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Abstract: Let X and Y be complex Banach spaces and D be the open unit disc in the complex plane C. Let ¢ be
an analytic self-map of D and 1 be an analytic operator-valued function from D into the space of all bounded linear

operators from X to Y. The weighted composition operator Wy, , : H(D, X) — H(D,Y) is defined by

Wy o()(2) = P(2)(f(¢(2))),  (2€D,feHD, X)),

where H(D, X) is the space of all analytic X -valued functions on . In this paper we provide necessary and sufficient
conditions for the boundedness and compactness of weighted composition operators Wy, , between vector-valued Bloch-

type spaces Bo(X) and Bg(Y) for o, 8 > 0 in terms of 1, ¢, their derivatives, and the nth power " of ¢.

Key words: Vector-valued Bloch-type spaces, weighted Banach spaces of analytic functions, weighted composition
operators, compact operators

1. Introduction and preliminaries

The study of composition and weighted composition operators between Banach spaces of vector-valued functions
has received recently very much attention. For instance, the (weakly) compact composition operators on analytic
vector-valued function spaces such as weighted Bergman spaces, Bloch spaces, and BMOA were studied in
[1, 7, 8, 10, 11]. The compact weighted composition operators between vector-valued Lipschitz function spaces
were investigated in [3]. Laitila and Tylli in [9] characterized boundedness and (weak) compactness of weighted
composition operators Wy, ,, : Ho°(X) — HX(Y), whenever X and Y are complex Banach spaces. Bonet et al.
in [2] studied weighted composition operators on unweighted H(D, X) and weighted H2°(X) spaces, where X
is a complete barrelled locally convex space. Boundedness and compactness of weighted composition operators
between Bloch-type spaces in the scalar valued case were discussed in [12]. The aim of the present paper is
to find some necessary and sufficient conditions for boundedness and compactness of weighted composition
operators Wy, , between vector-valued Bloch-type spaces in terms of 9, ¢, their derivatives, and the nth power
@™ of .

Let (X, ]x) be a complex Banach space and H(ID, X') be the space of all analytic X -valued functions

on the open unit disc ID. We consider the weighted Banach spaces of X -valued analytic functions

HO(X) ={f e H(D, X) : || f|

vx =supr(z)]|f(z)[x < oo},
z€D
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and

HO(X) = {F € H¥(X) ¢ lim v(2)| /() x =0}

endowed with the norm || - ||, x, where v : D — (0, 00) is a bounded continuous weight function. The weight v

is called radial if v(z) = v(|z|) for all z € D. The associated weight 7 of a weight function v is defined as
p(z) = (sup{|f(2)| : f € HZL SN < 1)1, z€D,

where H® = H°(C) and | - |, = || - [l,.c. We consider the standard weights v,(z) = (1 — |2]*)® with

0 < a < 0o and the logarithmic weight vee(2) = (log ﬁ) . It is well known that 7y, = v and Piog = Viog -

In this paper, we denote the spaces (H° (X), [ - [lva,x) and (Hp? (X), [ - [loee,x) by (HX(X), ] - [la,x) and

Viog

(Hﬁj’g(X), Il - llog,x ) » Tespectively.

For 0 < a < 0o, the vector-valued Bloch-type spaces B, (X) and BY(X) are the Banach spaces of all
functions f € H(D, X) whose derivatives f’ are in H°(X) and HY(X), respectively, endowed with the norm
I fllB.cxy == [If(0)x + [[f'[la.x - We denote B,(C) by B,. We will also abbreviate Bi(X) = B(X) and
By =B. For f € B, and x € X, the function fz:D — X given by (fx)(z) = f(2)z for all z € D belongs to
Bo(X) and || fz|5,x) = [ fll5.ll7]|x . In particular, for any = € X, the constant function (1z)(z) = z for all

zeDisin By(X) and 12|z, (x) = [|z]/x -
It is easy to check that for every f € B,(X) and z € D,

1 O<ax<l

2 —
IF@lx S 1 l5ax) § 18 =7 a=1, (1.1)
o= >l

see [12]. The notations A < B and A = B mean that A < ¢B and ¢B < A < CB, respectively, for some
positive constants ¢ and C'.

We will assume throughout this paper that (X, |- ||x) and (Y, - ||y) are complex Banach spaces and v
and w are radial nonincreasing weights tending to zero at the boundary of D. Let £(X,Y) (K(X,Y)) be the
Banach space of all bounded (compact) linear operators from X to Y. Let ¢ be a nonconstant analytic self-map
of D and ¢ : D — L(X,Y) be an analytic operator-valued function. The weighted composition operator Wy, .,
from H(D, X) to H(D,Y) is defined to be the linear operator of the form Wy ,(f)(z) = ¥(2)(f(¢(2)) for all
feHD,X) and z € D.

For simplicity of notation, we write v, instead of 1(z). Note that if v, is the identity map on X for
every z € D, then Wy, ., is the composition operator on H (D, X). We also use ||T||x—y for the norm of a
linear operator T': X — Y. The essential norm of a bounded linear operator T : X — Y is defined as the
distance from T to K(X,Y), and it is denoted by ||T||e;x—v -

In [9] Laitila and Tylli characterized the boundedness of weighted composition operators Wy, ., : Ho*(X) —
H2°(Y). They proved the following:
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Theorem 1.1 [9, Theorem 2.1]

w(z)
oo oo = - 2 . 1.2
||”w,q>||ﬂy (X)—=H(Y) ilelg ﬂ(cp(z)) ||¢ ||XHY ( )

In particular, ¥ € HYX(L(X,Y)) if Wy, : HP(X) = HX(Y) is bounded.

