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Abstract: In this paper, Weyl manifolds, denoted by WS(g,w,w, 1), having a special a semisymmetric recurrent-
metric connection are introduced and the uniqueness of this connection is proved. We give an example of W S(g, w, 7, 1)
with a constant scalar curvature. Furthermore, we define sectional curvatures of WS(g,w,m, ) and prove that any
isotropic Weyl manifold W.S(g, w,n, 1) is locally conformal to an Einstein manifold with a semisymmetric recurrent-

metric connection, EW S(g,w,m, u).
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1. Introduction

Linear connections are defined on manifolds to establish the parallel transport of vector fields along any curve in
the manifolds, so that infinitesimally close tangent spaces are connected to each other. Riemannian manifolds
are defined by a linear metric connection or by the Levi-Civita connection, and this connection is uniquely
defined once the metric tensor is determined or given and the metric tensor keeps the geometrical information
about the space.

The concept of the semisymmetric linear connection in a differentiable manifold without metricity con-
dition was introduced by Friedmann and Schouten in 1924 (see [4, p. 214]). Later, Hayden introduced the
idea of metric connection with torsion on a Riemannian manifold in 1932 [5]. Afterwards, Yano considered the
semisymmetric metric connection on a Riemannian manifold in 1970 [18].

Spaces with metric, nonmetric, torsion-free, or torsionful connections have wide applications in theories
of gravity as well as differential geometry [16].

This paper is devoted to the study of Weyl manifolds endowed with a semisymmetric recurrent-metric
connection, which we denote by W.S(g,w,m, ). We derive some relations involving the curvature tensor of
a semisymmetric recurrent-metric connection. Moreover, we give an example of WS(g, w, 7, 1) spaces with

constant scalar curvature.
We also define the sectional curvature of Weyl manifolds with a semisymmetric recurrent-metric connec-

tion WS(g,w,m, u) and we prove that any isotropic Weyl manifold with a semisymmetric recurrent-metric-
connection can be locally conformal to an Einstein manifold with semisymmetric recurrent-metric connection

EWS(g,w,m, ).
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2. Preliminaries

In this section, we first give some preliminary concepts related to Weyl spaces and semisymmetric spaces.

Two Riemannian metrics g and g are conformal if they coincide up to a factor that is positive function,

i.e. g=e?g. This is an equivalence relation, each class G being called a conformal structure. A Weyl structure

is a map w: G — AN (W) satisfying w(e?g) = w(g) +2dX\. A manifold with a Weyl structure is called a Weyl

manifold, denoted by W (g, w).

In [3], it was proved that for a Weyl manifold W (g, w), there exists a unique torsion-free connection V

that preserves the conformal class G. Preserving the conformal class means that for any g € G there exists

1-form w such that
Vg=2w®g.
Equation (2.1) can be expressed in local coordinates as
Vigij = 2wk gij-

Here, w is a 1-form called a complementary covector field.

Under the renormalization of the metric tensor g,
g=0%. (@>0),
the 1-form w is transformed by the law
w=w+dln§,
so that
Vigi; = 2WkG; -

Here, ) is a positive scalar differentiable function defined on W (g, w) (see [6] and [10, p. 152]).

The relation between the Weyl connection V and the Riemannian connection V9 is

VxY = V%Y —w(X)Y —w(Y)X + g(X,Y),

where X,Y are vector fields on W (g, w) and % is the dual vector field to w such that w(X) = g(X,v).

In local coordinates, (2.6) can be given by
h h h h h
L= il (w;6;" + wid} —w"gjs),
where I‘ﬁ are the coefficients of the Weyl connection and

h 1
{ji } =3 9" (3 Gmi + 0igmj — Omgji),

are the coeflicients of the Levi-Civita connection V9 see [2, p. 81], and [10, p. 154].

The curvature tensor W of V is given by

W(X,Y)Z =VxVyZ—VyVxZ—VxyZ.

