b2, b3 ∈ C , and the Fourier coefficients an are given by

a0 =
1

6
(b1 + b2 + b3), an = b1σχ1,χ0

(n) + b2σχ1,χ0
(n/2) + b3σχ1,χ0

(n/4) for n ≥ 1.

Proof It follows from (1.7) and [9, Theorem 5.9] that the set of Eisenstein series {Eχ1,χ0(q), Eχ1,χ0(q
2),

Eχ1,χ0
(q4)} is a basis for M1(Γ0(12), χ1) . Thus,

f(z) = b1Eχ1,χ0
(q) + b2Eχ1,χ0

(q2) + b3Eχ1,χ0
(q4)

for some unique scalars b1, b2, b3 ∈ C , from which the assertion follows by equating the coefficients of qn on
both sides. 2

Similarly to Theorem 2.1, we prove the following theorem.

Theorem 2.2 Let f(z) ∈ M1(Γ0(12), χ2) be an eta quotient given by (2.1), and let f(z) =

∞∑
n=0

anq
n be its

Fourier series expansion. Then

f(z) = b1Eχ2,χ0
(q) + b2Eχ2,χ0

(q3)

for unique scalars b1, b2 ∈ C , and the Fourier coefficients an are given by

a0 =
1

4
(b1 + b2), an = b1σχ2,χ0(n) + b2σχ2,χ0(n/3) for n ≥ 1.

We use the following lemma to determine if certain eta quotients are modular forms. See [5, Theorem
5.7, p. 99], [6, Corollary 2.3, p. 37], [4, p. 174], and [7].

Lemma 2.1 Let f(z) be an eta quotient given by (1.2), and let k =
1

2

∑
1≤δ|N

rδ and s =
∏

1≤δ|N

δrδ . Suppose

that the following conditions are satisfied:

(i)
∑

1≤δ|N

δ · rδ ≡ 0 (mod 24) ,

(ii)
∑

1≤δ|N

N

δ
· rδ ≡ 0 (mod 24) ,

(iii)
∑

1≤δ|N

gcd(d, δ)2 · rδ
δ

≥ 0 for each positive divisor d of N ,
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(iv) k is an integer.
Then f(z) ∈Mk(Γ0(N), χ) , where the character χ is given by

χ(m) =
( (−1)ks

m

)
. (2.2)

We take N = 12 and k = 1 in Lemma 2.1 to obtain the following theorem.

Theorem 2.3 Let f(z) be an eta quotient given by (2.1), which satisfies the conditions (i)–(iv) in Lemma 2.1
with

r1 + r2 + r3 + r4 + r6 + r12 = 2. (2.3)

Then f(z) ∈M1(Γ0(12), χ) , where the character χ is determined by

f(z) ∈
{
M1(Γ0(12), χ1) if r3 + r6 + r12 ≡ 1 (mod 2),
M1(Γ0(12), χ2) if r3 + r6 + r12 ≡ 0 (mod 2).

(2.4)

Proof For N = 12 we have

s =
∏

1≤δ|12

δrδ = 1r12r23r34r46r612r12 = 2r2+2r4+r6+2r123r3+r6+r12 . (2.5)

The conditions (i) and (ii) in Lemma 2.1 become

r1 + 2r2 + 3r3 + 4r4 + 6r6 + 12r12 ≡ 0 (mod 24), (2.6)

12r1 + 6r2 + 4r3 + 3r4 + 2r6 + r12 ≡ 0 (mod 24), (2.7)

respectively. From (2.3), (2.6), and (2.7) we have

r2 + r6 ≡ 0 (mod 2). (2.8)

Then (2.4) follows from (2.2), (2.5), and (2.8). 2

3. Main results
Theorem 3.1 Let f(z) be an eta quotient given by (2.1). Then we have f(z) ∈M1(Γ0(12), χ1) if and only if

r1 + 2r2 + 3r3 + 4r4 + 6r6 + 12r12 ≡ 0 (mod 24),

12r1 + 6r2 + 4r3 + 3r4 + 2r6 + r12 ≡ 0 (mod 24),

0 ≤ v1/c(f) < 3 for c = 1, 2, 3, 4, 6, 12,

r1 + r2 + r3 + r4 + r6 + r12 = 2,

r3 + r6 + r12 ≡ 1 (mod 2).

