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Abstract: In this paper, we give some spectral characterizations of the Jacobson radical; that is, we will show that
some conditions with λ -multiplicativity imply that the set of all quasinilpotent elements equals the Jacobson radical.
We also give some conditions to make sure the quasinilpotents lie in the Jacobson radical, using the set of elements with
singleton spectra.
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1. Introduction
Let A be a unital Banach algebra. Let [a, b] = ab − ba denote the commutator (or Lie product) and
{a, b} = ab + ba denote the anticommutator (or Jordan product) for every a, b ∈ A . For every a in A , σ(a)

and ρ(a) denote the spectrum of a and the spectral radius of a , respectively. The set of all the quasinilpotent
elements in A is denoted by Q (A) ; that is, Q (A) = {a ∈ A : ρ(a) = 0} . The Jacobson radical of A is denoted
by Rad(A) . It is well known that Rad(A) = {a ∈ A : ab ∈ Q (A) for all b ∈ A} . As usual, if M and N are
subsets of A , then M +N := {x+ y : x ∈ M,y ∈ N}. If M = {x}, then we will denote x+N = M +N . We
have the same definitions for MN and so on.

It is shown in [6] that Q (A) = Rad(A) if and only if Q (A)+Q (A) ⊂ Q (A) if and only if Q (A)Q (A) ⊂
Q (A) . By [4], Q (A) = Rad(A) if and only if [Q (A) ,Q (A)] ⊂ Q (A) if and only if {Q (A) ,Q (A)} ⊂ Q (A) .

There are some similar results for the elements with finite spectra. Let I(A) denote the set of all a ∈ A
with #(σ(a)) < ∞ , where #(·) means the cardinality of a set. Let QC(A) := Q(A) + C1 denote the set of
all a ∈ A with singleton spectra. If a + I(A) ⊂ I(A) for some a ∈ A , then aI(A) ⊂ I(A) and [a,A] ⊂ I(A)

by [1, Corollary 5.6.4 and Lemma 5.6.5]. Moreover, if A is semisimple then [a,A] ⊂ I(A) if and only if
[a,A] ⊂ Soc(A) if and only if every element in [a,A] is algebraic [2]. Here Soc(A) is the socle of A , i.e. the
sum of the minimal left ideals of A .

For any λ ∈ C , let λ -product a ◦λ b of the elements a and b of A be simply

a ◦λ b = ab+ λba,

which is called the −λ -Lie product in [5]. It is clear that the λ -product is a normal product if λ = 0 , is
a Lie product if λ = −1 , and is a Jordan product if λ = 1 . If M , N , and L are subsets of A , then
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M ◦λ N ◦λ L = (M ◦λ N) ◦λ L since the λ -product is usually nonassociative. Let M ◦λ M ◦λ · · · ◦λ M︸ ︷︷ ︸
n

be the

λ -powers of M , denoted by M (λ,n+1) . Using the right-hand arrangement, we have

M (λ,n+1) = M (λ,n) ◦λ M.

In this paper, the main technical tool we use is the Jacobson density theorem in Sinclair’s form: if
ξ1, · · · , ξn and η1, · · · , ηn are two linearly independent systems of vectors in the underlying space Xπ of a
strictly irreducible representation π ∈ Irr(A) of a Banach algebra A then there is an invertible element a ∈ A−1

such that
π(a)ξi = ηi

for i = 1, · · · , n , where A−1 means the set of all invertible elements in A . One can see [1, Theorem 4.2.5] and
[1, Corollary 4.2.6].

Recall that a set of vectors is linearly independent if every one of its finite subsets is linearly independent.
For instance, it is easy to show (see also [4, observation on page 161]) that if T is a quasinilpotent operator on
a Banach space X and x ∈ X , then the set {x, Tx, T 2x, · · · }\{0} is linearly independent.

The main aim of this paper is to give some necessary and sufficient conditions for Q (A) = Rad(A) .

2. Quasinilpotent elements

Lemma 2.1 Let A be a unital Banach algebra, and p ∈ Q(A) and λ ∈ C . Then p ∈ Rad(A) if and only if
p ◦λ Q(A) ⊂ Q (A) .

