

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Degenerate maximal hyponormal differential operators for the first order

Meltem SERTBAŞ^{1,*}, Fatih YILMAZ²

¹Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey ²Institute of Natural Sciences, Karadeniz Technical University, Trabzon, Turkey

Abstract: In this study, all maximal hyponormal extensions are given for the degenerate first order in the Hilbert space of vector-functions on a finite interval. The extensions are defined in terms of the boundary values. The structure of the spectrum of the maximal hyponormal extensions is also investigated.

Key words: Degenerate differential operator, formally hyponormal and hyponormal operator, minimal and maximal operators, extension, spectrum of an operator

1. Introduction

Differential operators theory plays a very important role in mechanics and theoretical physics. Moreover, its spectral analysis is one of the most essential fields of modern mathematical physics. Likewise, nonself-adjoint operator theory has attracted the attention of mathematicians, physicists, and engineers.

A linear closed operator $T: D(T) \subset H \to H$ in a Hilbert space H is called hyponormal if $D(T) \subset D(T^*)$ and $||T^*x|| \leq ||Tx||$ for each $x \in D(T)$. This operator class has been studied extensively [14, 15, 17, 18, 21]. A hyponormal operator is called a maximal hyponormal operator iff it has a not nontrivial hyponormal extension.

The general boundary conditions are given in [7–9, 11] when these extensions of the first order are normal operators in L^2 and also with smooth coefficient in [10]. This problem was investigated in the nondegenerate case by Ismailov and Karatash [12]. Moreover, all maximal hyponormal extensions were described with an unbounded operator coefficient in [13]. Instead of a constant operator, we work with a smooth operator function coefficient.

Moreover, the theory of the degenerate Cauchy problem in Banach space has been studied by many authors [1, 5, 19, 20, 22]. This is why the problem has many applications in mathematical physics and in the applied sciences, for example, in the study of the longitudinal oscillations of DNA molecules [3].

Throughout this paper we suppose that H is a Hilbert space with $2 \leq \dim H < +\infty$, B(H) is the linear bounded operators space in H, and $L^2 := L^2(H, (a, b))$ is the H Hilbert valued function space defined on a finite interval [a, b] [4].

2. Maximal hyponormal extensions

Let H be a Hilbert space with $2 \leq \dim H < +\infty$. In the space L^2 , consider a linear degenerate differential operator expression for the first order in the form

^{*}Correspondence: m.erolsertbas@gmail.com

²⁰⁰⁰ AMS Mathematics Subject Classification: 47A20, 47A10

$$l(u) = Au'(t) + B(t)u(t),$$
(2.1)

where $A: H \to H$ is a self-adjoint positive operator with $1 \leq \dim KerA < \dim H$ and $B(t): [a, b] \to B(H)$ is a strongly continuous self-adjoint operator function.

It is clear that the formally adjoint expression in the space L^2 is in the form of

$$l^{+}(v) = -(Av(t))' + B(t)v(t).$$
(2.2)

Now let us define the operator L'_0 in L^2 on the dense manifold of the vector-functions

$$D'_{0} := \{ u(t) \in L^{2} : u(t) = \sum_{k=1}^{n} \varphi_{k}(t) f_{k}, \, \varphi_{k}(t) \in C_{0}^{\infty}(a, b), \, f_{k} \in H, \\ k = 1, 2, \dots, n, \, n \in \mathbb{N} \}$$

as $L'_0 u := l(u)$.

 L'_0 has closure since the domain of L'_0^* contains the dense linear manifold D'_0 . The closure of L'_0 in L^2 is called the minimal operator generated by expression (2.1) and it is denoted by L_0 .

