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Abstract: Let SH be the class of functions f = h + ḡ that are harmonic univalent and sense-preserving in the open
unit disk U = {z ∈ C : |z| < 1} , where h, g are analytic and f(0) = f ′

z(0) − 1 = 0 in U. In this paper, we investigate
the properties of some subclasses of SH such that h(z) is a starlike (or convex) function defined by subordination. We
provide coefficient estimates, extremal function, distortion and growth estimates of g , growth, and Jacobian estimates
of f . We also obtain area estimates and covering theorems of the classes. The results presented here generalize some
known results.

Key words: Harmonic univalent function, subordination, coefficient estimate, distortion, area estimate, covering
theorem

1. Introduction and preliminaries

For two analytic functions f and g on U = {z ∈ C : |z| < 1} with f(0) = g(0), f is said to be subordinate
to g if there exists an analytic function ω on U such that ω(0) = 0, |ω| < 1, and f(z) = g(ω(z)) (z ∈ U). We
denote this subordination relation by f(z) ≺ g(z), z ∈ U. Furthermore, if the function g is univalent in U , then
we have the following equivalence (see [4]; also see [27]):

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Let A be the class of functions h(z) that are analytic in U and let S denote the subclass of functions in A
that are univalent in U.

For −1 ≤ B < A ≤ 1 , we let S∗(A,B) and K(A,B) , respectively, denote the subclasses of A (see [12]):

h ∈ S∗(A,B) ⇐⇒ zh′(z)

h(z)
≺ 1 +Az

1 +Bz
(h ∈ A, z ∈ U)

and

h ∈ K(A,B) ⇐⇒ (zh′(z))′

h′(z)
≺ 1 +Az

1 +Bz
(h ∈ A, z ∈ U).

It is clear that
h ∈ K(A,B) ⇐⇒ zh′(z) ∈ S∗(A,B)
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and
K(A,B) ⊂ S∗(A,B), K(A,B) ⊂ K ⊂ S, S∗(A,B) ⊂ S∗ ⊂ S.

Especially, S∗(1− 2β,−1) = S∗
β (0 ≤ β < 1) and K(1− 2β,−1) = Kβ are a starlike function of order β and

convex function of order β , respectively [24]; S∗(1,−1) = S∗ and K(1,−1) = K = CV are the well-known
starlike function and convex function, respectively.

In [7], a classical problem of Fekete and Szegö states that, for f(z) = z +
∞∑

n=2
anz

n ∈ S ,

|a3 − µa22| ≤


3− 4µ, µ ≤ 0,

1 + 2 exp(−2µ
1−µ ), 0 ≤ µ ≤ 1,

4µ− 3, µ ≥ 1.

The result is sharp.
In 1994, Ma and Minda [20] obtained the Fekete–Szegö problem for the starlike function and convex

function defined by subordination. Many authors studied the problems of Fekete and Szegö and obtained some
useful results (for example, see [6,17,26]).

A continuous function f = u+ iv is a complex valued harmonic function in a complex domain U if both
u and v are real harmonic in U . In any simply connected domain U , we can write f = h + g , where h and
g are analytic in U . We call h the analytic part and g the coanalytic part of f . The Jacobian and second
complex dilatation of f(z) are given by Jf (z) = |h′(z)|2 − |g′(z)|2 and ω(z) = g′(z)/h′(z)(z ∈ U), respectively.
Lewy [19] proved that a necessary and sufficient condition for f(z) to be locally univalent and sense-preserving
in U is Jf (z) > 0. A necessary and sufficient condition for f to be locally univalent and sense-preserving in U
is that |h′(z)| > |g′(z)| in U (see [3]; see also [5]).

Denote by SH the class of univalent and harmonic functions f that are sense-preserving in U and has
the form (see [3,5])

f = h+ g, z ∈ U, (1.1)

where

h(z) = z +

∞∑
k=2

akz
k and g(z) =

∞∑
k=1

bkz
k, |b1| < 1. (1.2)

In [1,2,10,11,21,22,25,28,29,31], many authors further investigated various subclasses of SH and obtained some
important results. In [15], the authors studied the properties of a subclass S̄α

H of SH , consisting of all univalent
antianalytic perturbations of the identity in the unit disk with |b1| = α , and in [16], the authors studied the
class S̄α

H of all f ∈ SH , such that |b1| = α ∈ (0, 1) and h ∈ CV , where CV denotes the well-known family of
normalized, univalent functions that are convex. Recently, Kans and Klimek-Smet [14] studied the properties
of a subclass of S̄α