(2.1)

2.7)
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Using (2.6) in (2.9), the curvature tensor of W (g, w) is obtained:
W(X,Y)Z =R(X,Y)Z - s(X,Z)Y +s(Y, Z2)X + s(Y,X)Z — s(Y, X)Z + g(Y, Z)8X — g(X, Z)SY, (2.10)

for any vector fields X, Y, Z where R denotes the curvature tensor of the Riemannian connection V9 and s
is the tensor field of type (0,2) defined by

SO0 Y) = (Vxw) () + w(X)u(Y) - Jw(@)g(X,Y) (211)

and S is the tensor field of type (1,1) defined by
g(SX,Y) =s(X,Y). (2.12)
In local coordinates, using the curvature tensor of W(g,w),
Wi = Okl i — 9,0 = TATj + T/iT, (2.13)
we obtain the components of curvature tensor W, jih as

(2.14)
Wil = Ryl — wiS) + w;idp + (wjk — wey)6) + 9" (Wrsgji — wjsgri)

with

1
wj; = Vjw; +wjw; — Pl w'gj; (2.15)

and R jih represents the Riemannian curvature tensor with respect to the Levi-Civita connection.

The curvature tensor and covariant curvature tensor, the Ricci tensor, and the scalar curvature of Weyl

space are defined through parallel transportation of vector fields v, respectively, by

Wit = W3 ™ gma s (2.16)
Wy = g* Wi = VVljil ) (2.17)
W =g Wi . (2.18)
By transvecting (2.14) with gp., , we get
Wijim = Rijim — WkiGjm + WjiGkm + (Wjk — Wkj)Gim + WemGji — WimGki, (2.19)

which is called the covariant curvature tensor of W (g, w).
The curvature tensor, the covariant curvature tensor, and the Ricci tensor of W (g, w) satisfy the following

symmetry properties (see [10, p. 157]):
Wi = Wik (2.20)

Wit + Wit = 2ga(Vjwg — Viw;) = 4gaVijwy. (2.21)
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By using symmetries of the curvature tensor of Weyl space, we obtain identities that are similar to
identities held in Riemannian spaces. The following identities are known as the first and second Bianchi

identities for Weyl spaces, respectively [6, 11]:

Wit + W' + Wy, ' =0, (2.22)
Vi Wiji '+ VWit + VW, =0. (2.23)

Furthermore, the Ricci tensor of the Weyl manifold is computed in terms of Ricci curvature Rj; of

Riemannian space as
Wij = Rij + (n — 2)wrj + (wij — win) + wst 9% grj (2.24)

where wy; is defined in (2.15). It should also be noted that the Ricci tensor of a Weyl manifold is not symmetric;

its symmetric and antisymmetric parts are given as follows (see [2], p.82):

1
Wkj) = Rij + i(n —2)[Vwi, + Viw; + 2wiw; — 2w, wtgjk] + gjkvtwt , (2.25)

Wikj) = nVpw;) - (2.26)
From (2.24), we obtain the scalar curvature of Weyl space:
W =R+2(n—-1)Vuw —(n—1)(n—2)wjw, (2.27)

where R is the Riemannian scalar curvature and w is the complementary covector defined in (2.2).

In the next section, we give some definitions and properties of manifolds with semisymmetric connection,

and we also construct a new special connection on a Weyl manifold.

3. Semisymmetric recurrent-metric connection on Weyl manifolds

In the literature, the idea of semisymmetric connection was introduced by [1, 13, 15, 17, 18] and curvature-
related properties were studied widely therein. Let M be an n-dimensional, (n > 2) differentiable manifold.
A linear connection V* on M, whose coefficients are I'*; ,f, is said to be semisymmetric if the torsion tensor T
of V* satisfies the relation

TX,Y)=n(Y)X — n(X)Y, (3.1)

where 7 is a 1-form, and X ,Y are smooth vector fields on M. In local coordinates, (3.1) can be written as

Tjki = F*jki — *kji =Ty 5;- — ;0 . (3.2)

In addition, if a semisymmetric connection has the recurrency condition

Vg =2pu(X)g (3.3)
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in local coordinates, (3.3) can be written as

V% 9ij = 2 bk 9ij (3.4)

and then the connection V* is said to be a semisymmetric recurrent-metric connection and g is called the
recurrent covariant vector field [7, 8].

