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Abstract: The possible polynomial expressions for sums of powers of integers multiplied by an exponential term are
investigated. We explicitly give factorization of these polynomials in terms of the roots of Apostol–Bernoulli polynomials.
As a special case, alternating sums of powers of integers are also considered, and some new polynomial expressions are
given.
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1. Introduction
The sums of the form

n−1∑
a=0

ak−1δa

for δ = ±1 and k ≥ 2 an integer have been studied over the centuries. The classical Faulhaber theorem states
that for an even integer k ≥ 2 the sum

n−1∑
a=0

ak−1

is indeed a polynomial in n(n−1)/2 (for notational conventions we set the upper limit of the sum to n−1 and the
power is fit to k−1). The reader may refer to [6, 8, 12] for a general discussion. Faulhaber’s theorem had various
generalizations in different directions. One may consider sums of fixed powers of the terms {a+ ib}n−1

i=0 , which
were studied in [4, 5, 7]. These types of sums are closely related to Bernoulli and Euler polynomials/numbers.
Recently in [16], the sums of the form

[x]−1∑
a=0

ak−1,

where x is a real positive number, were related to values of Bernoulli polynomials at the fractional parts of x .
Another related type of sums of interest are alternating sums of the form

n−1∑
a=0

ak−1(−1)a.
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Different expressions for such alternating sums have been a point of interest in the last few years. In particular,
expressions of various types of such sums in terms of Euler polynomials have been recently investigated (for
example, see [3]). An important result on the alternating sums of powers proved by Gessel and Viennot is that

n−1∑
a=0

(−1)n−aa2m

is also a polynomial in n(n− 1)/2 where the coefficients are the so-called Salié numbers (Determinants, paths,
and plane partitions 1989, available at http://people.brandeis.edu/ gessel/homepage/papers/index.html). A
generalization of this result, namely an explicit form for the sum

n−1∑
a=0

(−1)n−a(y + a)2m,

is also given in terms of both Euler and Apostol–Bernoulli polynomials (see Theorem 2.3 in [7] and Equation
(1.11) in [13]).

Another direction is the study of combinatorial properties of q -analogues for sums of powers, namely the
sums obtained by replacing a by [a] := (1− qa)/(1− q) , where q can be seen as indeterminate. The reader is
referred to [9] for similar results obtained for q -analogues of sums. The method of p -adic q -integral can also
be used to obtain relations between alternating sums and families of well-known polynomials in number theory
(see [11, 18, 19]).

Here we extend the matter of interest about polynomial expressions for sums of powers by considering

n−1∑
a=0

ak−1wa or w−x
n−1∑
a=0

ak−1wa (1.1)

for an arbitrary w ∈ C with w ̸= 0, 1 (the case w = 1 is excluded due to poles of Apostol–Bernoulli numbers;
see Section 2). In general one shall not expect that either of the sums (1.1) is equal to a polynomial in n , but
here we will see that when the sums (1.1) are considered along with their counterparts obtained by replacing
w by 1/w then we have some nice polynomial expressions. Explicitly, we will show that for any integer k ≥ 2 ,
there exists a constant K such that the product

[
n−1∑
a=0

ak−1wa +K

]
.

[
n−1∑
a=0

ak−1w−a ±K

]

is indeed a polynomial in x(x− 1) over the ring Z[1/2] . Moreover, we have an explicit description of K1 and
K2 (Theorem 1 and Corollary 2 below). The classical approaches for w ± 1 basically depend on elementary
combinatorial identities and generating function techniques, but here we use a symmetry satisfied by Apostol–
Bernoulli polynomials (see Lemma 1 below).

We proceed as follows. First we state and derive basic results about Apostol–Bernoulli polynomials,
which are indeed the main tools for the rest of the paper. Then in the following section we prove the main
results.
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2. Review of Apostol–Bernoulli polynomials

Apostol–Bernoulli polynomials {βk(x,w)} for k ≥ 0 are defined by the exponential generating series

text

wet − 1
=

∞∑
k=0

βk(x,w)t
k

k!
,

where w ̸= 1 [2]. Note that βk(x,w) is a polynomial in x over Z[w, 1/(w − 1)] . The k th Apostol–Bernoulli
number at w is defined as βk(0, w) . For any k ≥ 1 , β(0, w) has a pole at w = 1 and is analytic outside w = 1 .
The definition and basic properties of βk(x,w) , and relations of them with the Lerch zeta function, can be
found in [2].