Proof If λ = 0 , the result is true by [4, Proposition 1].
We assume that λ ̸= 0 . If p ∈ Q(A) , but p is not contained in Rad(A) , then there exists an

irreducible representation π on a Banach space X and an x ∈ X such that π(p)x ̸= 0 . Thus, the set
S = {x1, x2, · · · , x6}\{0} is linearly independent and contains x1, x2 , where xk = π(pk−1)x , k = 1, ..., 6 . We
can find an invertible a ∈ A such that

π(a)x1 = x2, π(a)x2 = x1, π(a)x3 = x3, π(a)x4 = x4, π(a)x5 = x5, π(a)x6 = −λx6.

Let q = a−1pa . Then q is quasinilpotent. It can be checked that

π(p ◦λ q)(x2 + λx4) = x2 + λx4.

Note that x2 + λx4 ̸= 0 ; thus,
{1} ⊂ σ(π(p ◦λ q)) ⊂ σ(p ◦λ q).

We have a contradiction, so p ∈ Rad(A) . 2

Lemma 2.2 Let A be a Banach algebra, pn ∈ Rad(A) , but pn−1 /∈ Rad(A) for some n > 1 . Then for
every m , 2 ≤ m ≤ n , there are a closed subalgebra Am , an m-dimensional linear subspace Ym , and a
bounded homomorphism τm from Am onto B(Ym) such that ei+1 = τn(p)ei for some basis e1, · · · , en of Yn ,
g1 = en−m+1, · · · , gm = en is a basis of Ym , and τm(p) is the restriction τn(p)|Ym

of τn(p) to Ym for every
m , 2 ≤ m ≤ n .
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Proof There are π ∈ Irr(A) on Xπ and x ∈ Xπ with ei = π(pi−1)x such that e1, · · · , en are linearly
independent and en+1 = 0 since pn ∈ Rad(A) but pn−1 /∈ Rad(A) . Let Ym be a subspace generated by
g1 = en−m+1, · · · , gm = en , and Am = {a ∈ A : Ym is invariant for π(a)} for every m , 2 ≤ m ≤ n . Let
b ∈ B(Ym) ; then there is an element a ∈ A such that π(a)gi = bgi for i = 1, · · · ,m by the Jacobson density
theorem. Therefore, a ∈ Am . Let τn = π and τm(p) be the restriction τn(p)|Ym of τn(p) to Ym . Then τm is
a bounded homomorphism from Am onto B(Ym) . 2

Lemma 2.3 Let λ ∈ C and n > 0 . Then Q(A)(λ,n+1) ⊂ Q(A) implies Q(A) = Rad(A) for every Banach
algebra A if and only if Q(M2(C))(λ,n+1) ⊈ Q(M2(C)) .

Proof ⇒ is obvious.
⇐ Assume that Q(M2(C))(λ,n+1) ⊈ Q(M2(C)) and Q(A)(λ,n+1) ⊂ Q(A) for some Banach algebra A .

Let p ∈ Q(A) . We claim that pn ∈ Rad(A) . Indeed, if λ = −1 then (adp)nQ(A) ⊂ Q(A) and pn ∈ Rad(A)

by [4, Theorem 3], and if λ ̸= −1 then

p(λ,n) ◦λ Q(A) = (1 + λ)npn ◦λ Q(A) ⊂ Q(A)

and pn ∈ Rad(A) by Theorem 2.1.

Assume, to the contrary, that pk−1 /∈ Rad(A) for some k , 1 < k ≤ n . By Lemma 2.2, there are a
closed subalgebra Am , an m -dimensional linear subspace Ym , and a bounded homomorphism τm from Am

onto B(Ym) such that ei+1 = τn(p)ei for some basis e1, · · · , en of Yn , g1 = en−m+1, · · · , gm = en is a basis of
Ym , and τm(p) is the restriction τn(p)|Ym of τ(p) to Ym for every m , 2 ≤ m ≤ n .

Let m = 2 . Since Q(A)(λ,n+1) ⊂ Q(A) , we have that Q(A2)
(λ,n+1) ⊂ Q(A2) . By the Sinclair–Jacobson

theorem, τ2(A2) = M2(C) and τ2(Q(A2)) coincides with the set of all nilpotents of M2(C) . Thus,

τ2(Q(A2)
(λ,n+1)) = (τ2(Q(A2)))

(λ,n+1) = Q(M2(C))(λ,n+1) ⊂ τ2(Q(A2)) = Q(M2(C)).

