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Abstract: In this paper, we show that there is at most one value of the positive integer X participating in the Pell
equation X2 − dY 2 = k , where k ∈ {±1,±4} , which is a Padovan number, with a few exceptions that we completely
characterize.
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1. Introduction
Let {Pl}l≥0 be the Padovan sequence given by Pl = Pl−2 + Pl−3 , for l ≥ 3 , where P0 = 0 , P1 and P2 = 1 . A
few terms of this sequence are:

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200 . . .

Let d > 1 be a positive integer which is not a perfect square. Consider the Pell equations

X2 − dY 2 = ±1, (1.1)

and
X2 − dY 2 = ±4. (1.2)

It is well known that all positive solutions (X,Y ) of (1.1) are given by

Xn + Yn

√
d = (X1 + Y1

√
d)n,

for some positive integer n , where (X1, Y1) is the smallest positive solution of (1.1). Also, it is well know that
all positive solutions (X,Y ) of (1.2) are given by

Xm + Ym

√
d

2
=

(
X ′

1 + Y ′
1

√
d

2

)m

,

for some positive integer m , where (X ′
1, Y

′
1) is the smallest positive solution of (1.2).
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In the literature, there are many papers investigating for which d there are members of the sequence
{Xn}n≥1 or {Ym}m≥1 belonging to some interesting sequences of positive integers such as the sequence of all
base 10-repdigits [2], the sequence of all base b -repdigits [4], the sequence of Fibonacci numbers [5, 8], and the
sequence of Tribonacci numbers [7]. For most sequences, one expects that the answer to such a question has at
most one positive integer solution n for any given d except maybe for a few (finitely many) values of d . It is
natural to ask what will happen if Xm is a Padovan number.

In this paper, we study when Xn and Xm can be a Padovan number. We will prove the following
theorems:

Theorem 1.1 Let d ≥ 2 be square-free. The diophantine equation

Xn = Pl, (1.3)

has at most one solution (n, l) in positive integers with the following exceptions:

• (n1, l1) = (1, 4), (n2, l2) = (1, 5), (n3, l3) = (1, 8), (n4, l4) = (2, 9) and (n5, l5) = (2, 16) in the +1 case,

• (n1, l1) = (1, 1), (n2, l2) = (1, 2), (n3, l3) = (1, 3), (n4, l4) = (1, 4), (n5, l5) = (1, 5), (n6, l6) = (2, 6),

(n7, l7) = (2, 10), and (n8, l8) = (3, 9) in the −1 case.

Theorem 1.2 Let d ≥ 2 be square-free. The diophantine equation

Xm = Pl, (1.4)

has at most one solution (m, l) in positive integers with the following exceptions:

• (m1, l1) = (1, 4), (m2, l2) = (1, 5), and (m3, l3) = (2, 11), in the −1 case.

We organize this paper as follows. In Section 2, we recall some results useful for the proof of two main
theorems, particularly some results on the lower bounds of linear forms in logarithms and Baker–Davenport the
reduction method. The proof of Theorem 1.1 is done in four steps in Section 3, and the last section is devoted
to the proof of Theorem 1.2 using the same method.

2. Auxiliary results
2.1. The Padovan sequence

Here, we recall a few properties of the Padovan sequence {Pl}l≥0 which are useful in proving our theorem.
The characteristic equation

x3 − x− 1 = 0,

has roots α, β, γ = β , where

α =
r1 + r2

6
, β =

−r1 − r2 + i
√
3(r1 − r2)

12
,

and

r1 =
3

√
108 + 12

√
69 and r2 =

3

√
108− 12

√
69.
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Further, Binet’s formula is
Pl = aαl + bβl + cγl, for all l ≥ 0, (2.1)

where

a =
(1− β)(1− γ)

(α− β)(α− γ)
, b =

(1− α)(1− γ)

(β − α)(β − γ)
, c =

(1− α)(1− β)

(γ − α)(γ − β)
= b. (2.2)

Numerically, we have
1.32 < α < 1.33,
0.86 < |β| = |γ| = α−1/2 < 0.87,
0.72 < a < 0.73,
0.24 < |b| = |c| < 0.25.

(2.3)

Using induction, we can prove that
αl−2 ≤ Pl ≤ αl−1, (2.4)

for all l ≥ 4 .