Proof Let f(z) ∈M1(Γ0(12), χ1) be an eta quotient given by (2.1). By (1.7) we have dim(M1(Γ0(12), χ1)) = 3 .
We define the eta quotients f1(z), f2(z), f3(z) by

f1(z) =
η15(2z)η2(3z)η2(12z)

η6(z)η6(4z)η5(6z)
, f2(z) =

η3(z)η3(12z)

η(2z)η(3z)η(4z)η(6z)
, f3(z) =

η(2z)η6(12z)

η2(4z)η3(6z)
.
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By Lemma 2.1, we have f1(z), f2(z), f3(z) ∈M1(Γ0(12), χ1) . One can easily see that the set {f1(z), f2(z), f3(z)}
is linearly independent, and so it is a basis for M1(Γ0(12), χ1) . Appealing to (1.5) and (1.6), we have

v1(f1) = v1/12(f1) = 0, v1(f2) = v1/12(f2) = 1, v1(f3) = 0, v1/12(f3) = 2.

Thus, for any b1, b2, b3 ∈ C we have

v1(b1f1 + b2f2 + b3f3) ∈ N0, v1/12(b1f1 + b2f2 + b3f3) ∈ N0.

As f(z) can be expressed as a linear combination of f1(z), f2(z) , and f3(z) , we have

v1(f) ∈ N0, v1/12(f) ∈ N0,

from which the second and first assertions follow, respectively. The third assertion follows from [6, Corollary
2.3] and the fifth assertion follows from (2.4). The converse follows from Theorem 2.3. 2

Theorem 3.2 Let f(z) be an eta quotient given by (2.1). Then we have f(z) ∈M1(Γ0(12), χ2) if and only if

r1 + 2r2 + 3r3 + 4r4 + 6r6 + 12r12 ≡ 0 (mod 24),

12r1 + 6r2 + 4r3 + 3r4 + 2r6 + r12 ≡ 0 (mod 24),

0 ≤ v1/c(f) < 2 for c = 1, 2, 3, 4, 6, 12,

r1 + r2 + r3 + r4 + r6 + r12 = 2,

r3 + r6 + r12 ≡ 0 (mod 2).

Proof Let f(z) ∈M1(Γ0(12), χ2) be an eta quotient given by (2.1). By (1.8) we have dim(M1(Γ0(12), χ2)) = 2 .
We define the eta quotients g1(z) and g2(z) by

g1(z) :=
η10(2z)

η4(z)η4(4z)
, g2 :=

η3(2z)η(6z)η2(12z)

η(z)η(3z)η2(4z)
.

By Lemma 2.1, we have g1(z), g2(z) ∈M1(Γ0(12), χ2) . One can easily see that the set {g1(z), g2(z)} is a basis
for M1(Γ0(12), χ2) . By (1.5) and (1.6) we see that v1(b1g1 + b2g2), v1/12(b1g1 + b2g2) ∈ N0 for any b1, b2 ∈ C .
As f(z) can be expressed as a linear combination of g1(z) and g2(z) , we have v1(f), v1/12(f) ∈ N0 , from which
the second and first assertions follow, respectively. The third assertion follows from [6, Corollary 2.3] and the
fifth assertion follows from (2.4). The converse follows from Theorem 2.3. 2

There are 21 eta quotients in M1(Γ0(12), χ1) and 6 eta quotients in M1(Γ0(12), χ2) . We found all the
eta quotients with MAPLE using Theorems 3.1 and 3.2. We then determined their Fourier coefficients using
Theorems 2.1 and 2.2. All these eta quotients and their Fourier coefficients are listed in Tables 1 and 2 below.

4. Applications and remarks

Theorem 4.1 Let f(z) ∈M1(Γ0(12), χ1) with the Fourier series representation

f(z) =

∞∑
n=0

anq
n.

Then for all m ≥ 0 we have a6m+5 = 0 .