The following theorem estimates the norm of Wy, @ H°(X) — HP(Y) in terms of 9, ¢, their
derivatives, and the nth power ™ of ¢. The proof is exactly the same as in [4, Theorem 2.4 (a)] and we

just examine their proof for the vector-valued case. For this, let

o= (o )

n>0 12"

where 2™ is a monomial on . Then 7 is a radial weight and it is equivalent to 7, see [4, Corollary 2.3].

Theorem 1.2 Let ¢ : D — L(X,Y) and ¢ : D — D be analytic maps. The weighted composition operator
Wy, maps HX(X) into HY(Y) boundedly if and only if

w(z) ™Y lw,cx,v)
Wi || 2400 co(y) = SUp ——— ||| x5y & sup ——————=
H P <P||7'lu (X)—=H(Y) “eb I/(QD(Z)) H H — >0 ||Zn||l,
Proof By [4, Corollary 2.3] 7 is equivalent to 7. Hence,
o 2Oy @l ey @@y "
zed  U(p(2)) 2€D n>0 27|, zep  VU(p(2))

for some positive constants ¢; and ¢y and for each z € D. It follows from Theorem 1.1 that Wy, , : H°(X) —
HEe(Y) is bounded if and only if
w(2)

sup —— ||V || x5y < oo.
zeb 7(p(2)) -

By (1.3), this inequality is valid if and only if

n n
N 1 A Py
n>0 Hzn”u n>0 zeD Hzn”V

Furthermore,

" Vllw,cxy)
A sup
n>0 ”Zn”l/ 2€D

w@) Y=l x—y
1%

(#(2))

We will use the following lemma to get our main results.
Lemma 1.3 [5, Lemma 2.1] For every a > 0,
(i) lim (n+ 1))l = (22,
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(i6) lim log(n)]|=" |uog = 1.
Corresponding to an operator-valued analytic function ¢ € H(D, £L(X,Y)), we define two integral operators,
L) = [ fOveds and 56 = [ H@uids

for every f € H(D) := H(D,C) and z € D. It can be easily seen that Iy, Jy : H(D) — H(D, L(X,Y)) are well
defined, and for every z € D,

Tpf) (z) = f'(2). and  (Jyf)'(2) = f(2)0L,

see [13, Theorem 3.27].

The following lemma is the vector-valued version of [5, Lemma 2.2].

Lemma 1.4 Let n € N be fized and o > 0. If ¢'¢" 1 and ¢’ are in HX(L(X,Y)), then L,p™ and Jy"
belong to Bo(L(X,Y)). Moreover,

= Ty | B.(c(x,v))-

n— 1 n
€' 0" Pllacix,y) = £||f¢<P 8. (c(

Proof We prove the first equality. The other one is proved similarly.
Let '™ 1y € HE(L(X,Y)). Then,

19" lla,cx vy = sup va(2) ¢’ (2)¢" 7 () x oy
FAS

= L supra (™) ()sl oy

N zebh

1
= —supva(2)|(Iyp¢") (2) |l x v
N 2eb

1
= ﬁ”(IwW)/Ha,zz(x,y)-
Since Iy¢™(0) =0, we get

n— 1 n
16 ™ M Yla,cx,v) = EHLM 8. (c(x,v))-

O

We will frequently use the following test functions to prove our main results. For a,b > 0 and w € D we define

(1 \go(w)| )° 2
Kb (2 - and A,(z) =log ————.
w() ( w)) () gl—ap(w)z

It can be easily seen that
(K" = bp(w) K", Kyl (p(w)) = (1= |p(w)[*)*?,
and

—_— 2
N, = o) K%, Ay(p(w)) = log —————.
o) (p(w) = log 7=
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Specifically, for @ > 0 and 0 < a < oo with a + a > 1, we see that ||[K%*To 1|z < 29(1 + 2%) and
M\wlls < 2+ log2. Thus, {K&**te~1 : w € D} and {)\, : w € D} are bounded subsets of B% and B°,

respectively.

2. Bounded weighted composition operators from B,(X) into Bz(Y)

In this section we investigate the boundedness of the weighted composition operator Wy, o, : Bo(X) = Bg(Y).
Our approach is inspired by the techniques given in [6]. We consider the derivative operator D : B, (X) —
HE(X), f f'. It is easy to see that D is a bounded linear operator with || D| s, (x)—nz(x) < 1. For each

f € HX(X), we define g : D — X by g(z) = foz f(&)dg. Applying [13, Theorem 3.31] one can show that
g€ H(,X) and ¢’ = f. Hence, g € B,(X) and Dg = f, which ensures that D is onto.
Considering the operator Wy, o, : Bo(X) = Bg(Y'), for each f € B,(X) and each z € D we have

Wy o) (2) = ¢'(2)=f"(0(2)) + L (0(2)),

from which we reach

DWyof = WerpoDf +Wyr o f.
Thus,
DWyp = Werp o0 D+ Wy g Ba(X) = HE(Y).
For each f € B,(X), by (1.1) we observe that
Wy fO)lly = [P0 f(@(O)lly < lldollx—y 1 (LO)lx < cllflls.x),

where c is a positive constant depending on «a, ¢(0) and tg. For all f € B,(X) with || f|[s,x) < 1, we have

Wy fllBs vy = Wy, f(O)lly + [ DWy o fllgy
et (W o D) fllgy + Wy o fllgy

S e+ [[Werp o Dllp.(x)onz vy + W el Ba(x) g (v)-

Therefore,

Wy ellBa(x)=8s(v) < ¢+ [Wergplluge x)—ug v) + 1Wor plls.(x)»mz v)- (2.1)

Accordingly, a sufficient condition for the boundedness of Wy ., is the boundedness of both operators Wy o, :
H(X) = HF(Y) and Wy 0 Ba(X) = HF(Y).
We break the problem of the boundedness of Wy, , : Bo(X) — Bg(Y') into three different cases.