It is a contradiction. 2

Next we will introduce the generalized Kleinecke–Shirokov condition, which will be used for our main
result.

Let A be a complex algebra and △(a,λ) be the operator x 7→ ax−λxa on A for every a ∈ A and λ ∈ C .
It is clear that

△(a,λ1λ2)(x1x2) = △(a,λ1)(x1)x2 + λ1x1 △(a,λ2) (x2).

We write △a instead of △(a,1) .

The following statement belongs to S. Rosenoer (1981, unpublished).

Lemma 2.4 Let A be a Banach algebra, a ∈ A , λ ∈ C , and |λ| = 1 . If △2
(a,λ)(x) = 0 then △(a,λ)(x) ∈ Q(A) .
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Proof Let

â =



. . . . . . . . . . . . . . . . . .

. . . λ−1a 0 0 0
. . .

. . . 0 a 0 0
. . .

. . . 0 0 λa 0
. . .

. . . 0 0 0 λ2a
. . .

. . . . . . . . . . . . . . . . . .


, x̂ =



. . . . . . . . . . . . . . . . . .

. . . 0 x 0 0
. . .

. . . 0 0 x 0
. . .

. . . 0 0 0 x
. . .

. . . 0 0 0 0
. . .

. . . . . . . . . . . . . . . . . .


be elements of MZ(A) , the infinite matrices with entries from A . One can consider these matrices as bounded

operators on infinite direct sum
∞⊕

k=−∞
A . As △2

â(x̂) = 0 , we have that △â(x̂) is a quasinilpotent operator by

the Kleinecke–Shirokov theorem. It is easy to check that △(a,λ)(x) ∈ Q(A) . 2

Lemma 2.4 is not valid under |λ| ̸= 1 , but it is valid for finite dimensional algebras (V.S. Shulman, 1981,
unpublished). The proof of the following lemma belongs to Yu.V. Turovskii; see [7, Theorem 14].

Lemma 2.5 Let A be a finite dimensional algebra and △2
(a,λ)(x) = 0 for some λ ̸= 0 . Then △(a,λ)(x) is a

nilpotent element.

Proof Let dimA = m . Then there are n ≤ m and α0, · · · , αn−1 ∈ C such that

xn(△(a,λ)(x))
m−n =

n−1∑
r=0

αrx
r(△(a,λ)(x))

m−r.

Acting by △n
(a,λm) for both parts of this equality and using (3.1) and △2

(a,λ)(x) = 0 many times, we obtain (by

induction) that
△n

(a,λm)(x
n(△(a,λ)(x))

m−n) = n!λn(n−2)/2(△(a,λ)(x))
m

while
△n

(a,λm)(x
r(△(a,λ)(x))

m−r) = 0

for every r < n . Thus, (△(a,λ)(x))
m = 0 . 2

Theorem 2.6 Let A be a unital Banach algebra. If Q(A)(λ,n+1) ⊂ Q(A) for some integer n > 1 and λ ∈ C ,
then one of the following statements is valid:

(1) Q(A) = Rad(A) ;
(2) λ = 1 and a2 ∈ Rad(A) for every a ∈ Q(A) .

Proof Let λ = 1 . We show that a2 ∈ Rad(A) for every a ∈ Q(A) . One may assume that Rad(A) = {0} .
Assume, to the contrary, that p ∈ Q(A) , but p2 /∈ Rad(A) . Let W1 = {p2} and Wm+1 = Wm ◦1 Q(A) for any
m > 0 . As p2 = 1

2p ◦1 p then W1 ⊂ Q(A)∩Q(A)(1,2) and Wm ⊂ Q(A)(1,m) ∩Q(A)(1,m+1) for any m > 0 . As

Wn ⊂ Q(A)(λ,n+1) ⊂ Q(A) and Wn ◦1 Q(A) ⊂ Q(A)(1,n+1) ⊂ Q(A) then Wn ⊂ Rad(A) = {0} by Lemma 2.1.
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It follows that if n > 2 then Wn−1 ⊂ Q(A) . Indeed, if s = t ◦1 q , where t ∈ Wn−2 and q ∈ Q(A) , then
△2

(q,−1)(t) ∈ Rad(A) = {0} and s = △(q,−1)(t) ∈ Q(A) by Lemma 2.4.