H and established estimates of some functionals and bounds of the Bloch constant for the
coanalytic part. Also, Hotta and Michalski [9] studied the properties of a subclass of LH having starlike
analytic part h and obtained coefficient, distortion, and growth estimates of g , and Jacobian estimates of f .
Kahramaner et al. [13] investigated the class of harmonic mappings related to Janowski starlike functions. Zhu
and Huang [32] studied the distortion theorems for harmonic mappings with analytic parts of convex or starlike
functions of order β . Some sharp estimates of coefficients, distortion, and growth are obtained (also see Sun et
al. [30]).
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In this paper, we introduce some subclasses of SH , such that h(z) is a subclass of starlike (or convex)
functions defined by subordination. We provide coefficient estimates, distortion, and area estimates, and
covering theorems of the classes. The results presented here generalize the main results in [9,13,14,32].

Now we introduce the following classes.

Definition 1.1 Let A,B ∈ R; −1 ≤ B < A ≤ 1. The function f(z) ∈ S̄∗,α
H (A,B) if and only if f ∈ SH , |b1| =

α ∈ [0, 1) and h(z) ∈ S∗(A,B). Also, the function f(z) ∈ K̄α
H(A,B) if and only if f ∈ SH , |b1| = α ∈ [0, 1)

and h(z) ∈ K(A,B). Additionally, we define the classes

S̄∗
H(A,B) =

∪
α∈[0,1)

S̄∗,α
H (A,B)

and
K̄H(A,B) =

∪
α∈[0,1)

K̄α
H(A,B).

Obviously, K̄α
H(A,B) ⊂ S̄∗,α

H (A,B) and K̄H(A,B) ⊂ S̄∗
H(A,B).

Remark 1.2 Specializing the parameters, the classes K̄α
H(A,B), S̄∗,α

H (A,B), K̄H(A,B) , and S̄∗
H(A,B) reduce

to the various subclasses of SH :

(i) K̄α
H(1,−1) = K̄α

H = S̄α
H = {f ∈ SH : h ∈ CV} (Klimek and Michalski [16]; Kans and Klimek-Smet [14]).

(ii) S̄∗,α
H (1,−1) = S̄∗,α

H = Ľα
H = {f ∈ SH : h ∈ S∗} and S̄∗

H(1,−1) = S̄∗
H = ĽH (Hotta and Michalski [9];

also [3]).

(iii) S̄∗,α
H (A,B) = S∗

H(A,B) (Kahramaner et al. [13]).

(iv) K̄α
H(1− 2β,−1) = Sα

H(Cβ) and S̄∗,α
H (1− 2β,−1) = Lα

H(S∗
β) (0 ≤ β < 1) (Zhu and Huang [32]).

We need the following lemmas to prove our results.

Lemma 1.3 [18] If the function ω(z) = c0 + c1z + · · ·+ cnz
n + · · · is analytic and |ω(z)| ≤ 1 on U, then

|cn| ≤ 1− |c0|2, n = 1, 2, · · · . (1.3)

Lemma 1.4 Let −1 ≤ B < A ≤ 1, n = 2, 3, · · · .

(i) If h(z) = z +
∞∑

n=2
anz

n ∈ S∗(A,B), then |an| ≤ Fn(A,B), where

Fn(A,B) =

n−2∏
k=0

(A−B + k)

(n− 1)!
. (1.4)

(ii) If h(z) = z +
∞∑

n=2
anz

n ∈ K(A,B), then |an| ≤ Fn(A,B)
n , where Fn(A,B) is defined by (1.4).
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Proof If h(z) = z +
∞∑

n=2
anz

n ∈ S∗(A,B) , there exists a positive real function p(z) = 1 +
∞∑
k=1

pkz
k and

|pk| ≤ A − B , such that zh′(z)
h(z) = p(z) . Comparing the coefficients of both sides of the equation, we have

(n− 1)an = p1an−1 + p2an−2 + · · ·+ pn−2a2 + pn−1. Therefore,

|an| ≤
(A−B)

n− 1
(1 + |a2|+ · · ·+ |an−1|).

Let ϕ(n) = 1 + |a2|+ · · ·+ |an| , we have

ϕ(n) ≤

n−1∏
k=1

(A−B + k)

(n− 1)!
, n ≥ 2.

Thus, |an| ≤

n−2∏
k=0

(A−B+k)

(n−1)! .