2.2. Linear forms in logarithms
The next tools are related to the transcendental approach to solve diophantine equations. For any nonzero
algebraic number γ of degree d over Q , whose minimal polynomial over Z is a0

∏d
i=1

(
X − γ(i)

)
, we denote

the usual absolute logarithmic height of γ by

h(γ) =
1

d

(
log |a0|+

d∑
i=1

log max
(
1,
∣∣∣γ(i)

∣∣∣)) .

We start by recalling Theorem 9.4 of [1], which is a modified version of a result of Matveev [9].

Lemma 2.1 Let γ1, . . . , γs be real algebraic numbers and let b1, . . . , bs be nonzero rational integer numbers.
Let D be the degree of the number field Q(γ1, . . . , γs) over Q and let Aj be a positive real number satisfying

Aj = max{Dh(γj), | log γj |, 0.16} for j = 1, . . . , s.

Assume that
B ≥ max{|b1|, . . . , |bs|}.

If γb1
1 · · · γbs

s ̸= 1 , then

|γb1
1 · · · γbs

s − 1| ≥ exp(−C(s,D)(1 + logB)A1 · · ·As),

where C(s,D) := 1.4 · 30s+3 · s4.5 ·D2(1 + logD).

When s = 2 , we have the following result due Laurent (see [6]), which is better than Lemma 2.1 in this particular
case.

Lemma 2.2 Let γ1 > 1 and γ2 > 1 be two real multiplicatively independent algebraic numbers, b1, b2 ∈ Z not
both 0 and

Λ = b2 log γ2 − b1 log γ1.
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Let D := [Q(γ1, γ2) : Q] . Let

hj ≥ max
{
h(γj),

| log γj |
D

,
1

D

}
for j = 1, 2, b′ ≥ |b1|

Dh2
+

|b2|
Dh1

.

Then, we have

log |Λ| ≥ −17.9 ·D4

(
max

{
log b′ + 0.38,

30

D
, 1

})2

h1h2.

2.3. The reduction method
We recall now a slight modification of the original version of the Baker–Davenport reduction method. (See [3],
Lemma 5a.)

Lemma 2.3 Assume that τ and µ are real numbers and M is a positive integer. Let p/q be the convergent of
the continued fraction of the irrational τ such that q > 6M , and let A,B, µ be some real numbers with A > 0

and B > 1 . Let ξ = ||µq|| −M · ||τq|| , where || · || denotes the distance from the nearest integer. If ξ > 0 , then
there is no solution of the inequality

0 < mτ − n+ µ < AB−k

in positive integers m , n , and k with

m ≤ M and k ≥ log(Aq/ξ)

logB .

3. Proof of Theorem 1.1
The proof of Theorem 1.1 will be done in four steps,

3.1. Step 1:

In this step, we will determine the relationship between n and l . So let (X1, Y1) the fundamental solution of
the Pell equation (1.1), so

X2
1 − dY 2

1 =: ε, ε = ±1.

We put
δ := X1 +

√
dY1 and η := X1 −

√
dY1 = εδ−1,

then

Xn =
1

2
(δn + ηn). (3.1)

Using the fact that δ ≥ 1 +
√
2 , we get the following estimate

δn

α4
≤ Xn ≤ δn, for all n ≥ 1. (3.2)

We now assume that (n1, l1) and (n2, l2) are pairs of positive integers such that

Xn1
= Pl1 and Xn2

= Pl2 .
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Without losing the generality, we can assume that n1 < n2 , so l1 < l2 . Putting (n, l) = (ni, li) for i ∈ {1, 2}
and using inequalities (2.4) and (3.2), we obtain that

αl−2 ≤ Pl = Xn < δn and δn

α4
≤ Xn = Pl ≤ αl−1. (3.3)

Hence, we get
nc1 − 3 ≤ l ≤ nc1 + 2, c1 := log δ/ logα. (3.4)

3.2. Step 2:

In this step, we will apply Matveev’s theorem of a linear form in three logarithms to get a bound to n and l in
terms of log l . First, we will prove the following lemma.

Lemma 3.1 If l > 200 , then ∣∣δn(2a)−1α−l − 1
∣∣ < 2

α3l/2
. (3.5)

Proof Using (2.1) and (3.1), we get

δn

2
− aαl = −ηn

2
+ bβl + cγl.

Multiplying both sides by a−1α−l , we obtain

δn(2a)−1α−l − 1 = −(2a)−1α−lηn + (b/a)(βα−1)l + (c/a)(γα−1)l.