Theorem 2.1 Let ¢ € H(D,L(X,Y)) and ¢ be an analytic self-map of D. Then for 0 < a <1, B> 0, the
wetghted composition operator Wy, o, : Bo(X) — Bg(Y') is bounded if and only if

(1) ¢ € Bp(L(X,Y)),

(i) sup n® MLy B4 (c(x,v)) < 00
n>1
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Proof Let Wy, : Bo(X) = Bg(Y) be bounded. Using the family of constant functions {1z : z € X, ||z x <
1}, we see that ¢ € Bg(L(X,Y)). To show (ii), let &« > 0, w € D and define
1

= —— (K" — Kp).
o(w)

Ju

Then {f, : w € D} is a bounded subset of B,. Furthermore, f,(¢(w)) =0 and f],(¢(w))
Thus,

— 1
T (A=le)P)>

L = Bl )
ued T Tetwpya © lvurly = | Sjl?;,;l“ — ) @)l £ () [y

< sup [|[DWy o(fuwz)llsy
webD

llzllx <1

< sup [[Wy o (fu)llse(v) < oo,
webD

llzll x <1

which implies that

(1—|wP)?
S T oty ¥ (WPelxoy < oo

Thus, by Theorem 1.1, the operator Wy o @ HoZ(X) — H(Y) is bounded. It follows from Theorem 1.2 and
Lemma 1.4 that
sl sy ecxyy e/ lseoy

n>0 12" ][a n>0 [P

< X0

Applying Lemma 1.3, we obtain

il e s, cox v

sup(n + 1) [ Iye" 5, 2(x.v)) S sup —
n>0 n>0 12"

showing that (ii) is necessary.

Now let (i) and (ii) hold and f € B,(X) with ||f||z,x) < 1. Then by (i) and (1.1), for a <1 we have

Wy o (Hllgy = Slél]%(l = [w?)? v, f(e(w))lly
< Slé%(l — [w) ¢l x -y [Lf (e(w)) |l x
Ssup(1 = [w?)? [ ¢y, [1x v [ fll 5. x)
webD

<lllss ecxyy-
Hence, Wy, : Bo(X) — HF(Y) is bounded. By hypothesis (ii), it follows from Lemmas 1.3 and 1.4 that

"™ Pllgcixy ae n
( ) ~ Sli}in 1||L/,(p ”B,;(L(X,Y)) < 0.

n>0 12" ||a

[e3

Wiy.o : Ba(X) = Bg(Y) is bounded. O

Thus, Theorem 1.2 implies that Wy, @ HZZ(X) — HZ(Y) is bounded. Considering (2.1), we conclude that
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Theorem 2.2 Let v € H(D,L(X,Y)) and ¢ be an analytic self-map of D. Then for 8 > 0, the weighted
composition operator Wy, , : B(X) — Bg(Y') is bounded if and only if

(1) ¥ € Bp(L(X,Y)),

(i) sup [[Lp@"™ |5, (c(x,v)) < 00,
n>1

(iii) sup log n||Jy " B, (c(x,v)) < o0

Proof The necessity of (i) and (ii) can be shown in the same way as in the proof of Theorem 2.1. We show
that (iii) is necessary. Let Wy, ., : B(X) — Bg(Y) be bounded. Defining

for each w € D, we see that g, (¢(w)) = log % and g/, (¢(w)) = 0. Since for each w € D, (1+|p(w)])(1—

lo(w)]?) < 2, we have

Using this inequality, for each w € D we get

[Aw(2)]
p‘w(‘P(w)”)

2
1— 2|2 |10g7_7wz‘
< gup L212P) <1+ e
2eD |1 — p(w)z] log =2

log —2— +7
§4<1+ 8 T Tp(w)] )

log =t

1og#
§4<1+ N )

g e 108 e

sup(1 — [22)]gu(2)] < 2sup(1 — |2 N, (2)] (1 n
z€D z€D

T 4
<41 +2+——) =12 .
<4+ +10g2) +log2
Moreover,
log® 2
19,(0)] = |2log2 — ——= " | < 3log2,
log Tz

for each w € D. Therefore, the family {g,, : w € D} is a bounded subset of B with bound say M . Hence, for
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each v € X with ||z||x <1 and each w € D,

(1= [w[*)? log E Il = (1 = [wl*)?|gu (e(w))ll¥n]ly

2
1= [p(w)
< [ DWy e (guwz) g,y
< Wy o (9w 85 (v)

< MWy ollBx)—Bs(v) < 00,

from which we conclude that

1— |w|?)?
Sup( [w]?)