If h(z) = z +
∞∑

n=2
anz

n ∈ K(A,B) , then zh′(z) ∈ S∗(A,B) , and by using (i), we have

|an| ≤

n−2∏
k=0

(A−B + k)

n!
.

Thus, we complete the proof of Lemma 1.4. 2

In [6, Theorem 1], letting b = 1, α = 0, φ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) and letting n = 0 and n = 1 ,

respectively, we have:

Lemma 1.5 Let A,B ∈ R, µ ∈ R , and −1 ≤ B < A ≤ 1 .

(i) If h(z) = z +
∞∑

n=2
anz

n ∈ S∗(A,B) , then

|a3 − µa22| ≤
A−B

2
max {1, |(1− 2µ)(A−B)−B|} . (1.5)

(ii) If h(z) = z +
∞∑

n=2
anz

n ∈ K(A,B) , then

|a3 − µa22| ≤
A−B

6
max

{
1,

∣∣∣∣(1− 3

2
µ)(A−B)−B

∣∣∣∣} . (1.6)

Lemma 1.6 Let h(z) = z +
∞∑

n=2
anz

n ∈ A, −1 ≤ B < A ≤ 1, |z| = r, 0 ≤ r < 1.
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(i) If h(z) ∈ K(A,B), then{
(1−Br)

A−B
B ≤ |h′(z)| ≤ (1 +Br)

A−B
B , B ̸= 0,

e−Ar ≤ |h′(z)| ≤ eAr, B = 0,
([23, Theorem 3.1 with b = 1]) (1.7)

and {
r(1−Br)

A−B
2B ≤ |h(z)| ≤ r(1 +Br)

A−B
2B , B ̸= 0,

re−
rA
2 ≤ |h(z)| ≤ re

rA
2 , B = 0.

([23, Theorem 3.2 with b = 1]) (1.8)

(ii) If h(z) ∈ S∗(A,B), then{
(1−Ar)(1−Br)

A−2B
B ≤ |h′(z)| ≤ (1 +Ar)(1 +Br)

A−2B
B , B ̸= 0,

(1−Ar)e−rA ≤ |h′(z)| ≤ (1 +Ar)erA, B = 0,
(1.9)

and {
r(1−Br)

A−B
B ≤ |h(z)| ≤ r(1 +Br)

A−B
B , B ̸= 0,

re−Ar ≤ |h(z)| ≤ reAr, B = 0.
([12, Theorem 4]) (1.10)

Proof We need only consider the case of (1.9). Since h(z) ∈ S∗(A,B) , then∣∣∣∣zh′(z)

h(z)
− 1−ABr2

1−B2r2

∣∣∣∣ ≤ (A−B)r

1−B2r2
.

By simple calculation, we have
1−Ar

1−Br
≤
∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≤ 1 +Ar

1 +Br
,

that is,
1−Ar

1−Br
|h(z)| ≤ |zh′(z)| ≤ 1 +Ar

1 +Br
|h(z)|.

Applying (1.10), it is easy to obtain (1.9), so we complete the proof of Lemma 1.6. 2

2. Main results
Theorem 2.1 If f = h + g ∈ S̄∗,α

H (A,B), then F = H + G ∈ K̄α
H(A,B), where H(z) and G(z) satisfy the

conditions zH ′(z) = h(z) and zG′(z) = g(z), z ∈ U.

Proof According to the definition of S̄∗,α
H (A,B), h ∈ S∗(A,B). By Alexander’s theorem [4, p. 43], the function

H(z) ∈ K(A,B) . Also, H(0) = 0, H ′(0) = lim
z→0

h(z)
z = h′(0) = 1, and |G′(0)| = | lim

z→0

g(z)
z | = |g′(0)| = α. Let

Γ := [0, h(z)] ⊂ h(U), z ∈ U− {0} ; then

|g(z)| =
∣∣∣∣∫

Γ

d(g ◦ h−1(ω))

∣∣∣∣ ≤ ∫
Γ

∣∣∣∣d(g ◦ h−1(ω))

dω

∣∣∣∣ |dω| < ∫
Γ

|dω| = |h(z)|.

Hence,

|G′(z)| = lim
t→z

∣∣∣∣g(t)t
∣∣∣∣ < lim

t→z

∣∣∣∣h(t)t
∣∣∣∣ = |H ′(z)|.
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It shows that F is a locally univalent and sense-preserving harmonic function in U. Finally, appealing
to [16, Corollary 2.3], we conclude that F = H +G ∈ K̄α

H(A,B). 2

Corollary 2.2 If f = h + g ∈ S̄∗
H(A,B), then F = H + G ∈ K̄H(A,B), where H(z) and G(z) satisfy the

conditions zH ′(z) = h(z) and zG′(z) = g(z), z ∈ U.
Next, we give coefficient estimates for functions of these classes.

