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Abstract: For an analytic function in open unit disk D , we consider the p -valent analogue of the Noshiro–Warschawski
univalence condition. We apply the Fejér–Riesz inequality to establish some sufficient conditions for functions to be
p -valent or to be a Bazilevic̆ function or to be in some other classes.
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1. Introduction
Let H denote the class of functions analytic in the unit disk D = {z ∈ C : |z| < 1} . Let Ap be the subclass of
H consisting of analytic functions f of the form

f (z) = zp +

∞∑
n=p+1

anz
n, z ∈ D. (1.1)

A function f meromorphic in a domain D ⊂ C is said to be p -valent in D if for each w the equation
f(z) = w has at most p roots in D , where roots are counted in accordance with their multiplicity, and there
is some v such that the equation f(z) = v has exactly p roots in D . Furthermore, a function f ∈ Ap ,
p = 1, 2, 3, . . . , is said to be p -valently starlike if

Re

{
zf ′(z)

f(z)

}
> 0, z ∈ D.

The class of all such functions is usually denoted by S∗
p . For p = 1 we obtain the well-known class of normalized

starlike univalent functions S∗ = S∗
1 .

2. Main result
Theorem 2.1 [8, Th. 2, p.93] Let f ∈ Ap , f (k)(z) ̸= 0 in 0 < |z| < 1 for k = 1, 2, . . . , p and suppose that

| arg f (p)(z)| < π

2

(
1 +

1

π
log p

)
.

Then f is p-valent in D .
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Corollary 2.2 Let f ∈ Ap , f (k)(z) ̸= 0 in 0 < |z| < 1 for k = 1, 2, . . . , p and suppose that

p ≥ eπ = 23.14 . . . .

If
| arg f (p)(z)| < π, z ∈ D,

then f is p-valent in D .

Proof Since for p = eπ we have
π

2

(
1 +

1

π
log p

)
= π,

a function f is p -valent by Theorem 2.1. 2

Applying Theorem 2.1, we can easily obtain the following theorem.

Theorem 2.3 Let f(z) =
∑∞

n=p anz
n , ap ̸= 0 , f (k)(z) ̸= 0 in 0 < |z| < 1 for k = 1, 2, . . . , p and suppose that

| arg{exp(−iα)f (p)(z)}| < π

2

(
1 +

1

π
log p

)
, z ∈ D,

where α = arg{ap} . Then f is p-valent in D .

Proof It is enough to see that F (z) = f(z)
ap

is in Ap and apply Theorem 2.1. From the hypothesis, we have

F (z) =
f(z)

ap
= zp +

∞∑
n=p+1

bnz
n ∈ Ap.

Furthermore, F (k)(z) ̸= 0 in 0 < |z| < 1 for k = 1, 2, . . . , p and

bn =
an
ap

for p ≤ n.

Then, from Theorem 2.1, F is p -valent in D . Therefore, f is p -valent in D too. 2

Remark In [11] and [12], Ozaki proved that if f of the form (1.1) is analytic in a convex domain D ⊂ C and
for some real α we have

Re{exp(iα)f (p)(z)} > 0, z ∈ D, (2.1)

then f is at most p -valent in D . Ozaki’s condition is a generalization of the well-known Noshiro–Warschawski
univalence condition (see [6], [14]), where p = 1 . An improvement of Ozaki’s condition is given in [9].

Nunokawa [7] proved the following result.
If f ∈ Ap and

| arg f (p)(z)| < 3π

4
, z ∈ D,

where 2 ≤ p , then f is p -valent in D . To prove the main results, we also need the following integral inequality.
It is due to Fejér and Riesz [1] and can be found in [3, p. 175] and in [13]. This result requires the regularity
of f in the closed unit disc D .
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Lemma 2.4 [1] Let f be analytic in D , and 0 < p . Then we have

∫ 1

−1

|g(z)|pdz ≤ 1

2

∫
|z|=1

|g(z)|p|dz|, (2.2)

where the integral on the left is taken along the real axis.