2
[ x -y = sup(1 — |w]*)? log " [ ¥, | x v < 0.
weD Viog($(w)) 7 wep 1 —[p(w)? -

Thus, by Theorem 1.1, the operator Wy o, : His, (X) — HF(Y) is bounded. Then by Theorem 1.2 and Lemma
1.4,

| Jp@"1Bs (c(x,v)) _ "Y' || 8,c(x,v)

n>0 12" log n>0 12" o

and by Lemma 1.3 we observe that

Slili 1Og(n) ||Jw<P" ||Bﬁ(£(X’Y)) < oo,

and (iii) holds.
Conversely, let (i)—(iii) hold. We show that Wy, , : B(X) — Bg(Y") is bounded. Condition (ii) along with
Lemmas 1.3(i) and 1.4 imply that

/. n
sup "™l g,c0x,v)

~ sup [[ 1y 9" < 00,
n>0 1271 nZEH " 1B (c(x.v))

and using Theorem 1.2 we get that Wy o : H3°(X) — HF(Y) is bounded.
On the other hand, by condition (i), 1" and hence ¢"1)’ are in HF°(L(X,Y)). Then we can use Lemmas
1.4 and 1.3(ii) along with condition (iii) to conclude that

N,/ J n
sup ™'l 5,cx.v) _ I Jp ™ 1Bs(c(x,v))

~ suplog(n)||J,e" < 0.
hah ||Z”H10g oah ||ZnHlog oo g(n)|| P ||Bﬁ(z:(x,y))

Using (1.1) and Theorem 1.2, for each f € B(X) with |[f|zx) < 1, we have

Wy o (Dllgy = zlé%(l = [w]?)7lr, (f (o (w)))lly

< sup(1 — |w[*)? log ————— ||/

(1= |w[*)

weD Vlog

n /
~ sup "Y' || 3,c(x,v)

w1 12 hog ’
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which implies that Wy, : B(X) — Hz(Y) is bounded. Therefore, by (2.1) Wy, : B(X) — Bg(Y) is
bounded. O

For the case o > 1, we need the following result, which is a modified version of [15, Proposition 7].

Proposition 2.3 Let o > 1. Then f is in Bo(X) if and only if f € H 1(X). Moreover, | - |la=1,x =~

- 1B x) -

Proof Let f € B,(X). Then for each z* € X* z* o f € B,, and by [15, Corollary 4] we have

x* o f(z) =2 o f(0) _|_/ (1 — |w]?)*(z* o f)(w)

A e dA(w), (ze€D),

where dA is the normalized area measure on D. Since (z* o f)'(w) = z*(f'(w)), we get

N <(1 — [w?)*f"(w)

w(l — zw)ot+!

x*of(z)fx*of(()):/m

| >dA@m (z € D).

From [13, Theorem 3.27] we deduce that

dA(w), (z€D).

It follows that

15 - s < [ GBI

dA(w
< |f||Ba(X)/D|w|I1_()

Z@Ia-&-l !

”XdA(w)

The rest of the proof is similar to that of [15, Proposition 7] and we skip it. O

Theorem 2.4 Let p € H(D,L(X,Y)) and ¢ be an analytic self-map of D. Then for « > 1 and 8 > 0, the
weighted composition operator Wy, , : Bo(X) — Bg(Y') is bounded if and only if

(i) supn® | Ipo" |5, (x,v)) < 00,
n>1

(i) S‘ifina_IHJw‘pn_l”Bg(ﬁ(X,Y)) < 0.

Proof Let Wy, : Bo(X) = Bg(Y) be bounded. The necessity of (i) can be shown in the same way as in the

proof of Theorem 2.1(ii). To show that (ii) is necessary, we consider the functions h,, defined by

h’LU = aKS}’u_l — (a - 1)K11U,(,¥7
for w € D. We observe that {h, : w € D} is a bounded subset of B, such that h,(p(w))

— 1
- A-le(w)?)t
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and h/

w

(p(w)) = 0. Hence,

(1 — |w|2)ﬁ / 2\6 ’
sup —lWuzlly = sup (1 —[w[*)”[hw (e (w)|[[¢nzy
lelx <1 (1 —|p(w)2)ot lelx<1 Y

< sup ||DWw,ga(hwx)||ﬁ7Y
lle]l x <1
weD

< sup [[Wy e (hoo)llB,0v)s
l=llx <1
webD

which implies that

1— |wl?)P
A1l sy < oo.

sup
web (1 = [e(w)[?)
Therefore, by Theorem 1.2,

"Y'l 5,c0x,v)
n>0 12" la—1 7
and hence by Lemmas 1.3 and 1.4,
sup n® [ Jype" M Bacccxvy) = sup(n+ 1) Jue™ 8, c0xv))
n>1 n>0

N,/
~ sup "¢ lg,0x,v) =
n>0  [2"la—1
Conversely, suppose (i) and (ii) hold. We show that Wy, , : Bo(X) — Bg(Y) is bounded. By hypotheses

(i) and (ii), Theorem 1.2, and Lemma 1.4, we have

o™ bl g, c0x,v)
[E2@[PS

HWso/w,apHHZO(X)—mg%Y) ~ sup
n>0

~ sup(n + D L™ 3y 2(x,v)) < 00

and
"Y' || 5.cx.v)
W ’ oo oo Asup —————=
Wy ,soHHQ,l(X)%Hﬁ 9] n;(’) -
~ sup(n+ 1) [Ty "8, cx,v)) < 00
n>0
By Proposition 2.3,

Wy ollBa ()1 ) = Wy ellnes  x)-ng ) < oo

Therefore, by (2.1), the operator Wy, ,, : Bo(X) — Bs(Y') is bounded. O

Applying the arguments given in the proof of Theorems 2.1, 2.2, and 2.4, one can get the next theorem.
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Theorem 2.5 Let ¢ € H(D, L(X,Y)) and ¢ be an analytic self-map of D. The weighted composition operator
Wy 2 Ba(X) = H(Y) is bounded if and only if

(i) ¥ € HE(L(X,Y)), whenever 0 < a < 1;

n
(ii) sup L lecxn) o yhenever o = 1;
SUD ! ;
n
(iii) sup ww < oo, whenever a > 1.
n>0 o

We end this section with the following result.