As Wn−1◦1Q(A) = {0} ∈ Q(A) then Wn−1 ⊂ Rad(A) = {0} by Lemma 2.1. By repeating the argument
many times we obtain that

W2 = p2 ◦1 Q(A) ∈ Rad(A) = {0} ∈ Q(A)

, from which p2 ∈ Rad(A) by Lemma 2.1.
By Lemma 2.3, for the other case and arbitrary λ , it suffices to examine A = M2(C) . In this case

Q(A) = C
{(

0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 α

−α−1 −1

)
: 0 ̸= α ∈ C

}
.

It is clear that

Q(A)(λ,2) = C
{(

λ 0
0 1

)
,

(
1 0
0 λ

)
,

(
λα 0

1− λ α

)
,

(
α λ− 1
0 λα

)
,(

1 + λ− αβ−1 − λβα−1 (1− λ)(β − α)
(1− λ)(β−1 − α−1) 1 + λ− αβ−1 − λβα−1

)
: 0 ̸= α, β ∈ C

}
.

If λ = 1 , then Q(A)(λ,2) is isomorphic to C and Q(A)(1,3) = Q(A) ̸= {0} while Rad(A) = {0} . This
underlines that statement (2) is the best possible.

Assume that λ ̸= 1 . It is easy to check that(
α1 0
β1 γ1

)
:=

(
α0 β0

0 γ0

)
◦λ

(
0 0
1 0

)
=

(
β0 0

γ0 + λα0 λβ0

)
,

(
α2 β2

0 γ2

)
:=

(
α1 0
β1 γ1

)
◦λ

(
0 1
0 0

)
=

(
λβ1 α1 + λγ1
0 β1

)
.

For λ2 + 1 ̸= 0 we see that if α1, β1, γ1 are nonzero then α2, β2, γ2 are nonzero; indeed, for instance,
β2 = 0 implies (λ2 +1)β0 = 0 . This shows that if Q(A)(λ,m) has a non-quasinilpotent element for m > 1 then
so does Q(A)(λ,m+1) .

It remains to consider the case λ2 + 1 = 0 ; that is, λ = ±i . Let λ be i for definiteness. In this case,
β2 = 0 , α2 = iβ1 , and γ2 = β1 . One may assume that β1 ̸= 0 . Then

q :=

(
i 0
0 1

)
◦i

(
1 α

−α−1 −1

)
=

(
i− 1 2iα

−(1 + i)α−1 −1− i

)
and trace(q) = (i− 1)+ (−1− i) = −2 shows that q is not a quasinilpotent element. In any case if Q(A)(±i,m)

has a non-quasinilpotent element for m > 1 then so does Q(A)(±i,m+1) . 2

3. Elements with singleton spectra

The main result of this section is the following. Recall that QC(A) is the set of all elements in A with singleton
spectra. In the proof of Theorem 3.1, we will use the Jacobson density theorem repeatedly. We will use the
same symbols, such as π , a , and so on, each time, but it seems that this will not create any confusion.
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Theorem 3.1 Let A be a Banach algebra. The following conditions are equivalent:
(i) Q(A) +Q(A) ⊂ QC(A) ,
(ii) For some λ ∈ C , QC(A) ◦λ QC(A) ⊂ QC(A) ,
(iii) Q (A) = Rad(A) .

Proof (i)⇒(iii) First, we will show that p2 ∈ Rad(A) for all p ∈ Q (A) .
If there is a p ∈ Q (A) such that p2 is not contained in Rad(A) , then there exists an irreducible

representation π on a Banach space X and an x ∈ X such that xk = π(pk−1)x is nonzero for k ≤ 3 .
Moreover, since p is quasinilpotent, then the set S = {x1, x2, x3} is linearly independent. We can find an
invertible a ∈ A such that

π(a)x1 = −x1, π(a)x2 = x2, π(a)x3 = x2 − x3.