Therefore, a change of variables in (2.2) will give

∫ r

−r

|g(ρeiθ)|pdρ ≤ r

2

∫ 2π

0

|g(reiθ)|pdθ. (2.3)

Applying the above lemma provides the following theorem.

Theorem 2.5 Let f ∈ Ap , f (k)(z) ̸= 0 in 0 < |z| < 1 for k = 1, 2, . . . p , and suppose that

∣∣∣∣zf (p+1)(z)

f (p)(z)

∣∣∣∣ < 1

2

(
1 +

1

π
log p

)
, z ∈ D.

Then f is p-valent in D .

Proof We have

log f (p)(z)

p!
=

∫ z

0

(
log f (p)(t)

p!

)′

dt =
∫ z

0

f (p+1)(t)

f (p)(t)
dt,

and hence we obtain

| arg{f (p)(z)}| =

∣∣∣∣Im∫ z

0

f (p+1)(t)

f (p)(t)
dt
∣∣∣∣

=

∣∣∣∣Im∫ r

0

f (p+1)(ρeiθ)

f (p)(ρeiθ)
eiθdρ

∣∣∣∣
=

∣∣∣∣∫ r

0

Im

{
eiθf (p+1)(ρeiθ)

f (p)(ρeiθ)

}
dρ

∣∣∣∣
≤

∫ r

0

∣∣∣∣Im{
eiθf (p+1)(ρeiθ)

f (p)(ρeiθ)

}∣∣∣∣dρ

≤
∫ r

−r

∣∣∣∣Imeiθf (p+1)(ρeiθ)

f (p)(ρeiθ)

∣∣∣∣dρ

≤
∫ r

−r

∣∣∣∣f (p+1)(ρeiθ)

f (p)(ρeiθ)

∣∣∣∣dρ,

145



NUNOKAWA et al./Turk J Math

where z = reiθ , 0 ≤ r < 1 , 0 ≤ ρ ≤ r , and 0 ≤ θ ≤ 2π . Now, applying (2.3) gives

| arg{f (p)(z)}| ≤ r

2

∫ 2π

0

∣∣∣∣f (p+1)(reiθ)

f (p)(reiθ)

∣∣∣∣dθ

=
1

2

∫ 2π

0

∣∣∣∣reiθf (p+1)(reiθ)

f (p)(reiθ)

∣∣∣∣dθ

<
1

4

∫ 2π

0

(
1 +

1

π
log p

)
dθ

=
π

2

(
1 +

1

π
log p

)
.

Then, by Theorem 2.1, we obtain that f is p -valent in D . 2

Applying the same method as in the proof of Theorem 2.5, we obtain the following theorem.

Theorem 2.6 Let f(z) = z +
∑∞

n=2 anz
n be analytic in D . Assume that f ′(z) ̸= 0 in D and∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 1

2
Re

{
1 + z

1− z

}
, z ∈ D. (2.4)

Then f is univalent in D .

Proof We have

| arg{f ′(z)}| =

∣∣∣∣Im∫ z

0

f ′′(t)

f ′(t)
dt
∣∣∣∣

=

∣∣∣∣Im∫ r

0

f ′′(ρeiθ)

f ′(ρeiθ)
eiθdρ

∣∣∣∣
≤

∫ r

0

∣∣∣∣eiθf ′′(ρeiθ)

f ′(ρeiθ)

∣∣∣∣dρ

≤
∫ r

−r

∣∣∣∣eiθf ′′(ρeiθ)

f ′(ρeiθ)

∣∣∣∣dρ,

where z = reiθ , 0 ≤ r < 1 , 0 ≤ ρ ≤ r , and 0 ≤ θ ≤ 2π . Now, applying (2.3) gives

| arg{f ′(z)}| ≤ r

2

∫ 2π

0

∣∣∣∣f ′′(reiθ)

f ′(reiθ)