In this work, we use the notion of a semisymmetric recurrent metric connection for Weyl manifolds. Let

V be a linear connection with coefficients fj ki on a Weyl manifold W (g, w) satisfying (3.2). If the following
relation also holds on W (g, w),

Vxg(Y,Z) = 2(w + p)(X)g(Y, Z) , (3.5)
in local coordinates, (3.5) is represented by
Vigij = Vigij + 2u9i5 = 2(wi, + k)i, (3.6)

and then W(g,w) is called a Weyl manifold with a semisymmetric recurrent-metric connection denoted by
WS(g,w,m,un).

From (2.2), we have

Vigis = Ogiz — gniLi" — ginl)" (3.7)
= 2wggij ,
and from (3.6), more explicitly,
_ — — h
Vigij = Okgij — 9nil'yi — ginl'y; (3.8)

= 2(wk + fik)gij -
By using (3.8), we have
Vg7 = —2(wp + pr)g™ . (3.9)

Here, we will examine the existence and uniqueness of the semisymmetric recurrent-metric connection V

on a Weyl manifold and will prove the following theorem.

Theorem 3.1 Let WS(g,w,, 1) be an n-dimensional Weyl manifold equipped with the semisymmetric recurrent-
metric connection V associated with 1-forms w, 7, and p satisfying (2.2), (3.2), and (3.4), respectively. Then

there exists a unique connection NV on WS(g,w,m, u) given by
VxY = VxY — p(X)Y = u(Y)X + g(X,Y)§ + m(Y)X — (X, Y)n, (3.10)
where & and n are dual vector fields such that
w(X) =9(X,8), m(X)=g(X,n). (3.11)
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Proof Let V be a semisymmetric recurrent metric connection and V be a Weyl connection. We have
(Vxg)(Y. Z) =Vxg(Y. Z) = g(VxY,Z) — g(Y,VxZ) (3.12)

and
(Vxg)(Y,2) =Vxg(Y,2) = g(VxY,Z) — g(Y,VxZ) (3.13)

for any vector fields X,Y , and Z.
We put
VxY =VxY+U(X,Y), (3.14)

where U is a tensor field of type (1,2) defined as the difference of the connections.

Using (3.1) and (3.14) it is obtained that
T(X,Y)=VxY -VyX - [X,Y],
=U(X,Y)-U(Y,X). (3.15)
From (3.12), (3.13), (3.14), and (3.15) we get
G(U(X,Y),2) + g(U(X, 2),Y) = ~2u(X)g(Y, Z) . (3.16)
By using (3.15), and permuting vector fields X,Y, and Z for T, we get

g(T(X7Y)7Z) :g(U(X7Y)7Z) _g(U(KX)aZ) )
g(T(ZvX)aY) = g(U(Z,X),Y) *Q(U(X7Z)aY) )

From (3.16) and (3.17) we obtain
9(T(X,Y), 2) +9(T(2,X),Y) +9(T(2,Y),X) = 29(U(X,Y), Z) + 2(X)g (Y, Z)
+2u(Y)g(Z,X) = 2u(2)9(X,Y) . (3.18)
Defining the tensor 7 of type (1,2) as
9(T(Z,X),Y) = g(T(X,Y),2), (3.19)
equation (3.18) can be written as
JU(X,¥), 2) =[g(T(X, ), 2) + g(F(X,¥), Z) + g(F(¥, X), 7)]

—uX)g(Y, 2) = p(YV)g(Z, X) + n(2)g(X,Y) . (3.20)

Thus, we find
UX,Y)= %[T(X,Y) +T(X,Y)+T(Y, X)] — w(X)Y — u(Y)X + g(X,Y)E, (3.21)
where p(X) = g(X,¢).
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From (3.1) and (3.19) we have

g(T(Z7X),Y) :g(ﬂ‘(X)Z, Y) - g(?T(Z)X, Y) )

