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Abstract: In this study, all maximal hyponormal extensions are given for the degenerate first order in the Hilbert space
of vector-functions on a finite interval. The extensions are defined in terms of the boundary values. The structure of the

spectrum of the maximal hyponormal extensions is also investigated.
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1. Introduction
Differential operators theory plays a very important role in mechanics and theoretical physics. Moreover, its
spectral analysis is one of the most essential fields of modern mathematical physics. Likewise, nonself-adjoint
operator theory has attracted the attention of mathematicians, physicists, and engineers.
A linear closed operator T': D(T') C H — H in a Hilbert space H is called hyponormal if D(T") C D(T™)
and ||T*xz| < ||Tx| for each x € D(T'). This operator class has been studied extensively [14, 15, 17, 18, 21]. A
hyponormal operator is called a maximal hyponormal operator iff it has a not nontrivial hyponormal extension.
The general boundary conditions are given in [7-9, 11] when these extensions of the first order are normal
operators in L? and also with smooth coefficient in [10]. This problem was investigated in the nondegenerate
case by Ismailov and Karatash [12]. Moreover, all maximal hyponormal extensions were described with an
unbounded operator coefficient in [13]. Instead of a constant operator, we work with a smooth operator function

coefficient.
Moreover, the theory of the degenerate Cauchy problem in Banach space has been studied by many

authors [1, 5, 19, 20, 22]. This is why the problem has many applications in mathematical physics and in the
applied sciences, for example, in the study of the longitudinal oscillations of DNA molecules [3].

Throughout this paper we suppose that H is a Hilbert space with 2 < dim H < 400, B(H) is the linear
bounded operators space in H, and L? := L? (H, (a,b)) is the H Hilbert valued function space defined on a

finite interval [a,b] [4].

2. Maximal hyponormal extensions

Let H be a Hilbert space with 2 < dim H < +oo. In the space L2, consider a linear degenerate differential

operator expression for the first order in the form
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I(u) = A/ (t) + B(t)u(t), (2.1)

where A: H — H is a self-adjoint positive operator with 1 < dim KerA < dim H and B(t) : [a,b] — B(H) is

a strongly continuous self-adjoint operator function.

It is clear that the formally adjoint expression in the space L? is in the form of
IT(v) = —(Av(t)) + B(t)v(t). (2.2)

Now let us define the operator L{, in L? on the dense manifold of the vector-functions

Dpy = {u(t) € L* : u(t) =Y _ @r(t) fr, or(t) € C3°(a,b), fi € H,
k=1
k=1,2,...,n,n €N}

as Lju :=l(u).

L} has closure since the domain of L} contains the dense linear manifold D). The closure of L{ in L2
is called the minimal operator generated by expression (2.1) and it is denoted by Lg.

Similarly, the minimal operator Lj in L? generated by the differential-operator expression (2.2) can
be defined. The adjoint operator of L{ (Lg) in L? is called the maximal operator generated by (2.1) ((2.2))
and is denoted by L (L*) [2, 4]. Notice that Ly C L, Ly C LT, D(Lg) = {u € L? : (Au) € L? and
u(a),u(b) € KerA} and D(L) = {u € L?: (Au)’ € L?}.

Also, we abbreviate Hy := KerA, Hy := RangeA and A; := A|Hl :Hy — H;.

Theorem 2.1 Let ||B'(t)|| € L?*(a,b). The minimal operator Lo is formally hyponormal on L? if and only if

the following conditions are satisfied:
1) AB(t) = B(t) A foreveryt € [a, ],
2) AB'(t) <0 a.e. in [a,b)].