Similarly, the minimal operator L_0^+ in L^2 generated by the differential-operator expression (2.2) can be defined. The adjoint operator of L_0^+ (L_0) in L^2 is called the maximal operator generated by (2.1) ((2.2)) and is denoted by L (L^+) [2, 4]. Notice that $L_0 \subset L$, $L_0^+ \subset L^+$, $D(L_0) = \{u \in L^2 : (Au)' \in L^2 \text{ and} u(a), u(b) \in KerA\}$ and $D(L) = \{u \in L^2 : (Au)' \in L^2\}.$

Also, we abbreviate $H_0 := KerA$, $H_1 := RangeA$ and $A_1 := A|_{H_1} : H_1 \to H_1$.

Theorem 2.1 Let $||B'(t)|| \in L^2(a,b)$. The minimal operator L_0 is formally hyponormal on L^2 if and only if the following conditions are satisfied:

- 1) $AB(t) = B(t) A for every t \in [a, b],$
- 2) $AB'(t) \le 0$ a.e. in [a, b].

Proof Suppose that L_0 is a formally hyponormal operator on L^2 ; then, for each $u(t) \in D(L_0) \subset D(L_0^*)$, the following equality holds:

$$\|L_0 u\|_{L^2}^2 - \|L^+ u\|_{L^2}^2 = 2\left[\left((Au(t))', B(t)u(t)\right) + \left(B(t)u(t), (Au(t))'\right)\right] \ge 0.$$
(2.3)

Also, if it is used before the inequation for $e^{i\alpha t}u(t) \in D(L_0)$ and all $\alpha \in \mathbb{R}$, then

$$((Au(t))', B(t)u(t)) + (B(t)u(t), (Au(t))') \ge i\alpha ((B(t)A - AB(t))u(t), u(t))$$

We claim that ((B(t)A - AB(t))u(t), u(t)) = 0 for all $u(t) \in D(L_0)$. If it is not true, there exists an element $u(t) \in D(L_0)$ where ((B(t)A - AB(t))u(t), u(t)) is a pure complex number. Since α is an arbitrary real number, then $||L_0u||_{L^2}^2 - ||L^+u||_{L^2}^2$ is infinite. This is a contradiction, so our assertion is correct. Moreover, since $D(L_0)$ is dense in L^2 and B(t) is continuous operator function,

$$AB(t) = B(t)A$$
 for $t \in [a, b]$.

Moreover, by substituting this equation in (2.3) for all $u(t) \in D(L_0)$,

$$||L_0u||_{L^2}^2 - ||L^+u||_{L^2}^2 = -2\left((AB'(t)u(t), u(t)) \ge 0\right)$$

Therefore,

$$AB'(t) \leq 0$$
 a.e. in $[a, b]$

The contrary of the theorem can be seen from inequation (2.3).

Theorem 2.2 [23] Let T be a densely defined symmetric operator on H. Suppose that $H_+ \subset Ker(T^* - i)$ and $H_- \subset Ker(T^* + i)$ are closed linear subspaces of H such that dim $H_+ = \dim H_-$ and U is an isometric linear mapping of H_+ onto H_- . Define

$$D(T_U) = D(\bar{T}) + (E - U)H_+ and T_U(x + (E - U)y) = \bar{T}x + iy + iUy$$

for $x \in D(\overline{T})$ and $y \in H_+$, where the symbol \dotplus denotes the direct sum of vector spaces.

Then T_U is a closed symmetric operator such that $T \subset T_U$. Any closed symmetric extension of T on H is of this form.

Theorem 2.3 Let L_0 be a formally hyponormal operator. Then every maximal hyponormal extension L_h of the minimal operator L_0 has the boundary condition

$$A^{1/2}u(b) = WA^{1/2}u(a), (2.4)$$

where W is a unitary operator on H_1 and $A^{1/2}(W^*B(b)W - B(a))A^{1/2}$ is a positive operator. The unitary operator W is determined uniquely by the extension L_h , i.e. $L_h = L_W$.

On the contrary, the restriction of the maximal operator L that satisfies (2.4) with corresponding property is a maximal hyponormal extension of the minimal operator L_0 .