=9(T(X,Y),Z) . (3.22)
From (3.19), and (3.22), we reach
g(T(X, Y),Z)=n(X)g(Z,Y) - g(Z,n)g9(X,Y), (3.23)
which implies
T(X,Y) =7(X)Y — g(X,Y)n, (3.24)
where 7(X) = g(X,n).
Hence, (3.21) turns into
UX,Y) =m(Y)X = p(X)Y = u(Y)X 4+ g(X,Y)§ = g(X,Y)n. (3.25)

Then (3.14) becomes
VxY = VxY — p(X)Y — p(Y)X + g(X,Y)E+7(Y)X — g(X,Y)n ,
which completes the proof. O

Also, equation (3.10) is obtained in local coordinates as

l
= {m} —(wibh 4wyt — wlgar) + (A8t — sk — Ngar), (3.26)

where A\ = 7 — ug -
The following subsection is devoted to presentation of curvature tensors of Weyl manifolds with the

semisymmetric recurrent-metric connection, WS(g,w, 7, ), in local coordinates in detail. The covariant
curvature tensor, the Ricci tensor, and the scalar curvature of W.S(g,w,m, u) will be denoted by Ekjim, Eﬁ,

and R, respectively.

3.1. The curvature tensor of WS(g,w,m, 1)

Theorem 3.2 The curvature tensor of a Weyl manifold with the semisymmetric recurrent-metric connection

WS(g,w,m, 1) has the following properties:
(i) Rijim = Wijim + Qrjim — ®ijgmk + QikGmj — Cmkij + QmjJik (3.27)
where Wijim 15 the covariant curvature tensor of W(g,w), and
Qujl' = a6l — Njidg + XNjug" ki — Mg gji + 61 (Ve — Vi) (3.28)
or by transvecting with metric tensor gpm
Qkjim = GmjMei — ImkAji + NjmGki — MemGji + 29mi V[ k] » (3.29)
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aij = Nwj + Njw; — w N gij (3.30)

1
Mki = Vidi = Aedi + Sgrided’ (3.31)

and also, A\, w, and u are 1-forms as given in (3.2), (2.2), and (3.4), respectively.

(l’L) Eji = Wji + jS — (’I’L — 2)()\ij + )\iwj — 2gjiwt/\t) R (332)

where Wj; is given by (2.2/), and

jS = ijimgk:m = (n - 2)[—Vj)\2 + )\1>\J — gji)\t)\t] - gjin)\t + 2V[],U,Z] . (333)

(ii) R=R+2(n—1)(Viw' — V) — (n— 1)(n — 2)(wy — A)(w' — A, (3.34)

where R is the Riemannian scalar curvature and holds the relation R = Rjigji.

Proof

(i) In spaces with torsion, parallel transport of vector fields is defined by [18]. The curvature tensor of

WS(g,w,m, ) can be computed by using the Ricci identity for a covariant vector field v;:
J— [ — J— t J—
(VeVj = ViVi)vi = =Ry vp — Tk;jt Vi, (3.35)

— h .
where Ry ;; is the curvature tensor of WS(g, w,,p),

t= h

— =k — h — h = t= h =
Ry =0kl — 0, + 1, Ty =Ty Uy (3.36)
and T}, h"is the torsion tensor of WS(g,w,,u),
h_w h w h _ h h
T;" =Ty =Ly =U;" = Uy (3.37)

Substituting coefficients of connections (3.26) in (3.36), and after some calculations, we obtain the curva-

ture tensor of WS (g, w,m, u) as

— h
Rkji = ijih + ijih - (;Z()\sz + )xlij — wl)\lgij) + 6;1(>\kw1 + )\ﬂuk — wl)\lgik) (338)

—gij A" + N'wy, — w A 6)) + g (Ajw” + Nwj —wiX' 67

where W, jih represents the curvature tensor of Weyl space defined in (2.14).