The Apostol–Bernoulli polynomials have drawn considerable attention in the last years. They are related
to Hurwitz zeta functions as explained in [2] and [14]. Also, their combinatorial properties are studied and
generalized in a way similar to Bernoulli polynomials. The reader may refer to [15]. The relations among
Apostol–Bernoulli polynomials and similar polynomials/numbers of combinatorial nature have been studied in
many recent works, e.g., [10, 13, 20]. These polynomials also have an interpretation in terms of some specific
p -adic integrals; for example, see [17].

Below we give some basic properties of βk(x,w) that we will need later. These follow by direct compu-
tation. The reader may also refer to [2] for details. We may use these identities without any explanation and
further reference.

First we have that β0(x,w) = 0 , and that β1(x,w) = 1/(w − 1) . The following identity is analogous to
the formula well known for Bernoulli polynomials:

βk(x,w) =

k∑
i=0

(
k

i

)
βi(0, w)x

k−i.

We also have that, for k ≥ 2 ,
wβk(1, w) = βk(0, w).

There are also other identities involving Apostol–Bernoulli polynomials/numbers that shall be distin-
guished among the other ones:

wβk(x+ 1, w) = βk(x,w) + kxk−1, (2.1)

wxβk(x,w) = βk(0, w) +

x−1∑
a=0

ak−1wa, x ∈ Z, x ≥ 1. (2.2)

Note that the first one is again proved in [2]. The second one easily follows from the first one by induction.
Equation (2.2) resembles the relation between the Apostol–Bernoulli polynomials and sums of powers of
consecutive integers (multiplied by powers of w ). In this paper we aim to further investigate this relation
and prove some certain results on expressions of such sums in terms of polynomials in x(x− 1) .

We give another identity crucial for the rest of the paper. It is elementary, so the author thinks that it
should be known. However, due to a lack of a suitable references, we give a complete proof here.

Lemma 1 For any integer k ≥ 0 and w ̸= 0, 1 , the following equality holds:

(−1)kβk(x, 1/w) = wβk(1− x,w). (2.3)
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Proof By definition we have that

∞∑
k=0

βk(x, 1/w)(−1)k
tk

k!
=

(−t)ex(−t)

(1/w)e−t − 1
.

We may manipulate the right-hand side as

(−t)ex(−t)

(1/w)e−t − 1
=

−wte−xt

e−t(1− wet)
=

wte(1−x)t

wet − 1
= w

∞∑
k=0

βk(1− x,w)
tk

k!
.

Equating the coefficients of tk in both expansions we obtain the desired equality. 2

Corollary 1 We have β1(0, 1/w) = −wβ1(0, w) , and for any integer k ≥ 2 and w ̸= 0, 1 ,

βk(0, 1/w) = (−1)kβk(0, w).

Proof The assertion for β1 follows since β1(0, w) = 1/(w−1) . Now for k ≥ 2 , we have wβk(1, w) = βk(0, w) ,
so setting x = 0 in Equation (2.3) gives the desired result. 2

3. Main results
Let k ≥ 2 . For any integer n ≥ 1 , let

S(n, k, w) =

n−1∑
a=0

ak−1wa

where w ∈ C with w ̸= 0, 1 . Equation (2.2) now reads as

βk(x,w) = w−x[βk(0, w) + S(n, k, w)]. (3.1)

This equation is a natural relation between S(n, k, w) and βk(x,w) , so in order to understand the possible
polynomial expressions involving S(n, k, w) we shall work on βk(x,w) .

We set the following convention. Whenever a result holds for a function we use the variable x , and if the
result makes sense only for positive integers we use n instead of the variable x . Now we state the main result
of the paper, which is about the structure of the product βk(x,w).βk(x, 1/w)

Theorem 1 Let k ≥ 2 . For any w ̸= 0, 1 , the product

βk(x,w).βk(x, 1/w)

is a polynomial in x(x− 1) over the ring Z[w, 1/(w − 1)] .