Theorem 2.3 Let f = h + g be such that h and g are given by (1.2) and Fn(A,B) is defined by (1.4). If
f ∈ S̄∗,α

H (A,B) , then

|bn| ≤


1−α2

2 + α(A−B), n = 2,

αFn(A,B) + (1−α2)
n

{
1 +

n−1∑
k=2

kFk(A,B)

}
, n ≥ 3.

(2.1)

The estimate of (2.1) is sharp and the extremal function is

f0(z) = h0(z) + g0(z) =
z

(1− z)A−B
+

∫ z

0

α− (α2 + α− 1)t

(1− t)
· 1 + (A−B − 1)t

(1− t)A−B+1
dt. (2.2)

In particular, if f ∈ S̄∗,α
H , n = 2, 3, · · · , then

|bn| ≤ nα+
(n− 1)(2n− 1)

6
(1− α2). (2.3)

The estimate of (2.3) is sharp and the extremal function is

f0(z) = h0(z) + g0(z) =
z

(1− z)2
+

∫ z

0

α− (α2 + α− 1)t

(1− t)
· 1 + t

(1− t)3
dt.

Proof Making use of the relation g′ = ωh′ and the power series expansions (1.2), we obtain

nbn =

n∑
p=1

papcn−p (a1 = 1, n = 2, 3, · · · ). (2.4)

The fact g′ = ωh′ , for the case z = 0, implies that c0 = b1 , so that by (1.3), we obtain |cn−p| ≤ 1 − |b1|2 =

1− α2, p = 1, 2, · · · , n− 1 . Therefore,

|bn| ≤
1

n
(1 +

n−1∑
k=2

k|ak|)(1− |c0|2) + |an||c0|. (2.5)

If f ∈ S̄∗,α
H (A,B), h ∈ S∗(A,B), then from Lemma 1.4 (i) and (2.5), we have

|bn| ≤
(1− α2)

n

{
1 +

n−1∑
k=2

kFk(A,B)

}
+ αFn(A,B),
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where Fk(A,B) is defined by (1.4). In particular,

|b2| ≤
|c1|
2

+ |a2||c0| ≤
1− α2

2
+ α(A−B).

Thus, the proof is completed. 2

Using the same methods as in Theorem 2.3, we can obtain the following results.

Theorem 2.4 Let −1 ≤ B < A ≤ 1, f = h + g be such that h and g are given by (1.2), and Fn(A,B) be
defined by (1.4). If f ∈ K̄α

H(A,B) , then

|bn| ≤


1−α2

2 + α(A−B)
2 , n = 2,

(1−α2)
n

{
1 +

n−1∑
k=2

Fk(A,B)

}
+ Fn(A,B)α

n , n ≥ 3.

In particular, if f ∈ K̄α
H , then |bn| ≤ α+ (n−1)(1−α2)

2 (n ≥ 2) .
From Theorem 2.3 and Theorem 2.4, we have:

Corollary 2.5 Let f = h+ g be such that h and g are given by (1.2) and Fn(A,B) is defined by (1.4).

(i) If f ∈ S̄∗
H(A,B), then

|bn| ≤


1+(A−B)2

2 , n = 2,

4(1+
n−1∑
k=2

kFk(A,B))2+n2F 2
n(A,B)

4n(1+
n−1∑
k=2

kFk(A,B))

, n ≥ 3.

Especially, if f ∈ S̄∗
H , then

|bn| ≤

{
5
2 , n = 2,
(n−1)2(2n−1)2+9n2

6(n−1)(2n−1) , n ≥ 3.

(ii) If f ∈ K̄H(A,B), then

|bn| ≤


1
2 + (A−B)2

8 , n = 2,

4(1+
n−1∑
k=2

Fk(A,B))2+F 2
n(A,B)

4n(1+
n−1∑
k=2

Fk(A,B))

, n ≥ 3.

Especially, if f ∈ K̄H , then

|bn| ≤

{
1, n = 2,
n2−2n+2
2(n−1) , n ≥ 3.

Also, we give the Fekete–Szegö inequalities for functions of these classes.