If we simplify our calculations we define the tensor Qkﬁh as in (3.28) and Ag; as in (3.31), respectively:
ijl-h = 5§L>\m — P Nji + Mg gri — g™ g + 00 (Vjpk — Vipy)
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1
Aki = VA — ApAi + ng‘/\ﬁ\t :

and multiplying (3.28) by the metric tensor gp,,, we obtain
Qkjim = GmjAei — GmkAji + NjmGki — Memji + 29mi Vil 5

and similarly, we get

Qi = Qujimg"™™ = (n = 2)[= VX + AiAj — g5 MM — g5 VA + 2V 1y -
From (3.29), we see that the following antisymmetry property holds for Qi :
Qrjit = —Qjkil - (3.39)
Multiplying (3.38) by metric tensor gp,, and using (3.29) and (2.19), we reach (3.27):
Rijim = Wijim + Qrjim — 9mkQij + GmjQik — 9ijCmk + GikCmj »
where
Qi = Awj + Ajw; — gijwl)\l .

Now let us examine the Ricci curvature and its symmetric properties for W.S(g, w,m, 1). Multiplying

(3.27) by g™*, we get the Ricci tensor of WS(g,w, T, i) as

Rji = Wji + jS — (n — 2)()\jwi + )\iwj) + 2(TL — 2)gjl-wl)\l R (3.40)

where W;; and @j; are given by (2.24) and (3.33), respectively.

It is seen that the Ricci tensor Rji of WS(g,w,n, ) is not symmetric. The symmetric and antisymmetric

parts of Rﬂ can be calculated as

(n—2)
2

+ gji[2(n — 2)w A" — VA

E(ji) = W(ji) — [(V])\l + VZA]) — 2/\z>\j + QjS)\tAt + 2(>\jﬂ)i + )\le)] (341)

and
E[ji] =nVw) — (n —2)V A + 2V - (3.42)
Transvecting the Ricci curvature tensor Rj; in (3.40) by the metric tensor g/%, we obtain
R=R;ig", (3.43)
and then the scalar curvature of W.S(g,w,m, p) is

R=R+2(n—1)(Vaw' — ViXt) — (n — 1)(n — 2)(wy — Ae)(w! — AY). (3.44)
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O
Now we examine the properties of the covariant curvature tensor of Weyl space with the semisymmetric

recurrent-metric connection W.S(g,w, w, ). Using the properties of Ryj; and Wy, it can be seen that the

curvature tensor of WS(g,w,m, u) satisfies the following symmetry relations in the following propositions:

Proposition 3.3 The curvature tensor of WS(g,w,m, u) satisfies the following symmetry relations:
(i)- Rijim = —Rjim , (3.45)
(ii).  Rijim + Rijmi = 49im(Vijur) + Vijwy) - (3.46)
Proof
(i) Interchanging the indices k and j in equation (3.27), we have
Rijim + Rikim = Wijim + Wikim + Qrjim + Qjkim,
and using (2.20) and (3.39) in the above equation, we get (3.45).
(ii) Using (2.20), (2.21), (3.29), and (3.30) in the equation of (3.27), we obtain (3.46).
Rijim + Rijmi = Wijim + Wijmi + Qkjim + Qkjmi
= Wijim + Wigmi + 29im (i — pikj)
= 29im (V(jwr) — Vigwg)) + 2im (k — bks)
= 4Gim (Vg + Vijwy) -
Note that if wy and py are gradients or if wy and py have opposite signs, then
Rijim = —Rijmi-

In the following proposition, we introduce extended (generalized) first and second Bianchi identities for
WS(g,w,m, ).