Thus, using (2.3), and assuming l > 200 , we have

∣∣δn(2a)−1α−l − 1
∣∣ ≤ 1

2aαlδn
+

|b| |β|l

aαl
+

|c| |γ|l

aαl
,

<
1

2aαlδn
+

2 |b|
aα3l/2

,

<
α3

2aα2l
+

2 |b|
aα3l/2

,

<
2

α3l/2
.

Above, we used that |b|/a < 1/2 , |β| = α−1/2 (see (2.3)) and that αl/2 > α3/(2a) , which holds for l > 200 . 2

Now, we put
Γ := δn(2a)−1α−l − 1. (3.6)

We will apply Lemma 2.1 to (3.6) and use Lemma 3.1 to prove the following proposition.

Proposition 3.2 If Xn = Pl and l > 200 , then

n < 3.74× 1014(1 + log l) and l < 1.4× 1015 log δ(1 + log l).
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Proof To apply Lemma 2.1 to (3.6), we need to check that Γ ̸= 0 . If we assume that Γ = 0 , then δn = (2a)αl .
However, the left-hand side belongs to Q(

√
d) which is a quadratic field, while the right-hand side belongs to

Q(α) which is a field of degree 3. The intersection of these two fields is Q . Thus, δn ∈ Q . Since δ is an
algebraic integer and n ≥ 1 , it follows that δn ∈ Z . Since δ is a unit, we get that δn = 1 , so n = 0 . We deduce
a contradiction. Therefore, Γ ̸= 0 . To apply Lemma 2.1, we take

s = 3, γ1 = δ, γ2 = 2a, γ3 = α, b1 = n, b2 = −1, b3 = −l.

Clearly, γ1, γ2, γ3 ∈ Q(
√
d, α) , so we can take D = 6 . Since δ ≥ 1+

√
2 > α , the first inequality of (3.4) implies

that n ≤ l + 3 . Thus, we can take B = l + 3 . We have

h(γ1) =
log δ
2

and h(γ3) =
logα
3

< 0.1.

Further, the minimal polynomial of 2a is 23x3 − 46x2 +24x− 8 and has roots 2a, 2b, 2c . Since |2b| = |2c| < 1 ,
then

h(γ2) =
1

3
(log 23 + log 2a) < 1.2.

Thus, we can take
A1 = 3 log δ, A2 = 7.2, A3 = 0.6.

Lemma 2.1 implies that

log |Γ| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + log(l + 3))(3 log δ)(7.2)(0.6),
> −1.87× 1014 log δ(1 + log(l + 3)).

Comparing the above inequality with (3.5), we have

1.5l logα− log 2 < 1.87× 1014 log δ(1 + log(l + 3)).

Thus,
l logα < 3.74× 1014 log δ(1 + log l).

Since αl+3 > δn (see the second equation in (3.3)), we get that

n < 3.74× 1014(1 + log l). (3.7)

Furthermore, since α > 1.32 , we get

l < 1.4× 1015 log δ(1 + log l). (3.8)

2

3.3. Step 3:
In this step, we will use Lemma 2.2, i.e. a linear form in two logarithms to get an upper bound for n1, n2, l1 ,
and l2 . To do this, we define the following linear form in two logarithms:

Λ := (n2 − n1) log 2a+ (n2l1 − n1l2) logα. (3.9)
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Lemma 3.3 If l2 > l1 > 200 , then |Λ| < 8n2

α3l1/2
.

Proof Put
Λ′ := n log δ − log 2a− l logα.

Since ∣∣∣eΛ′
− 1
∣∣∣ = |Γ| < 1

2
,

it follows that

|Λ| < 2
∣∣eΛ − 1

∣∣ < 4

α3l/2
.

So, for l2 > l1 > 200 ,

|ni log δ − log 2a− li logα| < 4

α3li/2
holds for i = 1, 2. (3.10)

Multiply one of the two inequalities above for i = 1 with n2 and the one for i = 2 with n1 , subtract them and
apply the triangle inequality to get that

|Λ| = |n2(n1 log δ − log 2a− l1 logα)− n1(n2 log δ − log 2a− l2 logα)| ,
≤ n2 |n1 log δ − log 2a− l1 logα|+ n1 |n1 log δ − log 2a− l1 logα| ,

≤ 4n2

α3l1/2
+

4n1

α3l2/2
<

8n2

α3l1/2
.

2

Now, we will prove the following proposition.