Proof By Lemma 1 we have that

βk(x,w).βk(x, 1/w) = (−1)kwβk(x,w)βk(1− x,w).

Recall that

βk(x,w) =

k∑
i=0

(
k

i

)
xk−iβi(w).
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As βi(w) ∈ Z[w, 1/(w − 1)] , the claim for the coefficients is clear. Since β0 = 0 and β1(w) = 1/(w − 1) we
have that (w − 1)βk(x,w) is a monic polynomial in x of degree k − 1 . We can factorize (w − 1)βk(x,w) over
an algebraic closure of Q(w) as

(w − 1)βk(x,w) =

m∏
i=1

(x− αi)
ri ,

where αi denotes the distinct roots of βk(x,w) with multiplicity ri . Note that αi depends on w . Thus,

(w − 1)βk(x, 1/w) = (−1)kw(w − 1)βk(1− x,w) = (−1)kw

m∏
i=1

(1− x− αi)
ri ,

which gives that

βk(x,w)βk(x, 1/w) =
(−1)kw

(w − 1)2

m∏
i=1

[(x− αi)
ri(1− x− αi)

ri ]

=
(−1)kw

(w − 1)2

m∏
i=1

[(x− αi)
ri(x+ αi − 1)ri(−1)ri ]

=
(−1)kw

(w − 1)2
(−1)k−1

m∏
i=1

[(x(x− 1)− αi(αi − 1))]
ri

=
−w

(w − 1)2

m∏
i=1

[(x(x− 1)− αi(αi − 1))]
ri .

2

The above theorem is also a constructive proof in the sense that it gives the factorization of the product
βk(x,w)βk(x, 1/w) in terms of the factorization of βk(x,w) . We can state this result in terms of the finite sums
S(n, k, w) as follows.

Corollary 2 Let w be given as in Theorem 1. Then

[S(n, k, w) + βk(0, w)]
[
S(n, k, 1/w) + (−1)kβk(0, w)

]
=

−w

(w − 1)2

m∏
i=1

[x(x− 1)− αi(αi − 1)]
ri

where αi for i = 1, 2, ...m denotes the distinct roots of βk(x,w) with multiplicity ri .

Proof Let n ≥ 1 be an integer. First consider Equation (3.1) simultaneously for both w and 1/w :

wnβk(n,w) = βk(0, w) + S(n, k, w),

w−nβk(n, 1/w) = βk(0, 1/w) + S(n, k, 1/w).

Taking the product side by side gives

βk(n,w).βk(n, 1/w) = [S(n, k, w) + βk(0, w)] . [S(n, k, 1/w) + βk(0, 1/w)] .
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Then the result follows by Corollary 1 and Theorem 1. 2

Now we may specialize to the case w = −1 , which has been a common interest (see the discussion in
the introduction). Note that by Corollary 1, βk(0,−1) = 0 whenever k ≥ 2 is odd. Using this fact and setting
w = −1 in Theorem 1 and Corollary 2, we directly obtain the following result.

Corollary 3 Let w be given as in Theorem 1. Then for any integer n ≥ 1 we have

[βk(n,−1)]2 =
1

4

m∏
i=1

[n(n− 1)− αi(αi − 1)]
ri = S(n, k, w)2, if k is odd

[βk(n,−1)]2 =
1

4

m∏
i=1

[n(n− 1)− αi(αi − 1)]
ri = [S(n, k, w) + βk(0,−1)]2, if k is even

where αi for i = 1, 2, ...,m denotes the distinct roots of βk(x,w) with multiplicity ri .

Now we obtain results for the special case w = −1 . First recall that setting w = −1 in Theorem 1 and
its proof, we obtain

[βk(x,−1)]2 =
1

4

m∏
i=1

[(x(x− 1)− αi(αi − 1))]
ri .

We aim to deduce the structure of βk(x,−1) using this factorization of [βk(x,−1)]2 . However, note that it
would be wrong to directly deduce that βk(x,−1) is a polynomial in x(x− 1) , as we have the possibility that
αi = 1/2 for some i .

Theorem 2 Let w be given as in Theorem 1. Then there exists some polynomial Tk ∈ Z[1/2][x] depending on
k such that

βk(x,−1) = Tk(x(x− 1)), if k is odd

βk(x,−1) =

(
x− 1

2

)
Tk(x(x− 1)), if k is even.