O

Proposition 3.4 The curvature tensor of WS(g,w, 7, u) satisfies the following first and second Bianchi
identities for WS(g,w,, 1), respectively:

. — 1 —= 1 — 1
(’L). Rkji + Rjik + Rikj = 2(§§V[k7rz] + C%V[jﬂ'k] + (%V[lﬂ']]) s (347)

.. ==t ==t == t — ¢ — ¢ — ¢
(ii). (ViR + ViR + ViR, ) =2(mBRy; + 7Ry, +miRy, ). (3.48)
Proof

(i) Using (3.38) and (3.31), and by changing indices k, j, i cyclically, we get
A —
Ry + Ry + Ry = ijz’l + jSkl + Qikjl . (3.49)
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On the other hand, using (3.31), we calculate ijil + jSkl + Qikjl as
Quji' + Qi + Qurs' = 00 (Mei — Air) + 04 (Nij — Aji) + 01 (Njk — Arj) (3.50)
+ 55‘(#% — ki) + 52(!%;‘ — i) + 5;(1%1' — [ik) 5

where

1
kg = Vipy — fjpg + §9jkutut : (3.51)

Using (3.31), and arranging (3.50), we find
ijil + jSkl + Qikjl = 5;- (Vi (mi — Vimg)] (3.52)
+ 8 [Vilmy — V)] + 6V (m — Vi)
Using (3.52) in (3.49), we get
— 1l = 1 = 1
Ryji + Ry + Ry = 2(0)Vemy + 6,V m + 6, V)

which is called the generalized first Bianchi identity.
Also, the covariant form is obtained:

Rijim + Rjikm + Rikjm = 2(9im Vi) + gimVTh) + Gem Vi) -

Using the Ricci identity (3.35) and differentiating covariantly both sides of (3.35), we get

ViV 0+ ViV, Vv = Vi(Ryi ) v+ Ry Vilve) (3.53)

+ vl (Tkjt) Vt (] + Tkjt (VIvt 'Ui) s

which is written in terms of the covariant derivative of the curvature tensor and torsion tensor.
Now, interchanging the indices I, &k , and j in (3.53), using the components of the torsion tensor of (3.2),

and by some tensor calculations, the Ricci identity (3.35) reduces to

Ty (VeV; = ViV vi + T, (ViVi — ViV vi + T, (Vi V) = ViVy) v (3.54)

— t

— ¢t — — . —
= 727Tk(le,L Vg + 1—2‘7 ¢ Vt U»L') - QWZ(R]kn Ve + Tjkt Vt Ui) - 271—] (Rkl’L V¢ + Tklt Vt 'Ui) .

Using (3.53), (3.54), and (3.2), we find

—— ==t == — ¢ — ¢ — ¢
(ViRy;; + ViR, + ViR, ) =2(mBy; + 7Ry, + 7Ry, ),

which is called the generalized second Bianchi identity for W.S(g, w,m, u).
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Theorem 3.5 WS(g,w,m,u) and W(g,w) have the same curvature tensors if and only if the recurrent

covariant vector field g of ¥V defined by (3.4) is a gradient vector and the following equation holds:
Xij + aji = 0, (3.55)
where o and A;j are as in (3.50) and (3.31), respectively.
Proof Let WS(g,w,m, u) and W(g,w) have the same curvature tensors:
Rijim = Wijim.-
Using (3.27), we have
Qkjim = ImkQij — JmjQik + GijQmk — GikOmg- (3.56)
Also, from (3.30), (3.31), and (3.29), we obtain the relation
Imj (i + Ari) — Gmr (@i + Nji) + gik(Qmj + Njm) — Gij(Qmk + Akm) (3.57)
+29miV ik = 0.

From (3.58), it follows that a;x + Ag; = 0 and Vijug = 0 simultaneously.
Conversely, using (3.27),

Rijim = Wijim + Qujim — ®ijgmk + QikGmj — OmkGij + OmjJik »
and substituting (3.29) in (3.27), we get
Rijim =Whjim + Gmj (ks + Mei) — G (i + Nji) + Gin(@ms + Xjm) (3.58)
= i (mk + Aem) + 29mi Vi -
By using the given assumptions of a;; + Ag; = 0 and Vi = 0, we conclude that
Rijim = Wigim. (3.59)

O
Next, we give an example of 3-dimensional W.S(g, w, 7, u) with a constant curvature in which components

of the torsion tensor, complementary, and recurrency covector fields are chosen specially.