Proposition 3.4 If Xni
= Pli for i = 1, 2 with l1 < l2 (so n1 < n2 ), then

l1 < 6155655, n2 < 2.1× 1016, l2 < 2.71× 1023.

Proof We apply Lemma 2.2 to Λ with

γ1 = 2a, γ2 = α, b1 = n2 − n1, b2 = n2l1 − l2n1.

Since the norm of γ1 is 8/23 while γ2 is a unit, γ1 and γ2 are multiplicatively independent. We have
γ1, γ2 ∈ Q(α) , then D = 3 . So, we have

max
{
h(γ1),

|log γ1|
3

,
1

3

}
< 3.6

and

max
{
h(γ2),

|log γ2|
3

,
1

3

}
=

1

3
.

Therefore, we take

h1 := 3.6 and h2 =
1

3
.
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On the other hand, Lemma 3.3 implies that

|n2l1 − n1l2| ≤ (n2 − n1)
|log 2a|
logα +

8n2

α3l1/2 logα < 1.4n2.

Hence, we get

b′ =
n2 − n1

3× (1/3)
+

|n2l1 − n1l2|
3× 3.6

< 2n2.

Thus, using Lemma 2.2 we obtain

log |Λ| > −17.9× 34 (max {log 2n2 + 0.38, 10})2 × (1/3)× (3.6),

i.e.
log |Λ| > −1739.88 (max {log 2n2 + 0.38, 10})2 .

Combining this with Lemma 3.3, we get

1.5l1 logα− log(8n2) < 1739.88 (max {log 2n2 + 0.38, 10})2 .

If log(2n2) + 0.38 ≤ 10 , then n2 < 7532 . The above inequality gives

1.5l1 logα < 1739.88× 102 + log(8× 7532),

which implies that l1 < 116000 . Hence, n1 < n2 < 7532 in this case.
Next, assume that n2 > 7532 . Then

1.5l1 logα < 1739.88(log(2n2) + 0.38)2 + log(8n2) < 1746(1 + logn2)
2,

which gives
l1 < 4135(1 + logn2)

2. (3.11)

Since αl1+3 > δn1 ≥ δ (see the second relation in (3.3)), we get

log δ < (l1 + 3) logα < 1163(1 + logn2)
2.

Combining this with the second inequality of Proposition 3.2 with (n, l) = (n2, l2) , together with the fact that
n2 < l2 + 3 , we get

l2 + 3 < 1.4× 1015 × 1164× (1 + log(l2 + 3))3,

giving l2 < 2.71× 1023 . Inserting this into the first inequality of Proposition 3.7, we get n2 < 2.1× 1016 , which
together with (3.11) gives l1 < 6155655 . 2

3.4. Step 4:

This step will conclude the proof with the final computations. Therefore, to lower the above bounds obtained,
we will use continued fractions on (3.9) and Baker–Davenport reduction on (3.10).
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Put χ := − log 2a/ logα . Lemma 3.3 implies that

|(n2 − n1)χ− (n2l1 − n1l2)| <
8n2

α3l1/2 logα. (3.12)

Using the fact that logα < 0.28 and l1 > 200 and Proposition 3.4, we obtain

16

logα (n2 − n1) < 57(n2 − n1) < 57n2
2 < 3× 1034 < 4× 1036 < α3l1/2. (3.13)

Thus
8n2

α3l1/2 logα <
1

2(n2 − n1)
, (3.14)

it follows that (n2l1 − n1l2)/(n2 − n1) is convergent of χ .
Obviously, n2−n1 < n2 < 2.1×1016 . Let [a0, a1, a2, . . .] = [−2, 1, 2, 3, 1, 11, . . .] be the continued fraction

expansion of χ , and let pk/qk be it’s kth convergent. After a computer calculation, we get

q35 = 7378985365660874 < 2.1× 1016 < 29361432635377315 = q36,

furthermore the maximum of ai (i = 0, 1, . . . , 36) is 46 = a34 . Hence,

1

48n2
<

1

24(n2 − n1)
< |(n2 − n1)χ− (n2l1 − n1l2)| <

8n2

α3l1/2 logα.

Using Proposition 3.4 and comparing the leftmost and rightmost expressions, we get l1 ≤ 195.4 . Since we
assume that l1 > 200 , we conclude that l1 ≤ 200 . Now (3.7) gives n1 ≤ 64.8 .