∣∣∣∣dθ

=
1

2

∫ 2π

0

∣∣∣∣reiθf ′′(reiθ)

f ′(reiθ)

∣∣∣∣dθ

<
1

4

∫ 2π

0

Re

{
1 + reiθ

1− reiθ

}
dθ

=
1

4

∫ 2π

0

1− r2

1− 2r cos θ + r2
dθ

=
1

4
· 2π =

π

2
.
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Then, by Noshiro–Warschawski univalence condition (2.1), we obtain that f is univalent in D . 2

A result related to Theorem 2.6 can be found in [10]. In [10], zf ′′(z)/f ′(z) in (2.4) is replaced by
Re {zf ′′(z)/f ′(z)} and the right-hand side is a constant. This stronger hypothesis follows that f is univalent
Janowski function.

Theorem 2.7 Let f ∈ Ap , f (k)(z) ̸= 0 in 0 < |z| < 1 for k = 1, 2, . . . , p , and suppose that

∣∣∣∣zf (p+1)(z)

f (p)(z)

∣∣∣∣ < 1

2

(
1 +

1

π
log p

)
Re

{
1 + z

1− z

}
, z ∈ D. (2.5)

Then f is p-valent in D .

Proof Using the same method as in the proof of Theorem 2.5, we obtain

| arg{f (p)(z)}| ≤ 1

2

∫ 2π

0

∣∣∣∣reiθf (p+1)(reiθ)

f (p)(reiθ)

∣∣∣∣dθ.

Then, by (2.5), we have

| arg{f (p)(z)}| ≤ 1

2

∫ 2π

0

∣∣∣∣reiθf (p+1)(reiθ)

f (p)(reiθ)

∣∣∣∣dθ

≤ 1

4

(
1 +

1

π
log p

)∫ 2π

0

Re

{
1 + reiθ

1− reiθ

}
dθ

=
1

4

(
1 +

1

π
log p

)∫ 2π

0

1− r2

1− 2r cos θ + r2
dθ

=
π

2

(
1 +

1

π
log p

)
,

where z = reiθ , 0 ≤ r < 1 , and 0 ≤ θ ≤ 2π . Then, by (2.1), we obtain that f is p -valent in D . 2

Theorem 2.8 Let p(z) = 1 +
∑∞

n=1 cnz
n be analytic in D and suppose that

∣∣∣∣zp′(z)p(z)

∣∣∣∣ < 1

2
Re

{
1

1− z

}
, z ∈ D. (2.6)

Then Re{p(z)} > 0 in D .

Proof It follows from (2.6) that p(z) ̸= 0 in D . Otherwise, we would have p(z) = (z − z0)
kq(z) for some z0

and q ∈ H such that |z0| < 1 and q(z0) ̸= 0 in D . Then the left-hand side of (2.6) tends to ∞ as z → z0
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while the right-hand side of (2.6) is bounded at z0 . Therefore, we have

| arg{p(z)}| = |Im log{p(z)}|

=

∣∣∣∣Im∫ z

0

(log{p(z)})′ dz
∣∣∣∣

=

∣∣∣∣Im∫ r

0

p′(ρeiθ)

p(ρeiθ)
eiθdρ

∣∣∣∣
≤

∫ r

0

∣∣∣∣Im{
p′(ρeiθ)

p(ρeiθ)
eiθ

}∣∣∣∣dρ

≤
∫ r

−r

∣∣∣∣Im{
p′(ρeiθ)

p(ρeiθ)
eiθ

}∣∣∣∣dρ

≤
∫ r

−r

∣∣∣∣p′(ρeiθ)p(ρeiθ)

∣∣∣∣dρ,

where z = reiθ , 0 ≤ r < 1 , 0 ≤ ρ ≤ r , and 0 ≤ θ ≤ 2π . Now, applying (2.3) gives

| arg{p(z)}| ≤ r

2

∫ 2π

0

∣∣∣∣p′(reiθ)p(reiθ)

∣∣∣∣dθ

=
1

2

∫ 2π

0

∣∣∣∣reiθp′(reiθ)p(reiθ)

∣∣∣∣dθ. (2.7)

Now, from (2.6) and (2.7), we obtain

| arg{p(z)}| ≤ 1

4

∫ 2π

0

Re

{
1

1− reiθ

}
dθ

=
1

4
· 2π =

π

2
.