Theorem 2.6 Let f = h+ g be such that h and g are given by (1.2) and Fn(A,B) is defined by (1.4). For
µ ∈ R , if f ∈ S̄∗,α

H (A,B) , then

|b3 − µb22| ≤ 1−α2

3

{
1 + 3|µ|(1−α2)

4 + (A−B) |2− 3µb1|
}
+

(A−B)α
2 max {1, |(1− 2b1µ)(A−B)−B|}

(2.6)
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and

|bn+1 − bn| ≤



1−α2

2 + α(A−B + 1), n = 1,
(1−α2)(5+4(A−B))

6 + α(A−B)(A−B+3)
2 , n = 2,

(1−α2)
n+1

{
2n+1

n

(
1 +

n−1∑
k=2

kFk(A,B)

)
+ nFn(A,B)

}
+

α(Fn+1(A,B) + Fn(A,B)), n ≥ 3.

(2.7)

Especially, if f ∈ S̄∗,α
H , then

|b3 − µb22| ≤
1− α2

3

{
1 +

3|µ|(1− α2)

4
+ |4− 6µb1|

}
+ αmax {1, |3− 4b1µ|} (2.8)

and

|bn+1 − bn| ≤
1− α2

6
(4n2 − 2n+ 1) + (2n+ 1)α (n ≥ 1). (2.9)

Proof From the relation (2.4), we have

b1 = c0, 2b2 = c1 + 2a2c0, 3b3 = c2 + 2a2c1 + 3a3c0

and

nbn =

n∑
p=1

papcn−p (a1 = 1, n = 2, 3, . . .).

By (1.3), we have

|b3 − µb22| ≤
1− α2

3

{
1 +

3|µ|(1− α2)

4
+ |a2||2− 3µb1|

}
+ α

∣∣a3 − µc0a
2
2

∣∣
and

|bn+1 − bn| ≤
(1− α2)

n+ 1

{
2n+ 1

n

(
1 +

n−1∑
k=2

k|ak|

)
+ n|an|

}
+ α(|an+1|+ |an|).

If f ∈ S̄∗,α
H (A,B) , then h ∈ S∗(A,B) . Applying Lemma 1.4 and Lemma 1.5, it is easy to obtain (2.6) and

(2.7). Thus, we complete the proof of Theorem 2.6.
Using the same methods as in Theorem 2.6, we can get the following results.

Theorem 2.7 Let f = h+ g be such that h and g are given by (1.2) and Fn(A,B) is defined by (1.4). For
µ ∈ R , if f ∈ K̄α

H(A,B) , then

|b3 − µb22| ≤
1− α2

3

{
1 +

3|µ|(1− α2)

4
+

(A−B)

2
|2− 3µb1|

}
+

α(A−B)

6
max

{
1, |(1− 3

2
µb1)(A−B)−B|

}
and

|bn+1 − bn| ≤



1−α2

2 + α(A−B
2 + 1), n = 1,

(1−α2)(5+2(A−B))
6 + α(A−B)(A−B+4)

6 , n = 2,

(1−α2)
n+1

{
2n+1

n

(
1 +

n−1∑
k=2

Fk(A,B)

)
+ Fn(A,B)

}
+

α
(

Fn+1(A,B)
n+1 + Fn(A,B)

n

)
, n ≥ 3.
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Especially, if f ∈ K̄α
H , then

|b3 − µb22| ≤
1− α2

3

{
1 +

3|µ|(1− α2)

4
+ |2− 3µb1|

}
+

α

3
max{1, 3|1− µb1|}

and

|bn+1 − bn| ≤
(2n− 1)(1− α2)

2
+ 2α.

From Theorem 2.6 and Theorem 2.7, it is easy to obtain the following results.

Corollary 2.8 Let f = h+ g be such that h and g are given by (1.2) and µ ∈ R.

(i) If f ∈ S̄∗
H , then

|bn+1 − bn| ≤

{
2n+ 1, 1 ≤ n ≤ 2,
(4n2−2n+1)2+9(2n+1)2

6(4n2−2n+1) , n ≥ 3.

(ii) If f ∈ K̄H , then

|bn+1 − bn| ≤
{

2, n = 1,
4n2−4n+5

4n−2 , n ≥ 2.

Remark 2.9

(i) The results of Theorem 2.1 and Theorem 2.3 improve Theorem 2.1 and Theorem 2.2 in [9];

(ii) Letting A = 1− 2β (0 ≤ β < 1) and B = −1 in Theorem 2.1, Theorem 2.4, and Theorem 2.3, we can get
Lemma 4, Theorem 5, and Corollary 6 in [32].