Let q = a−1pa . Then q is quasinilpotent and so q ∈ QC(A) . It is clear that

π(p+ q)x1 = 0, π(p+ q)x2 = x2.

Thus,
{0, 1} ⊂ σ(π(p+ q)) ⊂ σ(p+ q),

and so p+ q is not contained in QC(A) .
Next we will show that p ∈ Rad(A) for all p ∈ Q (A) .
If not, there exists a p ∈ Q (A) such that p does not lie in Rad(A) . Note that p2 ∈ Rad(A) , and there

exist an irreducible representation π on a Banach space X and an x ∈ X such that the set S = {x1, x2} is
linearly independent where xk = π(pk−1)x , and xk = 0 for every k ≥ 3 . We can find an invertible a ∈ A such
that

π(a)x1 = x2, π(a)x2 = x1.

Let q = a−1pa . Then q is quasinilpotent and so q ∈ QC(A) , and we have

π(p+ q)(x1 + x2) = x1 + x2, π(p+ q)(x1 − x2) = x2 − x1.

Thus,
{1,−1} ⊂ σ(π(p+ q)) ⊂ σ(p+ q),

and so p+ q is not contained in QC(A) .
(ii)⇒(iii) There are three cases.
If λ = 0 , then (ii) means that QC(A)QC(A) ⊂ QC(A) . We will prove that (ii)⇒(i), so in this case

(ii)⇒(iii) holds by (i)⇒(iii). In fact, for every a ∈ QC(A) , µ ∈ C , and |µ| > ρ(a) , note that (a−µ)−1 ∈ QC(A) .
Thus, for b ∈ Q(A) , we have

a+ b− µ = (a− µ)(1 + (a− µ)−1b) ∈ QC(A),

since QC(A)QC(A) ⊂ QC(A) . That is, Q(A) +Q(A) ⊂ QC(A) . (i) holds.
If λ ̸= 0 , and there is a p ∈ Q (A) such that p is not contained in Rad(A) , there exist an irreducible

representation π on a Banach space X and an x ∈ X such that the set S = {x1, x2, x3, x4, x5, x6}\{0} is
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linearly independent and contains x1, x2 , where xk = π(pk−1)x, 1 ≤ k ≤ 6. We can find an invertible a ∈ A
such that

π(a)x1 = x2, π(a)x2 = x1, π(a)x3 = x3, π(a)x4 = x4, π(a)x5 = x5, π(a)x6 = −λx6.

Let q = a−1pa . Then q is quasinilpotent and so q ∈ QC(A) , and we have

π(p ◦λ q)(x1 +
1

λ
x4) = λ(x1 +

1

λ
x4), π(p ◦λ q)(x2 + λx4) = x2 + λx4.

Thus,
{λ, 1} ⊂ σ(π(p ◦λ q)) ⊂ σ(p ◦λ q),

and so p ◦λ q is not contained in QC(A) for λ ̸= 1 .
If λ = 1 , we will show that p2 ∈ Rad(A) for all p ∈ Q (A) in the first step.
If not, there exist an irreducible representation π on a Banach space X and an x ∈ X such that the set

S = {x1, x2, x3, x4, x5}\{0} is linearly independent and contains x1, x2, x3 , where xk = π(pk−1)x, 1 ≤ k ≤ 5.

We can find an invertible a ∈ A such that

π(a)x1 = x2, π(a)x2 = −x1, π(a)x3 = −x3, π(a)x4 = x4, π(a)x5 = x5.

Let q = a−1pa . Then q is quasinilpotent and so q ∈ QC(A) , and we have

π(pq + qp)(x1 − x2) = x2 − x1, π(pq + qp)x3 = 0.

Thus,
{−1, 0} ⊂ σ(π(pq + qp)) ⊂ σ(pq + qp),

and so pq + qp is not contained in QC(A) .
Next we will show that p ∈ Rad(A) for all p ∈ Q(A) .
If not, then the set S = {x1, x2} is linearly independent and xk = 0 for every k ≥ 3 . We can find an

invertible a ∈ A such that
π(a)x1 = x2, π(a)x2 = x1.