Corollary 2.6 Let ¢ € H(D,L(X,Y)) and ¢ be an analytic self-map of D. The weighted composition operator
Way.o : Ba(X) = Bg(Y) is bounded if and only if both weighted composition operators

W¢/7<p . Ba(X) — HEO(Y)

and

Werpo : HE(X) = HF(Y)

are bounded.

3. Compact weighted composition operators from 5,(X) into Bg(Y)

Laitila and Tylli in [9] provided some necessary and sufficient conditions under which every weighted composition

operator Wy, : H'(X) — HZ(Y) is compact. We use their results to characterize the compact weighted

composition operators between vector-valued Bloch-type spaces in terms of ¢, 1, their derivations, and the nth
power ¢" of ¢. We consider the linear operator T, : X — Bg(Y') defined by T (x)(z) = ¢.(z). Note that for
each & € X, considering the constant function 1z € B,(X) we have Ty(x) = Wy (1z). Hence,

1Tyl x=Bs0v) < MWy ollB.(x)=85v)-

In particular, if Wy, , : Bo(X) — Bg(Y) is bounded, then T}, is bounded.

We frequently use the following lemma to obtain our main results.

Lemma 3.1 Let Wy, : H*(X) = HL(Y) be a bounded weighted composition operator. Then

w(2)

o1 B 1V lxy .
if and only if
i N locxyy (3.2)
n—oo ||Zn||,,

Proof Let (3.1) hold and € > 0. There exists 6 > 0 such that for every z with 1 —§ < |p(2)] < 1,

w(z) €

WW&HX—W < 2%
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where ¢ is a positive constant for which ¢~ !7~! <7~ < ¢!, For every z € D with |p(z)] > 1 -4,

w(z) (Sup Iw(z)|"> olxy = w(z) ¥l x>y < Cw(z)ﬂ||1/)z||x_>y <ef

>0 [l2™v v(ip(2)) (¢(2))
Hence,
z n
sup  supe(z) E 1y <o (33)
lp(2)|>1—5 n>0 27l

By Theorem 1.1, the boundedness of Wy, : H*(X) — HX(Y) implies that ¢ € HX(L(X,Y)). Now if
|p(2)] <1 -4, we may choose r such that 0 <1—§ <r < 1. Then

lp(2)|™ (1=06)" 1-4, ™ M 1-§
w(z) [¢:llx sy <M =M(—)" < ——=(—)"

[127[I. - l[2"[]. r el Tl

where M = ||¢||w,z(x,v)- Hence,
()" M 1-96
w(2) V:llx=y < == )" — 0,
lo(2)|<1—6 (EP - v(r): r
as n — 0o. Choose a positive integer ng such that
z n
w(2) 'sz(nﬂ' sy < &/2 (3.4)

for each n > ng, and every z with |p(z)| < 1—§. Considering (3.3) and (3.4) for each n > ny we obtain
NPl cxyy _

n
 upuz)2)
[ETPR S P

[V: | x—y < e,

which shows that (3.2) is valid.

Conversely, let (3.2) hold and € > 0. Then there exists some positive integer ngy such that Wﬁ\”;% <

e for each n > ng. For any r € (1,1), =1= < —L— (see the proof of [4, Lemma 2.2]). Fixing r € (3,1), we

> o(r) — ro(r)
have
z 1 " z
W(ZZW x>y < swp sup w(z)|¢(2)|n|\¢ [x—y
lo(x)>r  Pp(2)) lo(2)|>r [P(2)] n>0 (e

1 n
<= sup sup w(z)‘@(z)\nnwzﬂx_w
T Jp(2)|>r 0<n<ng D

1 s
L sup YRRy
r W(Z)|>7'7l>n0 HZ ||1/

w(@)(p(2) Y=l x -y

1
<- sup sup

T 0<n<ng jp(z) > 127 P(0(2))
1 "l
S w
T n>ng ||Z HV
1 v(p(z) | ¢
<= [Wy o llmze (x)—mee vy sup pry TR
r lo(x)>r 2™l 7
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where [[2™|, = min{|[z"[|, : n =0,1,---ng}. Since lim, 1 sup|, .y P(¢(2)) = 0, taking the limit as 7 — 1,
we obtain
w(@)[¢:llx -y

lim sup ————"—<g¢,
r—1 lp(z)|>r V((p(z))

and since € was an arbitrary positive number, we get

lim sup W@Y:lxy = lim sup w(@l[Y:llxoy —0.

o(x)—1  P(p(2)) r=1i,c)sr  P(0(2))

Combining Lemma 3.1 and [9, Theorem 3.1] we conclude the following theorem.

Theorem 3.2 Let Wy, @ H°(X) — HI(Y) be a bounded weighted composition operator. Then Wy , is
compact if and only if Ty, : X — H2(Y) is compact and

lim " Yllw,cox,v)

n=oo 2

=0.

To investigate the compactness of operators Wy, , : Bo(X) — Bg(Y), we estimate the upper bound of

their essential norms. To do this, we first find an upper bound for the essential norm of the weighted composition
operator Wy, : Bo(X) = H(Y).