Further, we obtain the distortion estimates of the coanalytic part g and area estimates as follows.
Theorem 2.10 Let f = h+ g be such that h and g are given by (1.2), |z| = r, 0 ≤ r < 1.

(i) If f ∈ K̄α
H(A,B), then

Fα,r(A,B) ≤ |g′(z)| ≤

{
( α+r
1+αr )(1 +Br)

A−B
B , B ̸= 0,

( α+r
1+αr )e

Ar, B = 0,
(2.10),

where z ∈ U and

Fα,r(A,B) =

{
max{α−r,0}

1−αr (1−Br)
A−B

B , B ̸= 0,
max{α−r,0}

1−αr e−Ar, B = 0.
(2.11)

(ii) If f ∈ S̄∗,α
H (A,B), then

Gα,r(A,B) ≤ |g′(z)| ≤

{
( α+r
1+αr )(1 +Ar)(1 +Br)

A−2B
B , B ̸= 0,

( α+r
1+αr )(1 +Ar)eAr, B = 0,

(2.12),

where z ∈ U and

Gα,r(A,B) =

{
max{α−r,0}

1−αr (1−Ar)(1−Br)
A−2B

B , B ̸= 0,
max{α−r,0}

1−αr (1−Ar)e−Ar, B = 0.
(2.13)
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Proof Applying the relation g′ = ωh′, |ω(0)| = |g′(0)| = |b1| = α, we know ω(z) satisfies the following (see
[8]): ∣∣∣∣ ω(z)− ω(0)

1− ω(0)ω(z)

∣∣∣∣ ≤ |z|. (2.14)

Equivalently, ∣∣∣∣ω(z)− ω(0)(1− r2)

1− |ω(0)|2r2

∣∣∣∣ ≤ r(1− |ω(0)|2)
1− |ω(0)|2r2

. (2.15)

From (2.15), we get
max{α− r, 0}

1− αr
≤ |ω(z)| ≤ α+ r

1 + αr
, z ∈ U. (2.16)

Finally, applying (2.16) and (1.7), we obtain (2.10); also, using (2.16) and (1.9), we have (2.12). The proof is
completed. 2

Theorem 2.11 Let f = h+ g be such that h and g are given by (1.2), Fα,r(A,B) and Gα,r(A,B) are given
by (2.11) and (2.13), respectively, and |z| = r, 0 ≤ r < 1.

(i) If f ∈ K̄α
H(A,B), then

∫ r

0

Fα,t(A,B)dt ≤ |g(z)| ≤

{ ∫ r

0
(α+t)
(1+αt) (1 +Bt)

A−B
B dt, B ̸= 0,∫ r

0
(α+t)
1+αt e

Atdt, B = 0.
(2.17)

(ii) If f ∈ S̄∗,α
H (A,B), then

∫ r

0

Gα,t(A,B)dt ≤ |g(z)| ≤

{ ∫ r

0
(α+t)
(1+αt) (1 +At)(1 +Bt)

A−2B
B dt, B ̸= 0,∫ r

0
(α+t)
1+αt (1 +At)eAtdt, B = 0.

(2.18)

Proof By (2.10), integrating along a radial line ξ = teiθ , the right-hand side of (2.17) is obtained immediately:

|g(z)| ≤

{ ∫ r

0
( α+t
1+αt )(1 +Bt)

A−B
B dt, B ̸= 0,∫ r

0
( α+t
1+αt )e

Atdt, B = 0.
(2.19)

In order to prove the left-hand side of (2.17), we note first that g is univalent. Let Γ = g({z : |z| = r})
and let ξ1 ∈ Γ be the nearest point to the origin. By a rotation we may assume that ξ1 > 0. Let γ be the line
segment 0 ≤ ξ ≤ ξ1 and suppose that z1 = g−1(ξ1) and L = g−1(γ). With ς as the variable of integration on
L, we have that dξ = g′(ς)dς on L. Hence,

ξ1 =

∫ ξ1

0

dξ =

∫ z1

0

g′(ς)dξ =

∫ z1

0

|g′(ς)||dξ| ≥
∫ r

0

|g′(teiθ)|dt

≥
∫ r

0

Fα,r(A,B)dr =

{ ∫ r

0
max{α−t,0}

1−αt (1−Bt)
A−B

B dt, B ̸= 0,∫ r

0
max{α−t,0}

1−αt e−Atdt, B = 0.
(2.20)
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By (2.12), using the same method in proof of (2.17), it is easy to prove (2.18) and so we complete the
proof of Theorem 2.11. 2

Theorem 2.12 Let f = h+ g be such that h and g are given by (1.2), A =
∫∫

U Jf (z)dxdy, z = reiθ ∈ U.