The upper bounds on n1 and l1 make it possible to compute all existing n1 and l1 . Defining

Q+
n (X) :=

(X +
√
X2 − 1)n + (X −

√
X2 − 1)n

2

and
Q−

n (X) :=
(X +

√
X2 + 1)n + (X −

√
X2 + 1)n

2
,

and using compute search on the equations

Q+
n1
(X1) = Pl1 and Q−

n1
(X1) = Pl1 ,

with 1 ≤ l1 ≤ 200 and n1 ≤ 64 , where n1 < l1 + 3 results in only the following possibilities:
Besides the trivial case n1 = 1 (for both equations), which implies X1 = Pl1 , the only nontrivial solutions

are
(n1, l1, X1) = (2, 9, 2) and (n1, l1, X1) = (2, 16, 5),

in the first case which leads to (d, Y1) = (3, 1) and (d, Y1) = (6, 2) , respectively, and

(n1, l1, X1) = (2, 6, 1) and (n1, l1, X1) = (2, 10, 2),

in the second case which leads to (d, Y1) = (2, 1) and (d, Y1) = (5, 1) , respectively. To determine all the
solutions of equation (1.3), we apply (3.10) and Lemma 2.3. First, observe that∣∣∣∣n2

log δ
logα − l2 + χ

∣∣∣∣ < 4

α3l2/2 logα < 14.3 · 1.6−l2 .
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Put
δ1 = 2 +

√
3, δ2 = 5 + 2

√
6, δ3 = 1 +

√
2, δ4 = 2 +

√
5.

Taking the continued fraction expansion of log δi/ logα for i = 1, 2, 3, 4 , such that the suitable denominator of
it exceeds 1.26× 1017 , we found that

q1,42 = 657142969198152933 ≈ 6.57× 1017,

and
q2,36 = 7249506692243760373 ≈ 7.24× 1018,

and
q3,42 = 116521408058350539327645 ≈ 1.16× 1023,

and
q4,36 = 194847711151769850 ≈ 1.94× 1017,

is satisfactory for i = 1 , i = 2 , i = 3 , and i = 4 , respectively. We now apply Lemma 2.3, with m = n2 ,
n = l2 , k = m2 , A = 14.3 , B = 1.6 , M = 2.1× 1016 , τ = log δi/ logα , and µ = χ . Further, according to the
four cases q = q1,42 , q = q2,36 , q = q3,42 and q = q4,36 , we get ξ1 > 0.56 , ξ2 > 0.21 , ξ3 > 0.43 , and ξ4 > 0.69 .
Consequently,

• In the first case: l2 < 104.92 and n2 < 36.47 ,

• In the second case: l2 < 112.96 and n2 < 39.04 ,

• In the third case: l2 < 134.21 and n2 < 45.82 ,

• In the fourth case: l2 < 101.56 and n2 < 35.41 .

However, since we assume that l2 > 200 , we get a contradiction, so l2 ≤ 200 leading to n2 < 64, 8 . Checking
the last range we only obtained the following possibilities:

X1 = 2 = P4 = P5, X2 = 7 = P9, with d = 3,

and
X1 = 5 = P8, X2 = 49 = P16, with d = 6,

and
X1 = 1 = P1 = P2 = P3, X2 = 3 = P6 X3 = 7 = P9, with d = 2,

and
X1 = 2 = P4 = P5, X2 = 9 = P10, with d = 5,

respectively.
Finally, in order to check the trivial cases n1 = 1 , X1 = Pl1 , we used a brute force algorithm which

essentially coincides with the treatment of the nontrivial cases. For any 1 ≤ l1 ≤ 200 , we determine the
decomposition Pl1 − ε = dY 2

1 , where d is square-free. In this way we find δl1 = X1 +
√
dY1 . Then we consider

the first convergents of the continued fraction expansions of

log δl1
logα (3.15)
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such that the denominator is larger than M = 1.26×1017 , and the ξ value in Lemma 2.3 is positive. The upper
bounds on l2 are always less than 200, which contradicts the assertion l2 > 200 . Thus only cases l2 ≤ 200

remain to be verified. As conclusion, the trivial cases do not yield further solutions to (1.3). Theorem 1.1 is
therefore proved.

4. Proof of Theorem 1.2
The proof of Theorem 1.2 will be similar to that of Theorem 1.1 in four steps.

4.1. Step A

In this step, we will start by determining a relationship between the parameters m and l . Let (X ′
1, Y

′
1) be the

fundamental solution of the Pell equation (1.2). We set

σ :=
X ′

1 +
√
dY ′

1

2
and ϱ :=

X ′
1 −

√
dY ′

1

2
.