5
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Table 1. ηr1(z)ηr2(2z)ηr3(3z)ηr4(4z)ηr6(6z)ηr12(12z) = 1
6
(b1 + b2 + b3) +

∑∞
n=1

(
b1σ(χ1,χ0)(n) + b2σ(χ1,χ0)(n/2) +

b3σ(χ1,χ0)(n/4)
)
qn .

No. r1 r2 r3 r4 r6 r12 b1 b2 b3
1 −6 15 2 −6 −5 2 12 −12 6
2 −4 8 4 −3 −4 1 6 −4 4
3 −3 6 1 0 −2 0 3 0 3
4 −3 8 1 −4 −4 4 3 −4 1
5 −2 1 6 0 −3 0 4 0 2
6 −2 5 −2 −2 5 −2 0 4 2
7 −1 −1 3 3 −1 −1 3 2 1
8 −1 1 3 −1 −3 3 1 −2 1
9 0 −3 0 6 1 −2 3 3 0
10 0 −2 0 1 6 −3 2 4 0
11 0 −1 0 2 −1 2 0 −1 1
12 0 1 0 −2 −3 6 1 −1 0
13 0 6 0 −3 −2 1 −6 12 0
14 1 −4 −3 4 8 −4 3 4 −1
15 1 −2 −3 0 6 0 −1 0 1
16 2 −5 −6 2 15 −6 4 4 −2
17 2 −1 2 0 −1 0 0 8 −2
18 3 −3 −1 3 1 −1 3 6 −3
19 3 −1 −1 −1 −1 3 −3 2 1
20 4 −4 −4 1 8 −3 6 4 −4
21 6 −3 −2 0 1 0 12 0 −6

Table 2. ηr1(z)ηr2(2z)ηr3(3z)ηr4(4z)ηr6(6z)ηr12(12z) = 1
4
(b1 + b2) +

∑∞
n=1

(
b1σ(χ2,χ0)(n) + b2σ(χ2,χ0)(n/3)

)
qn .

No. r1 r2 r3 r4 r6 r12 b1 b2
1 −4 10 0 −4 0 0 0 4
2 −2 3 2 −1 1 −1 2 2
3 −1 1 −1 2 3 −2 3 1
4 −1 3 −1 −2 1 2 −1 1
5 0 0 −4 0 10 −4 4 0
6 2 1 −2 −1 3 −1 6 −2

Proof Suppose n ≡ 2 (mod 3) . Then n is not a perfect square, and

χ1(n) =
(−3

n

)
=

(n
3

)
= −1.

Also, for all positive divisors d of n , we have

χ1(n/d) =
( −3

n/d

)
=

(−3

nd

)
=

(−3

n

)(−3

d

)
= −

(−3

d

)
= −χ1(d).

By pairing χ1(d) and χ1(n/d) for all d | n we obtain∑
d|n

χ1(d) = 0. (4.1)

6
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The assertion now follows from (4.1), (1.3), and Theorem 2.1. 2

Theorem 4.2 Let f(z) ∈M1(Γ0(12), χ2) with the Fourier series representation

f(z) =

∞∑
n=0

anq
n.

Then for all m ≥ 0 we have a12m+7 = a12m+11 = 0 .

Proof Suppose n ≡ 3 (mod 4) . Arguing as in the proof of Theorem 4.1 we obtain∑
d|n

χ2(d) = 0. (4.2)

The assertion now follows from (4.2), (1.3), and Theorem 2.2. 2

The following corollary follows immediately from Theorems 4.1 and 4.2.

Corollary 4.1 If an eta quotient f(z) given by (2.1) is a modular form of weight 1 with the Fourier series

representation f(z) =

∞∑
n=0

anq
n , then for all m ≥ 0 we have

a12m+11 = 0,

a12m+7 = 0 if r3 + r6 + r12 ≡ 0 (mod 2),

a12m+5 = 0 if r3 + r6 + r12 ≡ 1 (mod 2).

Remark 4.1 The method used in this paper can also be applied to determine the Fourier series representations
of eta quotients in other modular form spaces.

Remark 4.2 Berkovich and Patane [2] recently determined the Fourier coefficients of certain eta quotients of
weight 1 and levels 47, 71, 135, 648, 1024 , and 1872 . They used the theory of binary quadratic forms.
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