Proof Suppose that L_h is a maximal hyponormal extension of L_0 . B(t) is uniformly bounded and L_h is a closed operator; consequently, the operator

$$Im(L_h)u = -i\frac{d}{dt}Au(t), \quad u \in D(L_h)$$

is closed because for each $u \in D(L_h) \subset D(L_h^*)$

$$(L_h u, u)_{L^2} - (u, L_h^* u)_{L^2} = -i \left[(Im(L_h)u, u)_{L^2} - (u, Im(L_h)u)_{L^2} \right]$$

= $(A^{1/2}u(b), A^{1/2}u(b))_H - (A^{1/2}u(a), A^{1/2}u(a))_H$
= $\left\| A^{1/2}u(b) \right\|^2 - \left\| A^{1/2}u(a) \right\|^2 = 0,$

 $Im(L_h)$ is a symmetric extension of the imaginary part of the minimal operator L_0 in L^2 and there exists an isometric operator $WA^{1/2}u(a) = A^{1/2}u(b)$. Moreover,

$$Ker(\mathrm{Im}\,(L)-i) = \left\{ e^{A_1^{-1}(t-a)}f : f \in H_1 \right\} \text{ and } Ker(\mathrm{Im}\,(L)+i) = \left\{ e^{A_1^{-1}(b-t)}f : f \in H_1 \right\},$$

and from Theorem 2.2 this extension domain has the form

$$D(L_h) = D(\text{Im}L_h) = D(L_0) + (E - U) \left(\left\{ e^{A_1^{-1}(t-a)} f : f \in M_+ \right\} \right),$$

where M_+ and M_- are subspaces of H_1 and $U: e^{A_1^{-1}(t-a)}M_+ \to e^{A_1^{-1}(b-a)}M_-$ is an isomorphism. Hence,

$$H_a = \{u(a) \in H : u(t) \in D(L_h)\},\$$

$$H_b = \{u(b) \in H : u(t) \in D(L_h)\}$$

are subspaces of H. We claim that H_a or H_b must be equal to H. If it is not, because $\dim((A^{1/2}(H_a) \cap Ker(W-E)) \oplus (W-E)A^{1/2}(H_a)) = \dim A^{1/2}(H_a)$ and $\dim H < +\infty$, there exists a nonzero element f in H_1 such that for all $x \in A^{1/2}(H_a)$,

$$((W - E)x, f)_{H_1} = 0$$
 and $f \notin A^{1/2}(H_a) \cap Ker(W - E).$

Thus, an extension \tilde{L}_h of L_h can be constructed such that $D(\tilde{L}_h) = span\{D(L_h), A_1^{-1/2}f\}$. It is obvious that $D(\tilde{L}_h) \subset D(\tilde{L}_h^*)$ and \tilde{L}_h is a hyponormal operator. This is a contradiction, so $H = H_a = H_b$ and $W: H_1 \to H_1$ is a unitary operator. Hence, $Im(L_h)$ is a self-adjoint operator on L^2 and the unitary operator W is determined uniquely by the extension of L_h .

Since L_h is a maximal hyponormal extension operator of the minimal operator L_0 , for every $u(t) \in D(L_h)$ the following inequality holds:

$$(L_h u(t), L_h u(t))_{L^2} - (L_h^* u(t), L_h^* u(t))_{L^2} = 2 \left[(B(t)Au(t), u(t))'_{L_2} - (AB'(t)u(t), u(t))_{L_2} \right]$$
$$= 2 \left[\left(A^{1/2} \left(W^*B(b)W - B(a) \right) A^{1/2}u(a), u(a) \right)_{L_2} - (AB'(t)u(t), u(t))_{L_2} \right] \ge 0.$$

Because $D(L_0) \subset D(L_h)$, from the last relation we obtain that

$$\left(A^{1/2}\left(W^*B(b)W - B(a)\right)A^{1/2}u(a), u(a)\right)_{L_2} - \left(AB'(t)(u-v)(t), (u-v)(t)\right)_{L_2} \ge 0,$$

for $u \in D(L_h)$, $v \in D(L_0)$. Since $D(L_0)$ is dense, there exists a sequence $v_n \in D(L_0)$ such that $v_n \to u, n \to +\infty$. From this result and $||B'(t)|| \in L^2(a, b)$,

$$\left(A^{1/2} \left(W^* B(b) W - B(a)\right) A^{1/2} u(a), u(a)\right)_{L_2} \ge 0,$$

i.e. $A^{1/2} \left(W^* B(b) W - B(a) \right) A^{1/2}$ is a positive operator on H.