Proof Suppose that Lo is a formally hyponormal operator on L?; then, for each
u(t) € D(Lg) C D(L}), the following equality holds:

IZoullZz — 1L w7 = 2[((Au(t))’, B(t)u(t)) + (B(t)u(t), (Au(t))")] > 0. (2:3)
Also, if it is used before the inequation for e!**u(t) € D(Lg) and all a € R, then
((Au(®)), Bt)u(t)) + (B(t)u(t), (Au(t))") = ia (B(t)A — AB(1))u(t), u(t)) -

We claim that ((B(t)A — AB(t))u(t),u(t)) = 0 for all u(t) € D(Lg). If it is not true, there exists an element
u(t) € D(Lg) where ((B(t)A — AB(t))u(t), u(t)) is a pure complex number. Since « is an arbitrary real number,
then || Loul|?, —|[LTu||?. is infinite. This is a contradiction, so our assertion is correct. Moreover, since D(Lg)

is dense in L? and B(t) is continuous operator function,

AB(t) = B(t)A for t € [a, b].
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Moreover, by substituting this equation in (2.3) for all u(t) € D(Lg),
IZoullZ> — L7 ullf: = =2 ((AB'(t)u(t), u(t)) > 0.

Therefore,
AB'(t) <0 a.e. in [a, b].

The contrary of the theorem can be seen from inequation (2.3). O

Theorem 2.2 [23] Let T be a densely defined symmetric operator on H. Suppose that Hy C Ker(T* — 1)
and H_ C Ker(T* 4+ 1) are closed linear subspaces of H such that dim Hy = dim H_ and U is an isometric
linear mapping of Hy onto H_. Define

D(Ty)=D(T)+(E-U)Hyand Ty (x+ (E - U)y) = Tz + iy + iUy

for x € D (T) and y € Hy , where the symbol + denotes the direct sum of vector spaces.

Then Ty is a closed symmetric operator such that T C Ty . Any closed symmetric extension of T on H

is of this form.

Theorem 2.3 Let Lo be a formally hyponormal operator. Then every maximal hyponormal extension Ly of

the minimal operator Lo has the boundary condition
AY2u(b) = WAY?u(a), (2.4)

where W is a unitary operator on Hy and AY? (W*B(b)W — B(a)) AY? is a positive operator. The unitary
operator W is determined uniquely by the extension Ly, i.e. Ly = Ly .

On the contrary, the restriction of the maximal operator L that satisfies (2.4) with corresponding property

18 a mazimal hyponormal extension of the minimal operator L.

Proof Suppose that Lj is a maximal hyponormal extension of Ly. B(t) is uniformly bounded and Lj, is a

closed operator; consequently, the operator

Im(Lp)u = —i%Au(t), u € D(Lyp)

is closed because for each w € D(Ly) C D(L})

(Lpu,u)p2 — (u, Lyu) g2 =i [(Im(Lp)u,w) 2 — (u, Im(Lp)u) 2]

(AYu(b), AYu(b)) s — (A*u(a), AY*u(@))

e T

Im(Ly) is a symmetric extension of the imaginary part of the minimal operator Ly in L? and there exists an

isometric operator WAY2u(a) = A/?u(b). Moreover,
—i)y={eAT ) g N = deAT 0=t 1
Ker(Im (L) z)—{e f:feH yandKer(Im(L)+1i) = qe f:feHy,
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and from Theorem 2.2 this extension domain has the form
D(Ly) = D (ImLy) = D (Lo) + (B = U) ({0 f: p e My })

where M, and M_ are subspaces of H; and U : et (=M1, — eAr =@ N[ {5 an isomorphism. Hence,
H, ={u(a) € H : u(t) € D(Lp)},

Hy, = {u(b) € H : u(t) € D(Ly,)}

are subspaces of H. We claim that H, or H, must be equal to H. If it is not, because dim((AY?(H,) N
Ker(W — E)) @ (W — E)AY?(H,)) = dim A/?(H,) and dim H < +o0, there exists a nonzero element f in
H, such that for all x € AY?(H,),

(W = E)x, f)g, =0 and f¢ AY?(H,) N Ker(W — E).

Thus, an extension Lj, of Lj; can be constructed such that D(Lj) = span{D(Lh),Al_l/zf}. It is obvious
that D(L~h) C D(I:h*) and L, is a hyponormal operator. This is a contradiction, so H = H, = H;, and
W : Hy — H; is a unitary operator. Hence, Im(Lj) is a self-adjoint operator on L? and the unitary operator
W is determined uniquely by the extension of Ly,.