Theorem 3.3 Let Wy, : Bo(X) = HX(Y) be bounded and Ty, : X — HX(Y) be compact. Then

0 O0<ax<l
lim sup w(z) ||| x=v logﬁ a=1

Woiellegaomz o) S g le@lor
lim sup % o=l
o (1—[e(2)[?)

Proof For each integer n > 0, consider the operators ¢, : Bo(X) — X by ¢,(f) = J"("T)!(o) and P, : B, (X) —

Bo(X) by Po(f) = Yo ae(f)z", for every f € Bo(X), where > po %zk is the Taylor expansion of f.
It is easy to check that ||qollg,(x)»x < 1. For every n > 1 and f € Bo(X) with ||f[/z,x) < 1, using the

Cauchy integral formula we have

1 f(z
lanflx = 5 | [ Tae
™m 1 2
j=1=1 N
2a+n—1 9 ,
«
< sup(1 — |z[%)*[1f"(2) ]| x
n zeD
2a+n71
<
n
Hence, ||gnlB.(x)—x < 2“:71 . Therefore, ¢, and P, are bounded linear operators.
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For each k > 0, since ¢ is a self-map of I, we deduce that the multiplier M_x : HF(Y) — H(Y) is

bounded and hence M,xTy : X — H(Y) is a compact operator. By the boundedness of g : Bo(X) — X,
for each m, the operator

Wy P = M Tyqe : Ba(X) = HF(Y)
k=0

is compact.
For each positive integer n, let r, = ;25 and consider the bounded operator K, : Bu(X) — BY(X)

defined by (K, f)(z) = f(rnz). It is straightforward to see that for every f € B,(X), K,f — f uniformly on

compact subsets of D as n — oo. Furthermore, for every f € BY(X),
1K f = fllBax) = 0,
as n — oo. Fixing n > 0 and f € Bo(X) with ||f[|z,(x) < 1, for every m we have

Wy o(Knf = P EKn f)llwy <IWypollBax)sme ) 1 EKnf — PnKnfllB,(x)

oo
[(Knf)™(0)]|x
Wy pllBax)mmzary) D T [EER
k=m+1 ’
— 7ell/*0)]x
<IWollacoonzm) D T koD (3:5)
k=m+1 ’

Let r, < p, <1 for some p,. Then by the Cauchy integral formula

rall F®(0)[|x T'n \k— !
Wgrn(p—)k Yosup [If(6)lx

n [€1=pn

,
<()F m—gmm sup (1= ) (€)l1x
pn (1= p2)* (¢1=p,
oy L
~ Pn (1_p%)a.
Thus, (3.5) implies that
1 > Tn\k
(W o Ko = Wy o P Kn) flloy < [WepllBa)smem m—aa 2, ()5
(L=pR)* 5=, Pn

for each f € B, (X) with || f[|,(x) < 1. Therefore,

mlijnoo ||Ww,<pKn - WwwamKn”Ba(X)—mgO(Y) =0,

which ensures the compactness of Wy, , K, : Bo(X) = HX(Y).
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Fixing 0 < § < 1, we have

W lleBax)—mz oy < m [[Wy o = We, o Knlls, (x) e (v)

= lim  sup  [(Wy,e =Wy o Kn)fllwy

7O fllsa (x)<1

IN

lim sup sup  w()|[Yellx-v [ £(0(2) = f(rnp(2))] x
PO fllsa (x) ST le(2)]<8

+ lim  sup sup w(@)|[P:llxov([f(9(2) = flrap(2))lx
| £, 0 1 1p(2)|>6

= lim (I(S,n + J57n).
n—oo
Noticing that for every ¢ € D and each f € B,(X),

1
HﬂO*fW&Wx:w/cﬂmeu

1
s[;(K'QW&muu—ﬁm%%t

= P1CP)
1
¢
we observe
)
li‘l‘lgpé 1£(Q) = frnQllx < Hf”BQ(X)m(l ).

The boundedness of Wy, ensures that 1 € H°(L(X,Y)). Thus, for every o > 0 we have

Isn < sup  |[Yllw,cox,yy sup |£(C) — f(raQ)llx
1fllBo(x)<1 [¢]<o

< |l

w,ﬁ(X,Y)m(l — 1) = 0,

as n — 0o. For Js,, in the case 0 < a < 1, since

1 _ _ _
Iq O Q) R € e (4 R C e o L
/Tn A== 1o ST 1.

by (3.6) we obtain

(1—r,)t-@

— 0, as n — oo.
11—«

Tsn <Y llw,cox,v)
By relation (1.1) when v =1,

2
lim Js,, S sup w(2)||Y:]|xoy log ———,
n—roo lo(2)|>6 - L —Jp(2)?
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and for ao > 1,

b gy < sup 2Nl

n—yc0 lo(z)l>s (1= lp(2)]2)e=1
Letting § — 1 we observe that
0 0<ax<l
lim sup w(z) log %“U&“X y a=1
IWosllewoonmzon 4 teion = PR
lim sup W a>1

le(z)|—1

O

In the next lemma, we show that the compact open topology on BY(X) is stronger than the weak

topology.

Lemma 3.4 Let o > 0 and {f,} be a bounded sequence in B%(X) converging to zero uniformly on compact

subsets of D. Then {f,} converges weakly to zero.