Example 3.6 Let us consider the three dimensional metric given as

dr?
ds® =
5 1— kr2

+r%(df? +sin?0dp?), (r>0,0<60<m, 0<¢<2m), (3.60)

where 1 — kr? >0 and k is an arbitrary constant.

The scalar curvature of (3.60) is obtained as R = 6k. For k =1,0,—1, space is called spherical, planar,
and hyperbolic, respectively.

Here, all 1-forms w, m, and p are represented with three components in spherical directions 7,0, ¢, i.e.

w = (wy, Wy, wy), ™= (7, T, Tg). For this example, we choose the complementary vector w as w = (0,wp,0),
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covector fields m as m = (0,79,0), and recurrency form p as p = (0, ue,0), which are defined in equations
(2.2), (3.2), and (5.4), respectively. Thus, for the metric (3.60), we find the connection coefficients, the Ricci

curvature, and the scalar curvature of WS(g,w,m, u) as follows:

= 7 RT = T
b =100 Ly = —wo+ g, (3.61)
fOTT = *(’U.)g + /149)7 fggr = *’I”(l — I€7’2) R
T 2 2 = 0 _ Wy — e
F¢¢——T(1—I€T )SlIl 9, rr —m,
¢ =0 = ¢ = 0 1 — ¢
T, =Ty =1, =T, =- Ty =cotf—
or or ro ro 7’ $0 €O W + 4o
— 0 = 0 . .
Tpy = —(wy + po) = —7g, Lyp = —sinf(cos O + (pg — wp)sind),

fef =cotf —mp.

Here, if we choose wyg and pg to be functions of radial coordinate v, and also wy to satisfy the relation
o = wo(r) + po(r), then from (3.37), we can compute components of the torsion tensor for (3.62).
Ty" =Ty% = 2wy, Ty, " =Tpy® = —2wp, (3.62)
and the components of the Ricci tensor of WS(g,w, 7, u) are

y 2k12 + (wp — p1g)(cot @ — wg + pug)

e r2(1 — kr?) ’
— 2rwl — we +
RT9 = g ¢ 1o )
r
B r(wy + py) + wo — pio
Rgr - — )

r

Rgg = 2k72 + cot O(wg — ug)

Ryg = sin6(2kr? sin 6 + (wg — pg)[2 cos 0 + (g — we) sinf]) , (3.63)

where prime (") denotes the derivative with respect to r, and the scalar curvature of WS(g,w,m, u) is obtained
as

— 1
R=—3 (672 + 2(wg — p10) (2 cot § — wg + pug)) - (3.64)

Particularly, in (3.64), by taking

weg = Ag = pg =1V 1 —Kkr2 +co {—1 + artanh (

1
w>:| s 1-— K/f'z > O7 (365)

where ¢y, ca are any real constant, we obtain that the scalar curvature of WS(g,w, 7, ) is R = 6x. Thus, the

scalar curvature of WS(g,w,, 1) becomes the same as the scalar curvature of Riemannian space.

In the following section, sectional curvature is examined for W S(g, w, 7, 1) in the sense of previous studies
(see [9], p. 265, and [12]).
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3.2. Sectional curvatures on Weyl manifolds with semisymmetric recurrent-metric connection
WS(g,w,m, )

Let X,Y € T,(WS) at a point P € WS(g,w,n, ). Let II be the 2-plane spanned by X ,Y . Then the sectional
curvature K of WS(g,w,w, u) at P with respect to plane II is defined by [12]:

R(X,Y,X,Y)
_ . (3.66)
9(X, X)g(V,Y) —g(X,Y)
In local coordinates the equation (3.66) is
Rij X'YIXkY!
K(II) = gl (3.67)

(9ikgji — gugsn) X1 YIXkYL'

If the sectional curvature K of WS(g,w,m, ) at a point P is the same for all 2-planes in T,,(WS), then we
say that WS(g,w,m, p) is isotropic at P. If W.S(g,w,m, ) is isotropic at every point P on W.S(g,w,m, 1),
then WS(g,w,, i) is called isotropic (see [9], p. 265, and [12]).