One can see that σϱ = ε , so ϱ = εσ−1 , where ε ∈ {±1} . With

σm =
Xm + Ym

√
d

2
and ϱm =

Xm − Ym

√
d

2
,

we get
Xm = σm + ϱm. (4.1)

Since σ ≥ 1 +
√
2

2
, we obtain the following estimate

σm

α2
≤ Xm ≤ 2σm, for all m ≥ 1. (4.2)

We now assume (m1, l1) and (m2, l2) are pairs of positive integers such that

Xm1 = Pl1 and Xm2 = Pl2 .

Without loss of the generality, we can assume that m1 < m2 so l1 < l2 . Put (m, l) = (mi, li) , for i ∈ {1, 2} .
The inequalities (2.4) and (4.2) lead to

αl−2 ≤ Pl = Xm < 2σm and σm

α2
≤ Xm = Pl ≤ αl−1. (4.3)

Hence, we obtain
mc2 logσ − 1 ≤ l ≤ mc2 logσ + 3, c2 := 1/ logα. (4.4)

4.2. Step B
In this step, we apply Matveev’s theorem to a form linear in three logarithms to get a bound to m and l in
terms of log l . First, we prove the following lemma.

Lemma 4.1 If l > 200 , then ∣∣σma−1α−l − 1
∣∣ < 2

α3l/2
. (4.5)
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Proof The equalities (2.1) and (4.1) imply that

σm − aαl = −ϱm + bβl + cγl.

Dividing both sides by aαl , we get

σma−1α−l − 1 = −a−1α−lϱm + (b/a)(βα−1)l + (c/a)(γα−1)l.

Using (2.3) and assuming l > 200 , we get

∣∣σma−1α−l − 1
∣∣ ≤ 1

aαlσm
+

|b| |β|l

aαl
+

|c| |γ|l

aαl
,

<
1

aαlσm
+

2 |b|
aα3l/2

,

<
α3

aα2l
+

2 |b|
aα3l/2

<
2

α3l/2
.

Above, we used that |b|/a < 1/2 , |β| = α−1/2 (see (2.3)) and that αl/2 > α3/a which holds for l > 200 . 2

Now, we put
Γ1 := σma−1α−l − 1. (4.6)

We will apply Lemma 2.1 to Γ1 given by (4.6) and use Lemma 4.1 to prove the following proposition.

Proposition 4.2 If Xm = Pl and l > 200 , then

m < 1.04× 1014(1 + log 2l) and l < 3.7× 1014 logσ(1 + log 2l).

Proof Using a method similar to that of Γ , one can prove that Γ1 ̸= 0 . To apply Lemma 2.1 to Γ1 , we take

s = 3, γ1 = σ, γ2 = a, γ3 = α, b1 = m, b2 = −1, b3 = −l.

Since γ1, γ2, γ3 ∈ Q(
√
d, α) , we can take D = 6 . Since σ ≥ 1 +

√
2

2
>

√
α , the second inequality in (4.3)

implies that m ≤ 2l , then we can take B = 2l . We have

h(γ1) =
logσ
2

and h(γ3) =
logα
3

.

Furthermore, the minimal polynomial of a is 23x3 − 23x2 + 6x − 1 and has roots a, b, c . Since a < 1 and
|b| = |c| < 1 , then

h(γ2) =
log 23
3

.

So, we can take
A1 = 3 logσ, A2 = 2 log 23, A3 = 2 logα.

Thus, Lemma 2.1 implies that

log |Γ1| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + log 2l)(3 logσ)(2 log 23)(2 logα),
> −1.53× 1014 logσ(1 + log 2l).
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Comparing the above inequality with (4.5), we get

1.5l logα− log 2 < 1.53× 1014 logσ(1 + log 2l).

Thus, we get
l logα < 1.03× 1014 logσ(1 + log 2l).

Since αl+1 > σm (see the second equation in (4.3)), we get that

m < 1.04× 1014(1 + log 2l). (4.7)

Moreover, as α > 1.32 , we obtain
l < 3.71× 1014 logσ(1 + log 2l). (4.8)

2

4.3. Step C
In this step, we will get an upper bound for m1,m2, l1 , and l2 by applying Lemma 2.2 to a linear form in two
logarithms. To do this, we define the following linear form in two logarithms:

Λ1 := (m2 −m1) log a+ (m2l1 −m1l2) logα. (4.9)

Lemma 4.3 If l2 > l1 > 200 , then |Λ1| <
8m2

α3l1/2
.