In this case the adjoint operator L_W^* is generated by the differential-operator expression $l^*(v) = -(Av(t))' + B(t)v(t)$ and for every $v(t) \in D(L_W^*)$ is satisfied with the boundary condition $A^{1/2}v(a) = W^*A^{1/2}v(b)$. It is easy to see that $D(L_W) \subset D(L_W^*)$ and the other condition of hyponormal extensions in L^2 can be easily obtained.

3. The spectrum of maximal hyponormal extensions

In this section, the spectrum of the maximal hyponormal extension L_W of minimal operator L_0 will be investigated.

Let $U(t,s), t, s \in [a,b]$ be the family of evolution operators in H_1 corresponding to the homogeneous differential equation

$$\begin{cases} U'_t(t,s)f + A_1^{-1}B(t)U(t,s)f = 0, & t, s \in [a,b] \\ U(s,s)f = f, & f \in H_1 \end{cases}$$

and A_1 and U(t,s) be commutative for all $t, s \in [a, b]$ (for more detailed analysis, see [6, 16]).

Theorem 3.1 The spectrum of the maximal hyponormal extension L_W has the form

$$\sigma(L_W) = \left\{ \lambda \in \mathbb{C} : 1 \in \sigma(WU(a, b)e^{\lambda A_1^{-1}(a-b)}) \right\} \cup \left\{ \lambda \in \mathbb{C} : \lambda \in \sigma\left(\left. B\left(t \right) \right|_{H_0} \right), t \in [a, b] \right\}.$$

Proof Consider the following problem for the spectrum for the maximal hyponormal extension L_W :

$$L_{W}u = (Au(t))' + B(t)u(t) = \lambda u(t) + f(t), \ u \in D(L_{W}), \ f \in L^{2}, \ \lambda \in \mathbb{C}.$$

It can be written as $u(t) = u_1(t) + u_0(t)$, $u_i(t) \in H_i$, i = 0, 1 for all $t \in [a, b]$, and $(Au(t))' = (Au_1(t))'$. Also, since the restriction operator A_1 on H_1 has a bounded inverse, $u'_1(t)$ exists. Therefore, the general solution of this differential equation in L^2 has the form

$$u_{\lambda,1}(t) = e^{\lambda A_1^{-1}(t-a)} U(t,a) f + \int_a^t e^{\lambda A_1^{-1}(t-s)} U(t,s) A_1^{-1} f_1(s) ds, \qquad f \in H_1,$$
$$(B(t) - \lambda E) u_{\lambda,0}(t) = f_0(t).$$

The following relation can be obtained from the boundary condition $A^{1/2}u(b) = WA^{1/2}u(a)$, where W is a unitary operator in H_1 :

$$\left(WU(a,b)e^{\lambda A_1^{-1}(a-b)} - E\right)A^{1/2}f = \int_a^t e^{\lambda A_1^{-1}(a-s)}U(a,s)A_1^{-1/2}f_1(s)ds.$$

It is easy to see that $\lambda \in \mathbb{C}$ is a point of the spectrum of hyponormal extension L_W if and only if $1 \in \sigma(WU(a,b)e^{\lambda A_1^{-1}(a-b)})$ or $\lambda \in \sigma(B(t)|_{H_0}), t \in [a,b]$.