(i) If f ∈ K̄α
H(A,B), then

A ≥

{
2π
∫ 1

0
(1−Br)

2(A−B)
B

(1−α2)(1−r2)
(1+αr)2 rdr, B ̸= 0,

2π
∫ 1

0
e−2Ar (1−α2)(1−r2)

(1+αr)2 rdr, B = 0,

A ≤

 2π
(∫ a

0
(1 +Br)

2(A−B)
B

(1−α2)(1−r2)
(1−αr)2 rdr +

∫ 1

a
(1 +Br)

2(A−B)
B rdr

)
, B ̸= 0,

2π
(∫ a

0
e2Ar (1−α2)(1−r2)

(1−αr)2 rdr +
∫ 1

a
e2Arrdr

)
, B = 0.

(ii) If f ∈ S̄∗,α
H (A,B), then

A ≥

{
2π
∫ 1

0
(1−Ar)2(1−Br)

2(A−2B)
B

(1−α2)(1−r2)
(1+αr)2 rdr, B ̸= 0,

2π
∫ 1

0
(1−Ar)2e−2Ar (1−α2)(1−r2)

(1+αr)2 rdr, B = 0,

A ≤


2π

(∫ a

0
(1+Ar)2(1−α2)(1−r2)

(1+Br)
2(2B−A)

B (1−αr)2
rdr +

∫ 1

a
(1+Ar)2

(1+Br)
2(2B−A)

B

rdr

)
, B ̸= 0,

2π
(∫ a

0
(1 +Ar)2e2Ar (1−α2)(1−r2)

(1−αr)2 rdr +
∫ 1

a
(1 +Ar)2e2Arrdr

)
, B = 0.

Proof We can give the Jacobian of f = h+ g in the form

Jf (z) = |h′(z)|2 − |g′(z)|2 = |h′(z)|2(1− |ω(z)|2), (2.21)

where ω(z) is the dilatation of f(z) .
If f ∈ K̄α

H(A,B) , applying (1.7) and (2.16) to (2.21), we obtain

A =

∫∫
U
Jf (z)dxdy =

∫ 2π

0

dθ

∫ 1

0

Jf (re
iθ)rdr

=

∫ 2π

0

dθ

∫ 1

0

|h′(reiθ)|2(1− |ω(reiθ)|2)rdr

≥

{
2π
∫ 1

0
(1−Br)

2(A−B)
B

(1−α2)(1−r2)
(1+αr)2 rdr, B ̸= 0,

2π
∫ 1

0
e−2Ar (1−α2)(1−r2)

(1+αr)2 rdr, B = 0,

and

A =

∫ 2π

0

dθ

∫ 1

0

|h′(reiθ)|2(1− |ω(reiθ)|2)rdr

≤

 2π
∫ 1

0
(1 +Br)

2(A−B)
B

(
1− (max{(α−r),0})2

(1−αr)2

)
rdr, B ̸= 0,

2π
∫ 1

0
e2Ar

(
1− (max{(α−r),0})2

(1−αr)2

)
rdr, B = 0,

=

 2π
(∫ a

0
(1 +Br)

2(A−B)
B

(1−α2)(1−r2)
(1−αr)2 rdr +

∫ 1

a
(1 +Br)

2(A−B)
B rdr

)
, B ̸= 0,

2π
(∫ a

0
e2Ar (1−α2)(1−r2)

(1−αr)2 rdr +
∫ 1

a
e2Arrdr

)
, B = 0.
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Therefore, we complete the proof of (i). Applying (1.9) and (2.16) to (2.21), the proof of (ii) is similar to the

above and so is omitted. 2

Finally, we can deduce the growth estimate of f .

Theorem 2.13 Let f = h+ g be such that h and g are given by (1.2), z ∈ U.