Proof For every f € B%(X), define the function f(z) = (1 — |2|>)®f'(z) on D and consider
1£llse = sup [[F(2)llx = sup(1 = |21} (2) | x = If = FO)l.(x)-
zeD zeD

Then B, (X) = {f : f € BY(X)} is a subspace of Co(D,X). Let T be a bounded linear functional on
B2(X). Define T(f) = T(f — f(0)). Clearly, T is a well-defined bounded linear functional on Be(X). Using
the Hahn—Banach theorem and the general form of a uniform continuous linear functional on Cy(D, X), we
have T(f — £(0)) = [, fdu, for some measure p € M(D,X*) and every f € B(X) (see [14, Lemma 4]).
Fixing € > 0, let {r,,} be an increasing sequence in (0,1) converging to 1 and D,, = {z € D : |z| < r,}.
Then D = US_ Dy, and |p|(D\ Dy,) < § for some m. Let {f,} be a bounded sequence in BY(X) with
fu@)llx =0

|l fullB.(x) < 1 and converging to zero uniformly on compact subsets of ID. Then lim,, s sup,cp

m

and sup,.p Fn(2)lx < g1y for n sufficiently large. Therefore,

Iﬂh—h@ﬂ<%&)ﬁw+ﬂé Fudi

sémﬂmmmmw+é

€
< |u[(D\ D) + |/~L‘(DM)M <e¢,

1 (2) | dlel (2)

7

which implies that lim, ., T(f, — fn(0)) = 0. Since lim, . f,(0) = 0, we obtain lim, ., T(f,) = 0 and

hence {f,} converges weakly to zero as desired. O

We are now ready to characterize compact weighted composition operators between vector-valued Bloch-
type spaces.
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Theorem 3.5 For 0 < a < 1 the bounded weighted composition operator Wy, ,, : Bo(X) — Bg(Y') is compact
if and only if

(i) Ty, Tpryp: X = HF(Y) and 1o : X =Y are compact,

.. . _ . / nw i ,
(#i) limsup n® |1y 0" (| 5, (c(x,v)) = limsup W =0.
n—oo n—oo

Proof Let a > 0 and Wy, : Bo(X) — Bs(Y) be compact. It can be easily seen that 1y is compact.
For showing the compactness of Ty, Ty @ X — HF(Y), let {z,} be a bounded sequence in X with

lznllx < 1. We consider f,(z) = x, and gn(z) = x,z for each positive integer n and every z € D. Then
Il fullBox) = llgnllB.(x) = l[Znllx . Using the compactness of Wy, , and passing to subsequences of {f,} and

{gn} if necessary, we may assume that {Wy ,fn} and {Wy ,g,} are Cauchy sequences in Bg(Y"). Then

||T¢"T7l - Tw’me,&Y = Slelg(l - |Z|2)B”w,lzmn - w,/zmeY
z

= sup(1 — [2") |(Was o (F — Fn)) (Dl = 0,

as n,m — oo. Thus, {Tyz,} is a Cauchy sequence in HF(Y'), which implies that Ty : X — HF(Y) is

compact. Similarly,

ITerwmn = Tory@mllsy =sup(l - 1212)2 11" ()= (2 — &) Iy
z

< ilég(l — 12PN (209 + 0(2)9L) (w0 — ) lly

+sup(l — [2[%)° ()L (20 = zm)lly
zeD

< sup(1 = [2*) (W o (g0 = gm)) (v

+ Slelg(l — 2PN W (fr = ) (2)lly = 0,

as n,m — oo. Thus, {Tyyz,} is a Cauchy sequence in H3°(Y'), and therefore Tyry : X — HZF(Y') is compact.
Suppose that Wy , : Bo(X) — Bg(Y') is compact and (ii) does not hold. Then by Corollary 2.6 and

Lemma 3.1, for some € > 0 there exists a sequence {z,} of D such that |¢(z,)] > 3, [p(2,)] — 1 and

1 |z?)?
(1(_|<p|(zzl)|)2)a|90 (Zn)HW}zTL”XHY > €,

for each n. Let {z,} be a sequence in X such that |[z,[x <1 and A5/,

xoy < |[¥2, (xn)||y . Defining

fn= Kff‘“ — K;f‘, for every n, we see that

Falolen) =0 and fil(en)) = et

Moreover, {f,} is a bounded sequence in B converging to zero on compact subsets. Hence, {f,2,} converges

to zero uniformly on compact subsets. Lemma 3.4 implies that {f,xz,} converges weakly to zero, and since
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Wy, is compact, ||[Wy o(fazn)llB,v) — 0, as n — 0o. On the other hand,
Tim [ Wy (a5, = i (1= |22 (W (Fua)) (20)llv
= Tim (1= a1/ o) o (0 z) o, (@)l

_ iy =P
n—oe (1 —[ip(zn)[?)

> fim (=1l
oo n+1(1—[p(zn)[?)"