Corollary 3.1 If A is a projection operator on a nontrivial subspace, then the spectrum of the maximal hyponormal extension L_W has the following form:

$$\sigma(L_W) = \left\{ \lambda \in \mathbb{C} : \lambda = \frac{1}{b-a} \left(\ln |\mu| + i(\arg\mu + 2k\pi) \right), \mu \in \sigma(W^*U(b,a)), k \in \mathbb{Z} \right\}$$
$$\cup \left\{ \lambda \in \mathbb{C} : \lambda \in \sigma \left(B(t)|_{H_0} \right), t \in [a,b] \right\}.$$

Corollary 3.2 If the minimal operator L_0 is formally hyponormal, then $\sigma_r(L_0) = \mathbb{C}$.

Acknowledgment

We like to thank Prof Z İsmailov (Karadeniz Technical University, Turkey) for his advice and enthusiastic support.

References

- Barbu V, Favini A. Periodic problems for degenerate differential equations. Rend Istit Mat Univ Trieste Suppl 1997; 28: 29-57.
- [2] Berezansky YuM. Expansions in Eigenfunctions of Self-Adjoint Operators. Providence, RI, USA: American Mathematical Society, 1968.
- [3] Chen G, Zhang H. Initial boundary value problem for a system of generalized IMBq equations. Math Methods Appl Sci 2004; 27: 497-518.
- [4] Dunford N, Schwartz JT. Linear Operators Vol. II. New York, NY, USA: Interscience, 1963.
- [5] Favini A, Yagi A. Degenerate Differential Equations in Banach Spaces. New York, NY, USA: Marcel Dekker Inc., 1999
- [6] Goldstein JA. Semigroups of Linear Operators and Applications. New York, NY, USA: Oxford University Press, 1985.
- [7] Ismailov ZI. Formally-normal extensions of an operator. Diff Equations 1992; 28: 905-907.
- [8] Ismailov ZI. On the normality of first-order differential operators. Bull Pol Aca. Sci (Math) 2003; 51: 139-145.
- [9] Ismailov ZI. Compact inverses of first-order normal differential operators. J Math Anal Appl 2006; 320: 266-278.
- [10] Ismailov ZI, Erol M. Normal differential operators of first-order with smooth coefficients. Rocky Mt J Math 2012; 42: 1100-1110.
- [11] Ismailov ZI, Karatash H. Some necessary conditions for the normality of differential operators. Doklady Mathematicsm 2000; 62: 277-279.
- [12] Ismailov ZI, Karatash H. On a class of first order normal differential operators. Transactions of NAS Azerbaijan 2000; 20: 115-122.
- [13] Ismailov ZI, Unluyol E. Hyponormal differential operators with discrete spectrum. Opuscula Math 2010; 30: 79-94.
- [14] Janas J. On unbounded hyponormal operators. Ark Mat 1989; 27: 273-281.
- [15] Jin KH. On unbounded subnormal operators. Bull Korean Math Soc 1993; 30: 65-70.
- [16] Krein SG. Linear Differential Equations in Banach Space. Providence, RI, USA: Amererican Mathematical Society, 1971.
- [17] Ota S, Schmüdgen K. On some classes of unbounded operators. Integr Equat Oper Th 1989; 12: 211-226.
- [18] Putnam CR. The spectra of unbounded hyponormal operators. P Am Math Soc 1972; 31: 458-464.
- [19] Sauer N. Linear evolution equations in two Banach spaces. P Roy Soc Edinb A 1982; 91: 287-303.
- [20] Sauer N, Singleton JE. Evolution operators related to semi-groups of class (A). Semigroup Forum 1987; 35: 317-335.
- [21] Stochel J, Szafraniec FH. The normal part of an unbounded operator. Nederl Akad Wetensch Proc Ser A 1989; 92: 495-503.
- [22] Sviridyuk GA, Fedorov VE. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, the Netherlands: VSP, 2003.
- [23] Von Neumann J. Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. Math Ann 1929; 102: 49-131 (in German).