Proof Let fi(x) = x(x− 1)− αi(αi − 1) . The roots of fi are αi and 1− αi , so fi(x) and fj(x) are coprime
whenever i ̸= j , but also

[βk(x,−1)]2 =
1

4

m∏
i=1

[x(x− 1)− αi(αi − 1)]
ri .

Thus, each [x(x− 1)− αi(αi − 1)]
ri must be a square of some polynomial. First we consider the case αi ̸= 1/2 .

Then the roots of fi are distinct, so fi cannot be a square. Thus, ri must be even if αi ̸= 1/2 , say ri = 2si .
For αi = 1/2 we have that

x(x− 1)− αi(αi − 1) = (x− 1/2)2.

By reordering the terms say αm = 1/2 . Thus, in any case we can write

4[βk(x,−1)]2 =

(
m−1∏
i=1

[x(x− 1)− αi(αi − 1)]
2si

)
(x− 1/2)2rm

=⇒ ±2βk(x,−1) =

(
m−1∏
i=1

[x(x− 1)− αi(αi − 1)]
si

)
(x− 1/2)rm .
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Now the degree of the product
(∏m−1

i=1 [x(x− 1)− αi(αi − 1)]
si
)

is even, so the parities of the degree

of βk(x,−1) and of rm must be the same (recall that the degree of βk(x,−1) is k − 1). Also, if rm is even
then (x− 1/2)rm is again a polynomial in x(x− 1) . Similarly, if rm is odd then (x− 1/2)rm is the product of
(x− 1/2) by a polynomial in x(x− 1) . Hence, we have that

βk(x,−1) = Tk(x(x− 1)), if k is odd

βk(x,−1) =

(
x− 1

2

)
Tk(x(x− 1)), if k is even and k ̸= 0

for some polynomial Tk depending on k as claimed.
This proves that βk(x,−1) is a polynomial in x(x−1) , but we did not say anything about the coefficients

of Tk . Now we show that the coefficients of Tk belong to Z[1/2] . Once we fix k we may denote Tk by T . First
note that 2βk(x,−1) is monic. Recall that by Theorem 1

βk(x,−1) ∈ Z[1/2][x].

Let 2T (t) = ts + a1t
s−1 + ...+ as−1t+ as , so that

2T (x(x− 1)) = (x(x− 1))s + a1(x(x− 1))s−1 + ...+ as−1(x(x− 1)) + as.

Now consider the equalities

Tf (x(x− 1)) = βk(x,−1)

Tf (x(x− 1)) =
βk(x,−1)(
x− 1

2

)
respectively for odd and even k . Putting x = 0 in either equality we see that as ∈ Z[1/2] . Let y = x(x− 1) ,
so that the coefficients ai are given by

2ai =
∂T i

(∂y)i

∣∣∣∣
y=0

.

However, the differential operator ∂

∂y
satisfies

∂

∂y
= 2

(
x− 1

2

)
∂

∂x
,

so both
∂βk(x,−1)

∂y
and ∂(βk(x,−1)/(x− 1/2))

∂y

are equal to the product of a polynomial in Z[1/2][x] and a term of the form (x − 1/2)d where d ∈ Z . By
setting y = 0 (equivalently x = 0 or x = 1) we obtain as−1 ∈ Z[1/2] .

Then in a similar way applying the operator ∂

∂y
and setting y = 0 successively gives that ai ∈ Z[1/2][x]

for all i = 1, 2, ..., s . This completes the proof. 2
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We may state this final result in terms of the finite sums S(n, k,−1) =
n−1∑
a=0

ak−1(−1)a . It follows by

Equation (3.1), Corollary 3, and the above theorem.

Corollary 4 We have that:

i) If k ≥ 2 is an odd integer then (−1)nS(n, k,−1) is a polynomial of n(n− 1) with coefficients in Z[1/2] .

ii) If k ≥ 2 is an even integer then (−1)n[S(n, k,−1) + βk(0,−1)] is equal to the product of (n− 1/2) by a
polynomial of n(n− 1) with coefficients in Z[1/2] .
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