>e/2,

o (zn)ll" (za) 19, (@n)lly

o (zn)l1" (2n) [ ¢, | x -

which is impossible. Thus, (ii) holds.
For the converse, let (i) and (ii) hold. For each f € B,(X), we consider Wy ,f(0) € ¥ as a constant
function in Bg(Y) and define the bounded operator A : B, (X) = Bg(Y) by Af =1W, ,f(0), and we have

Wyo = AMles. (x)—Ba0v) = inf”fH sup (EFO)y + DWWy — A= K) fllgy)
Ba(X)S

=inf sup DWWy — A= K)fllgy
IfllBax)<1

= nf [ DWWy, — A= K)|, x)»mzv),
where the infimum is taken over all K € K(B,(X),Bs(Y)). Arguing as at the beginning of Section 2, we obtain
that

[We,e = A

B (X)=B5(v) =[DWy o = Mlless, (x) -z (1)
=[[DWy o lle;84(x) 15 (v)

SHW«p'w,so

etz (X)—mz (V) T Wy pllessa () —mz (v)- (3.7)

Since Wy, 1 Ba(X) — Bg(Y) is bounded, by Corollary 2.6, the operators Wy, @ Bo(X) — HZF(Y) and
Werpo  Ho (X) = HF(Y) are bounded. Since Ty is compact, by Theorem 3.3 we have

HWw’,so

e;Ba(X)=HF(Y) = 0.

Since Ty is compact and (ii) holds, by Theorem 3.2 we deduce that Wy, : HY(X) — HF (V) is compact.
The relation (3.7) ensures that

Ww’cp —A: BQ(X) — BB(Y)

is compact. It is straightforward to see that the compactness of ¥y : X — Y implies the compactness of A.

Therefore, Wy, is compact and the proof is complete. O

Theorem 3.6 The bounded weighted composition operator Wy, : B(X) — Bg(Y') is compact if and only if

(1) Ty, Tpryp: X = HF(Y) and 1o : X — Y are compact,
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Sy 1e . "o
(ZZ) hmsup”Iw(anBg([,(XA/)) :hmsupw% :O7
n— o0 n—00

n ’
le" b llg.exy) _ 0.

(%) lim sup 10gn||J¢<p"||BB(L(X7y)) = limsup B
n— oo n— oo

Proof The necessity of (i) and (ii) can be proved in the same way as in the proof of Theorem 3.5. Assume

that (iii) does not hold. Then by Corollary 2.6 and Lemma 3.1, for some ¢ > 0 we may choose {z,} such that
lp(zn)l > 5, lp(2n)| = 1, and

2
(1= lzal)?I[WL, x>y log 55 > &,
S B TR

for each n. Let {z,} be a sequence in X such that [|z,[x <1 and 35[[¥] [[x—y <|[[¥L, (zn)[ly . Defining

_ 3/\§n B 2>\§n
TN @z)) O (p(za))?

we observe that {g,} is a bounded sequence in B° converging to zero uniformly on compact subsets of . By

Lemma 3.4, {gnz,} converges to zero, weakly as n — oco. Furthermore,
(plzn)) = log T and gl (p(za) = 0
gn(p(zn)) =log ————— and g, (p(z,)) = 0.
ne 1—{(p(zn))I? !

Therefore,

2z
1= |p(zn)[?

<limsup(l — |20 *)? ¢ 20y |gn(0(20))]

n—oo

=lim sup(l - |Zn|2),8 H (Ww,sa(gnl‘n))/(zn)ny
n

—00

e <limsup(l — [2,*)? ¢, ||x—y log
n—roo

<limsup [|[Wy, o (gnTn)llB5v) = 0,
n—oo

which is a contradiction. Thus, (iii) holds.

Conversely, let (i)-(iii) hold. By Corollary 2.6, the operators Wy, : B(X) — HF(Y) and Wyry o :
HP(X) — HF(Y) are bounded. Since T, is compact and (ii) holds, by Theorem 3.2 we deduce that
Wory,e + H°(X) — HZ(Y) is compact. The compactness of Ty, relation (iii), and Theorem 3.3 imply that
Wyr o+ B(X) = HZF(Y) is compact. Therefore, we can see that in a similar way to the proof of Theorem 3.5,

by relation (3.7) we have that Wy, , — A : B(X) — Bg(Y') is compact. By the compactness of 99 : X =Y we
get that A is compact and hence Wy, is compact, too. O

Theorem 3.7 For a > 1, the bounded weighted composition operator Wy, , : Bo(X) — Bg(Y') is compact if
and only if

(1) Ty, Tpryp: X = HF(Y) and 1o : X — Y are compact,
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(i) lim sup n® Y| Lyp™ |5, (2(x.vy) = limsup 122 mecen —
n—oo n—oo | ”a
sy 1 _ _ : " llg,e(x,
(iii) limsup n® || Jpe" s, cx,v)) = hmsup% =0.
n—oQ n—o0

Proof We prove the necessity of (iii). Let Wy o, : Bo(X) — Bg(Y') be compact and assume that (iii) does not
hold. Then for some & > 0, we may choose sequences {z,} and {z,} as in the proof of Theorem 3.6 such that

it llVL Ix sy < |9, (za)lly and

(L= [z )P 0L, llxsy o
(1 =lp(z)P)ot —

Defining

hn = aK3% ™ — (@ = 1)K1?,
we observe that {h,} is a bounded sequence in B? converging to zero uniformly on compact subsets of
D. Therefore, {h,x,} converges to zero, weakly as n — oco. Since hy,(¢(z,)) = W and

Rl (¢(z)) = 0, we have

- <timeup LI oy
- n—oo (1 - |<p(zn)|2)o¢—l

<limsup(L — |2,*)7 |1, 2nlly [ ((20))]
n—roo

=limsup(l — |Zn|2)ﬁ (W o (hnan)) (zn)lly

n—oo

<lim sup ||Ww,¢(hnl‘n)HBﬁ(Y) =0,
n—roo

which is a contradiction. Thus, (iii) holds.

Conversely, we can proceed in the same way as in the proof of Theorem 3.6. O
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