This proves that Re{p(z)} > 0 in D . 2

If we take p(z) such that

p(z) =
zf ′(z)

f(z)
, f ∈ A1,

then Theorem 2.8 becomes the following corollary.

Corollary 2.9 Let f = z +
∑∞

n=2 anz
n be analytic in D and suppose that∣∣∣∣1 + zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣ < 1

2
Re

{
1

1− z

}
, z ∈ D.

Then

Re

{
zf ′(z)

f(z)

}
> 0 z ∈ D,

or f is a starlike function with respect to the origin, that is, f ∈ S∗
1 .
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Recall that if f ∈ A1 satisfies

Re

{
zf ′(z)

eiαg(z)

}
> 0, z ∈ D

for some g ∈ S∗
1 and some α ∈ (−π/2, π/2) , then f is said to be close-to-convex in D and denoted by f ∈ C . A

univalent function f ∈ A1 belongs to C if and only if the complement E of the image-region F = {f(z) : |z| < 1}
is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays).

On the other hand, if f ∈ A1 satisfies

Re

{
zf ′(z)

f1−β(z)gβ(z)

}
> 0, z ∈ D

for some g ∈ S∗
1 and some β ∈ (0,∞) , then f is said to be a Bazilevic̆ function of type β and denoted by

f ∈ B(β) . If we take p such that

p(z) =
zf ′(z)

eiαg(z)
, f ∈ A1, g(z) ∈ S∗

1 ,

then Theorem 2.8 becomes the following corollary.

Corollary 2.10 Let f(z) = z +
∑∞

n=2 anz
n be analytic in D and suppose that∣∣∣∣1 + zf ′′(z)

f ′(z)
− β

zg′(z)

g(z)

∣∣∣∣ < 1

2
Re

{
1

1− z

}
, z ∈ D,

where g ∈ S∗
1 . Then

Re

{
zf ′(z)

eiαg(z)

}
> 0, z ∈ D

or f is a close-to-convex function.

If we take p(z) such that

p(z) =
zf ′(z)

f1−β(z)gβ(z)
, f ∈ A1, g(z) ∈ S∗

1 ,

then Theorem 2.8 becomes the following corollary.

Corollary 2.11 Let f(z) = z +
∑∞

n=2 anz
n be analytic in D and suppose that∣∣∣∣1 + zf ′′(z)

f ′(z)
− (1− β)

zf ′(z)

f(z)
− β

zg′(z)

g(z)

∣∣∣∣ < 1

2
Re

{
1

1− z

}
, z ∈ D,

where g(z) ∈ S∗
1 and β ∈ (0,∞) . Then

Re

{
zf ′(z)

f1−β(z)gβ(z)

}
> 0, z ∈ D

or f is a Bazilevic̆ function of type β , that is, f ∈ B(β) .
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We say that a function f is in the class Ks(γ) , 0 ≤ γ < 1 , if f ∈ A1 and if there exists a function g ∈ A1 ,
starlike of order 1/2 , such that

Re [zf ′(z)/(g(z)g(−z))] > γ, z ∈ D.

The class Ks(0) = Ks was defined by Gao and Zhou in [2], while the class Ks(γ) was introduced in [5] (see also
[4]).

Corollary 2.12 Let f(z) = z +
∑∞

n=2 anz
n be analytic in D and suppose that∣∣∣∣1 + zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zg′(−z)

g(−z)

∣∣∣∣ < 1

2
Re

{
1

1− z

}
, z ∈ D,

where g is starlike of order 1/2 . Then

Re [zf ′(z)/(g(z)g(−z))] > 0, z ∈ D,

or f is in the class Ks(0) .
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