Let q = a−1pa . Then q is quasinilpotent and so 1 + p, 1 + q ∈ QC(A) , and we have

π((1 + p)(1 + q) + (1 + q)(1 + p))(x1 + x2) = 5(x1 + x2), π((1 + p)(1 + q) + (1 + q)(1 + p))(x1 − x2) = x1 − x2.

Thus,
{1, 5} ⊂ σ(π((1 + p)(1 + q) + (1 + q)(1 + p))) ⊂ σ((1 + p)(1 + q) + (1 + q)(1 + p)),

and so (1 + p)(1 + q) + (1 + q)(1 + p) is not contained in QC(A) .
In a word, (ii) implies (iii).
(iii)⇒(i) or (ii). As QC(A) = C1 + Q(A) = C1 + Rad(A) by (iii), we can obtain conditions (i) or (ii)

immediately. 2

The next theorem improves Theorem 3 in [4].

Theorem 3.2 Let A be a Banach algebra, p be a quasinilpotent element in A , and n be a positive integer. If
∆n

(p,−1)(Q(A)) ⊂ QC(A) then pn ∈ Rad(A) .
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Proof Suppose that pn /∈ Rad(A) . Then there exist an irreducible representation π on a Banach space
X and an x ∈ X such that the set S = {x1, x2, · · · , xn+1, · · · }\{0} is linearly independent and contains
x1, x2, · · · , xn+1 , where xk = π(pk−1)x . We can find an invertible a ∈ A such that

π(a)xi = xi+1, 1 ≤ i ≤ n, π(a)xn+1 = x1, π(a)xm = xm, m ≥ n+ 2.

Let q = a−1pa . Then q is quasinilpotent. We have

∆n
(p,−1)(q) =

n∑
i=0

(−1)iCi
np

n−ia−1papn.

It can be checked that
π(∆n

(p,−1)(q))xn+1 = xn+1 − x2n+2,

π(∆n
(p,−1)(q))xn = −nxn + (n− 1)x2n+1 + x2n+2.

However, since
π(∆n

(p,−1)(q))xn+m = 0, ∀m ≥ 2,

it will be easy to calculate that

π(∆n
(p,−1)(q))(xn+1 − x2n+2) = xn+1 − x2n+2,

π(∆n
(p,−1)(q))(xn − n− 1

n
x2n+1 −

1

n
x2n+2) = −n(xn − n− 1

n
x2n+1 −

1

n
x2n+2).

Thus,
{1,−n} ⊂ σ(π(∆n

(p,−1)(q)) ⊂ σ(∆n
(p,−1)(q)),

and so ∆n
(p,−1)(q) is not contained in QC(A) . 2

Lemma 3.3 Let λ ∈ C and n > 0 . Then Q(A)(−1,n+1) ⊂ QC(A) implies Q(A) = Rad(A) for every Banach
algebra A if and only if Q(M2(C))(−1,n+1) ⊈ QC(M2(C)) .

Proof The proof is almost the same as the proof of Lemma 2.3. 2

Theorem 3.4 Let A be a unital Banach algebra. If QC(A)(λ,n+1) ⊂ QC(A) for some integer n > 1 and
λ ∈ C , then Q(A) = Rad(A) .

Proof First, we consider the case of λ = −1 . Note that for every a ∈ A,QC(A)(−1,n+1) = Q(A)(−1,n+1) , and
so it is sufficient to prove Q(M2(C))(−1,n+1) ⊈ QC(M2(C)) by Lemma 3.3.

In this case, we have that

Q(M2(C)) = C
{(

0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 α

−α−1 −1

)
: 0 ̸= α ∈ C

}
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and

Q(M2(C))(−1,2) = C
{(

1 0
0 −1

)
,

(
−α 0
1 α

)
,

(
−α 1
0 α

)
,(

−αβ−1 + βα−1 2(β − α)
2(β−1 − α−1) −αβ−1 + βα−1

)
: 0 ̸= α, β ∈ C

}
.

It is easy check that(
−α1 0
β1 α1

)
:=

(
−α0 β0

0 α0

)
◦−1

(
0 0
1 0

)
=

(
β0 0
2α0 −β0

)
,

(
−α2 β2

0 α2

)
:=

(
−α1 0
β1 α1

)
◦−1

(
0 1
0 0

)
=

(
−β1 −2α1

0 β1

)
.