Proof Put
Λ′
1 := m logσ − log a− l logα.

The fact that ∣∣∣eΛ′
1 − 1

∣∣∣ = |Γ1| <
1

2

implies that

|Λ1| < 2
∣∣eΛ1 − 1

∣∣ < 4

α3l/2
.

So for l2 > l1 > 200 ,

|mi log δ − log a− li logα| < 4

α3li/2
, for i = 1, 2. (4.10)

We multiply one of the two inequalities above for i = 1 with m2 and the one for i = 2 with m1 , subtract them
and apply the triangle inequality to get

|Λ1| = |m2(m1 logσ − log a− l1 logα)−m1(m2 logσ − log a− l2 logα)| ,
≤ m2 |m1 logσ − log a− l1 logα|+m1 |m1 logσ − log a− l1 logα| ,

≤ 4m2

α3l1/2
+

4m1

α3l2/2
<

8m2

α3l1/2
.

2

Now, we will prove the following proposition.
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Proposition 4.4 If Xmi = Pli for i = 1, 2 with l1 < l2 (so m1 < m2 ), then

l1 < 5344168, m2 < 2× 1016, l2 < 5.95× 1022.

Proof We apply Lemma 2.2 with

γ1 = a, γ2 = α, b1 = m2 −m1, b2 = m2l1 − l2m1.

As the norm of γ1 is 1/23 while γ2 is a unit, γ1 and γ2 are multiplicatively independent. We have γ1, γ2 ∈ Q(α)

which has D = 3 . Similarly as above, we have

max
{
h(γ1),

|log γ1|
3

,
1

3

}
=

log 23
3

:= h1, max
{
h(γ2),

|log γ2|
3

,
1

3

}
=

1

3
:= h2,

|m2l1 −m1l2| ≤ (m2 −m1)
|log a|
logα +

8m2

α3l1/2 logα < 2m2,

and

b′ =
m2 −m1

3× (1/3)
+

|m2l1 −m1l2|
3× (log 23/3) < 2m2.

Thus, Lemma 2.2 leads to

log |Λ1| > −17.9× 34 (max {log 2m2 + 0.38, 10})2 × (1/3)× (log 23/3).

So, we obtain
log |Λ1| > −1516 (max {log 2m2 + 0.38, 10})2 .

Combining this with Lemma 4.3, we get

1.5l1 logα− log(8m2) < 1516 (max {log 2m2 + 0.38, 10})2 .

If log(2m2) + 0.38 ≤ 10 , then m2 < 7532 . The above inequality gives

1.5l1 logα < 1516× 102 + log(8× 7532),

which implies that l1 < 359439 . Hence, m1 < m2 < 7532 in this case. Otherwise, we have

1.5l1 logα < 1516(log(2m2) + 0.38)2 + log(8m2) < 1518(1 + logm2)
2,

which gives
l1 < 3599(1 + logm2)

2. (4.11)

The second relation in (4.3) implies that αl1+1 > σm1 ≥ σ , so we obtain

logσ < (l1 + 1) logα < 1013(1 + logm2)
2.

Combining this with the second inequality of Proposition 4.2 with (m, l) = (m2, l2) , together with the fact that
m2 < 2l2 , we get

l2 < 3.7× 1014 × 1013× (1 + log(2l2 + 1))3,

giving l2 < 5.95× 1022 . Inserting this into the first inequality of Proposition 4.2, we get m2 < 2× 1016 , which
together with (4.11) gives l1 < 5344186 . 2
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4.4. Step D

For the final step of the proof, we need to lower the bounds obtained; we use continued fractions on (4.9) and
Baker–Davenport reduction on (4.10).