Since Lj, is a maximal hyponormal extension operator of the minimal operator Ly, for every w(t) € D(Ly,)

the following inequality holds:

(Lnu(t), Lnu(t)) 2 — (Lpu(t), Liu(t) 2 = 2 [(B(t) Au(t), u(t))y, — (AB'(t)u(t), u(t)),,]

=2 [(Al/2 (W*B(b)W — B(a)) AY?u(a), u(a)) — (AB'(t)u(t), u(t)),,| > 0.

Lo

Because D(Lg) C D(Ly), from the last relation we obtain that

(A2 (W BOW ~ B(@)) AY2u(a), u(@)) = (AB'())(u = 0)(8), (u = 0)(8)) 1, > 0,

Lo

for uw € D(Ly), v € D(Lg). Since D(Lg) is dense, there exists a sequence v, € D(Lg) such that v, — u,n —
+00. From this result and ||B'(t)|| € L*(a,b),
(AW (W*B(b)W — B(a)) A1/2u(a),u(a))L >0,
2

ie. AY2(W*B(b)W — B(a)) AY/? is a positive operator on H .

In this case the adjoint operator Ly ™ is generated by the differential-operator expression [*(v) =
—(Av(t)) + B(t)u(t) and for every v(t) € D(Lw™) is satisfied with the boundary condition A'/?v(a) =
W*AY2y(b). Tt is easy to see that D(Lw) C D(Lw*) and the other condition of hyponormal extensions

in L? can be easily obtained. O
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3. The spectrum of maximal hyponormal extensions

In this section, the spectrum of the maximal hyponormal extension Ly, of minimal operator Ly will be

investigated.
Let U(t,s), t,s € [a,b] be the family of evolution operators in H; corresponding to the homogeneous

differential equation

Ult,s)f + AT'B)U(t,s)f =0, t,s€[a,b]
U(s,s)f = f, feH

and A; and U(t,s) be commutative for all ¢, s € [a,b] (for more detailed analysis, see [6, 16]).
Theorem 3.1 The spectrum of the mazimal hyponormal extension Ly, has the form
o(Lw)={A€C: 1ea(WU(a,0) M @)}y U{reC: Aea (B(t)y,). t € la,0]}.
Proof Consider the following problem for the spectrum for the maximal hyponormal extension Lyy :
Lwu = (Au(t)) + B(t)u(t) = Mu(t) + f(t), w € D(Lw), f € L?, A € C.

It can be written as w(t) = uy(t) + uo(t), w;i(t) € H;, i = 0,1 for all ¢ € [a,b], and (Au(t)) = (Auq(t))’. Also,
since the restriction operator A; on H; has a bounded inverse, u] () exists. Therefore, the general solution of

this differential equation in L? has the form

t
us1 () = M DU (¢ a) f + / AT (¢ 5 AT i (s)ds,  f € Hy,

a

(B(t) — )\E)’U,,\’o(t) = fo(t).

The following relation can be obtained from the boundary condition A'/2u(b) = WAY?u(a), where W is a

unitary operator in Hj:
t
(WU(a, b)e/\Alil(afb) - E) AV2p = /e)‘Alil(afs)U(a, S)Al_l/Qfl(S)dS.

It is easy to see that A € C is a point of the spectrum of hyponormal extension Ly if and only if 1 €

(WU (a, )M @D or X € o (B (t)ly,,), t € [a,b]. O

Corollary 3.1 If A is a projection operator on a nontrivial subspace, then the spectrum of the mazimal

hyponormal extension Ly has the following form.:

J(LW)—{)\E(C:)\—bl

—a

(in| p| +ilargu + 2km)), p € c(W*U(b,a)), k € Z}
U{AeC: Xeo (B(t)ly,) t € lab]}.
Corollary 3.2 If the minimal operator Lg is formally hyponormal, then o,.(Lg) = C.
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