We see that if α1, β1 are nonzero then α2, β2 are nonzero. This shows that if Q((M2(C)))(−1,m) has an
element with 2 spectra for m > 1 then so does Q((M2(C)))(−1,m+1) .

Suppose λ ̸= −1 . If Q (A) ̸= Rad(A) , then there exists p, q ∈ QC(A) such that p ◦λ q /∈ QC(A) by
Theorem 3.1. Thus, p ◦λ q ◦λ 1 ◦λ · · · ◦λ 1︸ ︷︷ ︸

n

= (1 + λ)n−1p ◦λ q /∈ QC(A) . 2

The equivalence of conditions (i) and (iii) was given by Grabiner in [3, Theorem (2.1)] with another
method. Now we want to give a similar result.

Remark 3.5 Let A be a unital Banach algebra and Z1(A) = {z ∈ A : zQC(A) ⊂ QC(A)} . Then Z1(A) =

C1 + Rad(A) .

Proof It is sufficient to prove Z1(A) ⊂ C1 + Rad(A) , because C1 + Rad(A) ⊂ Z1(A) is obvious.
Let z ∈ Z1(A) . Then z ∈ QC(A) . If z ∈ Q(A) , we will show that z2 ∈ Rad(A) at first.
If not, there exist an irreducible representation π on a Banach space X and an x ∈ X such that the set

S = {x1, x2, x3} is linearly independent where xk = π(zk−1)x . We can find an invertible a ∈ A such that

π(a)x1 = −x3, π(a)x2 = −x2, π(a)x3 = x1.

Define q = a−1za . Then q is quasinilpotent and so q ∈ QC(A) , and we have

π(zq)x2 = x2, π(zq)x3 = −x3.

Thus,
{1,−1} ⊂ σ(π(zq)) ⊂ σ(zq),

and so zq is not contained in QC(A) .
Next we will show that z ∈ Rad(A) .
If not, use the same symbol above. Then the set S = {x1, x2} is linearly independent and xk = 0 for

every k ≥ 3 . We can find an invertible a ∈ A such that

π(a)x1 = x2, π(a)x2 = x1.
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Define q = a−1za . Then q is quasinilpotent and so q ∈ QC(A) , and we have

π(zq)x1 = 0, π(zq)x2 = x2.

Thus,
{0, 1} ⊂ σ(π(zq)) ⊂ σ(zq),

and so zq is not contained in QC(A) .
If z ∈ QC(A) but z /∈ Q(A) , then there exist a nonzero complex number λ ∈ C and p ∈ Q(A) such that

z = λ(1 + p) . Next we need to prove p ∈ Rad(A) .
First, we will show that p2 ∈ Rad(A) .
If not, there exist an irreducible representation π on a Banach space X and an x ∈ X such that the set

S = {x1, x2, x3, x4, x5}\{0} is linearly independent and contains x1, x2, x3 , where xk = π(pk−1)x, 1 ≤ k ≤ 5.

We can find an invertible a ∈ A such that

π(a)x1 = x3, π(a)x2 = x2 − x3, π(a)x3 = −1

2
x1 −

1

2
x2 + x3, π(a)x4 = x4, π(a)x5 = x5.

Let q = a−1pa . Then q is quasinilpotent and so q ∈ QC(A) , and we have

π((1 + p)q)(x1 + x2) = x1 + x2, π((1 + p)q)(x2 + x3) = −1

2
(x2 + x3).

Thus,

{1,−1

2
} ⊂ σ(π((1 + p)q)) ⊂ σ((1 + p)q),

and so (1 + p)q is not contained in QC(A) .
Next we will show that p ∈ Rad(A) .
If not, then the set S = {x1, x2} is linearly independent and xk = 0 for every k ≥ 3 . We can find an

invertible a ∈ A such that
π(a)x1 = x2, π(a)x2 = x1.

Let q = a−1pa . Then q is quasinilpotent and we have

π((1 + p)q)x1 = 0, π((1 + p)q)(x1 + x2) = x1 + x2.

Thus,
{0, 1} ⊂ σ(π((1 + p)q)) ⊂ σ((1 + p)q)),

and so (1 + p)q is not contained in QC(A) .
2
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