Put χ′ := − log a/ logα . Lemma 4.3 implies

|(m2 −m1)χ
′ − (m2l1 −m1l2)| <

8m2

α3l1/2 logα. (4.12)

Using the fact that logα < 0.28 and l1 > 200 and Proposition 4.4, we obtain

16

logα (m2 −m1) < 57(m2 −m1) < 57m2
2 < 3× 1034 < 4× 1036 < α3l1/2. (4.13)

Thus
8m2

α3l1/2 logα <
1

2(m2 −m1)
, (4.14)

it follows that (m2l1 −m1l2)/(m2 −m1) is convergent of χ′ .
Obviously, m2 − m1 < m2 < 2 × 1016 . Let [a0, a1, a2, . . .] = [1, 6, 2, 1, 18, 166, . . .] be the continued

fraction expansion of χ′ , and let pk/qk be it’s kth convergent. After a computer calculation, we found that

q29 = 11858488010673001 < 2× 1016 < 34403713039887677 = q30,

furthermore the maximum of ai (i = 0, 1, . . . , 30) is 166 = a6 . Hence, we obtain

1

168m2
<

1

168(m2 −m1)
< |(m2 −m1)χ

′ − (m2l1 −m1l2)| <
8m2

α3l1/2 logα.

Using Proposition 4.4 and comparing the leftmost and rightmost expressions, we get l1 ≤ 195.4 . Since we
assume that l1 > 198.1 , we conclude that l1 ≤ 200 . Now (4.7) gives m1 ≤ 64.2 .

The upper bounds on m1 and l1 make it possible to compute all existing m1 and l1 . Defining

Q′
m

+
(X) :=

(
X +

√
X2 − 4

2

)m

+

(
X −

√
X2 − 4

2

)m

and

Q′
m

−
(X) :=

(
X +

√
X2 + 4

2

)m

+

(
X −

√
X2 + 4

2

)m

,

and using compute search on the equations

Q′+
m1

(X ′
1) = Pl1 and Q′−

m1
(X1) = Pl1 ,

with 1 ≤ l1 ≤ 200 and 1 ≤ m1 ≤ 64 , where m1 < 2l1 results in only following possibilities:
Besides the trivial case l1 = 1 (for both equations), which implies X ′

1 = Pl1 , the only nontrivial solutions
are

(m1, l1, X
′
1) = (2, 9, 3),
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in the first case and

(m1, l1, X
′
1) = (2, 6, 1), (m1, l1, X

′
1) = (3, 7, 1), and (m1, l1, X

′
1) = (4, 9, 1),

in the second case which leads to (d, Y ′
1) = (5, 1) in all cases. To determine all the solutions of equation (1.4),

we apply (4.10) and Lemma 2.3. First, observe that∣∣∣∣m2
logσ
logα − l2 + χ′

∣∣∣∣ < 4

α3l2/2 logα < 14.3 · 1.6−l2 .

Put

σ1 =
3 +

√
5

2
, σ2 =

1 +
√
5

2
.

Taking the continued fraction expansion of logσi/ logα for i = 1, 2 , such that the suitable denominator of it
exceeds 1.2× 1017 , we found that

q1,46 = 843503315596223623 ≈ 8.43× 1017,

and
q2,40 = 85570068922793841671797 ≈ 8.55× 1022,

is satisfactory for i = 1 and i = 2 , respectively. We now apply Lemma 2.3, with m = m2 , n = l2 ,
k = l2 , A = 14.3 , B = 1.6 , M = 2.1× 1016 , τ = logσi/ logα and µ = χ′ . Furthermore, according to the four
cases q = q1,46 and q = q2,40 , we get ξ1 > 0.67 and ξ2 > 0.15 . Consequently,

• In the first case: l2 < 105.09 and m2 < 34.52 ,

• In the second case: l2 < 135.93 and m2 < 44.37 .

However, since we assume that l2 > 200 , we get a contradiction, so l2 ≤ 200 leading to m2 < 64, 2 . Checking
the last range we only obtained the possibilities:

X ′
2 = 28 = P14,

and
X ′

1 = 2 = P4 = P5 and X ′
2 = 12 = P11,

respectively.
Finally, in order to check the trivial cases m1 = 1 , X ′

1 = Pl1 , we used a brute force algorithm which
essentially coincides with the treatment of the non-trivial cases. For any 1 ≤ l1 ≤ 200 , we determine the

decomposition Pl1 − 4ε = dY ′2
1, where d is square-free. In this way, we find σl1 =

X ′
1 +

√
dY ′

1

2
. Then we

consider the first convergents of the continued fraction expansions of

logσl1

logα (4.15)

such that the denominator is larger than M = 1.2× 1017 , and the ξ value in Lemma 2.3 is positive. The upper
bounds on l2 are always less than 200, which contradicts the assertion l2 > 200 . Thus only cases l2 ≤ 200

remain to verify. As conclusion, the trivial cases do not yield further solutions to (1.4). Theorem 1.2 is therefore
proved.
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