(i) If f ∈ K̄α
H(A,B), then

|f(z)| ≥

{ ∫ r

0
(1−α)(1−ξ)

1+αξ (1−Bξ)
A−B

B dξ, B ̸= 0,∫ r

0
(1−α)(1−ξ)

1+αξ e−Aξdξ, B = 0.
(2.22)

|f(z)| ≤

{ ∫ r

0
(1+α)(1+ξ)

1+αξ (1 +Bξ)
A−B

B dξ, B ̸= 0,∫ r

0
(1+α)(1+ξ)

1+αξ eAξdξ, B = 0.
(2.23)

(ii) If f ∈ S̄∗,α
H (A,B), then

|f(z)| ≥

{ ∫ r

0
(1−α)(1−ξ)

1+αξ (1−Aξ)(1−Bξ)
A−2B

B dξ, B ̸= 0,∫ r

0
(1−α)(1−ξ)

1+αξ (1−Aξ)e−Aξdξ, B = 0.
(2.24)

|f(z)| ≤

{ ∫ r

0
(1+α)(1+ξ)

1+αξ (1 +Aξ)(1 +Bξ)
A−2B

B dξ, B ̸= 0,∫ r

0
(1+α)(1+ξ)

1+αξ (1 +Aξ)eAξdξ, B = 0.
(2.25)

Proof For any point z = reiθ ∈ U, let Ur = U(0, r) = {z ∈ U : |z| < r} and denote

d = min
z∈Ur

|f(Ur)|, (2.26)

and then U(0, d) ⊆ f(Ur) ⊆ f(U). Hence, there exists zr ∈ ∂Ur such that d = |f(zr)|. Let L(t) = tf(zr), t ∈
[0, 1]; then ℓ(t) = f−1(L(t)), t ∈ [0, 1] is a well-defined Jordan arc. Since f = h + g ∈ K̄α

H(A,B), then using
Lemma 1.6, (1.7), and (2.16), we obtain

d = |f(zr)| =
∫
L

|dω| =
∫
ℓ

|df | =
∫
ℓ

|h′(η)dη + g′(η)dη̄|

≥
∫
ℓ

|h′(η)|(1− |ω(η)|)|dη|

≥

{ ∫
ℓ
(1−α)(1−|η|)

1+α|η| (1−B|η|)A−B
B |dη|, B ̸= 0,∫

ℓ
(1−α)(1−|η|)e−A|η|

1+α|η| |dη|, B = 0.

=

{ ∫ 1

0
(1−α)(1−|ℓ(t)|)

1+α|ℓ(t)| (1−B|ℓ(t)|)A−B
B dt, B ̸= 0,∫ 1

0
(1−α)(1−|ℓ(t)|)e−A|ℓ(t)|

1+α|ℓ(t)| dt, B = 0.

≥

{ ∫ r

0
(1−α)(1−ξ)

1+αξ (1−Bξ)
A−B

B dξ, B ̸= 0,∫ r

0
(1−α)(1−ξ)

1+αξ e−Aξdξ, B = 0.
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To prove (2.23), we simply use the inequality

|f(z)| = |h(z) + g(z)| ≤ |h(z)|+ |g(z)|.

By (1.7) and (2.16), with simple calculation, we have (2.23). Using the same methods, we can complete
the proofs of (2.24) and (2.25). 2

Using (2.22) and (2.24), we have:

Corollary 2.14 Let f = h+ g be such that h and g are given by (1.2), z ∈ U.

(i) If f ∈ K̄α
H(A,B), then U(0, R1) ⊂ f(U), where

R1 =

{ ∫ 1

0
(1−α)(1−ξ)

1+αξ (1−Bξ)
A−B

B dξ, B ̸= 0,∫ 1

0
(1−α)(1−ξ)

1+αξ e−Aξdξ, B = 0.

(ii) If f ∈ S̄∗,α
H (A,B), then U(0, R2) ⊂ f(U), where

R2 =

{ ∫ 1

0
(1−α)(1−ξ)

1+αξ (1−Aξ)(1−Bξ)
A−2B

B dξ, B ̸= 0,∫ 1

0
(1−α)(1−ξ)

1+αξ (1−Aξ)e−Aξdξ, B = 0.

Remark 2.15

(i) If A = 1− 2β (0 ≤ β < 1) and B = −1, then Theorem 2.10, Theorem 2.11, Theorem 2.12, and Corollary
2.14 respectively coincide with Theorem 7, Corollary 8; Theorem 9, Corollary 10; Theorem 11, Corollary
13; Theorem 14, Corollary 15; and Theorem 16, Corollary 17 in [32];

(ii) If A = 1 and B = −1 , (2.18) in Theorem 2.11 improves (2.7) of Theorem 2.4 in [14];

(iii) If A = 1 and B = −1 , then Theorem 2.10, Theorem 2.12, Theorem 2.11, and Theorem 2.13 respectively
coincide with Theorem 2.4, Theorem 2.6, Theorem 2.7, and Theorem 2.9 in [9].
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