On the other hand, if the sectional curvature K of W.S(g,w,w, u) has the same value at every point and
for every section at that point, then we say that W.S(g,w,, 1) has constant curvature.

It is obvious that if W.S(g, w,w, u) has constant curvature, then WS(g,w,r, ) is isotropic.

We recall that a Weyl manifold WS(g,w,n, ) is said to be an Einstein manifold with respect to
the semisymmetric recurrent-metric connection EW S(g,w,w, i) if the symmetric part of the Ricci tensor is

proportional to the metric; that is,

Rjiy = 0935, (3.68)

for a scalar function 6 defined on WS(g,w,m, u) (see [14], Eq. 41).
It is shown that every 2-dimensional Weyl manifold is an Einstein manifold [12].

We now quote the following lemma (see [9], p. 265), which will be needed in the proof of the following

theorem.

Lemma 3.7 Suppose that S is any 4-covariant tensor, and that X and Y are two arbitrary linearly independent
vectors. If for all X and Y

Sim X'YIX*Yt =0, (3.69)
then we have
Sijkt + Skiij + Sukj + Sk = 0. (3.70)

A sufficient condition for a Weyl manifold to be locally conformal to an Einstein manifold by using
sectional curvature was given in [12]. By means of the notation used in [12], we state and prove the following

theorem for WS(g,w,m, ).

Theorem 3.8 Any isotropic Weyl manifold with the semisymmetric recurrent-metric connection can be locally

conformal to an Finstein manifold with the semisymmetric recurrent-metric connection, EW S(g, w, 7, ).
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Proof Assume that WS(g,w,, ) is an isotropic manifold. In Lemma 3.7, by taking

Sijkt = Rijri — K(x)(9ikg51 — 9ugjk) » (3.71)
and using (3.70), we get
Rijki + Riij + Rukj + Rijiu = 4K gikgji — 2K (qik9i5 + Guigr;) - (3.72)
Transvecting (3.72) by g,
(3.73)

— h — h — —
Rij + Ryji + (Riju + Rijin)g" = AK girgi — 2K (gix9i; + 919x3)19""

and using symmetry properties (3.45) and (3.46) and the first Bianchi identity for EW.S(g, w, 7, 1),

Ruji + Ry + Rug) = 2005V ey + 81V g + 0LV emy)) (3.74)
we find that
Rz’jkh + Rkjih + Eikjh + 2Rinjg™ = 2K (29i0" — gij0l — gi;61) (3.75)
— g Auji + 45?(V[kwi] + Virpa),
where

Arrji = 295V i) + 91 Vi + 95 Vi) - (3.76)

Contracting (3.75) with A and 4 and using equation (3.74),

R, + Ekai + Ryj + 2Run;9" = 2K(29ik5;' — gkt — Gij0%) — 9" Auji (3.77)

+ 45§(V[kwﬂ + V[k,ui]) .

For (3.77), by using (3.27), (3.28), and (2.15), let us calculate Ekjii and g' Ajgji

Ekjii = ijii + Wkﬁ ) (3.78)
where
Qrfs =07 i — 65 Nji + Njig" gki — Memg ™ 950 + 6, (D0 — Oepuy) (3.79)
=2nV ;g -
Thus,
ijii =2nViug
Wkﬁ = n(wjr — wiz) = 2nVwy) , (3.80)
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and from (3.76),
Ajig" = 29" g Vimy (3.81)

Hence, we reach
Rj; + Rij + 2n(Vijpn + Vijwy) = 2K(29ik5ij — NGkj — k) (3.82)

+ A(Vws) + Vi) — 29" gi; Vi -
From (3.82), we observe that the symmetric part of the Ricci tensor is
R(]‘k) = (1 =n)Kgr; — (n +2)(Vwy + V). (3.83)
Since E(jk) is symmetric, the second term of (3.83) must satisfy the following relation:
Vijw + Ve = 0. (3.84)
Thus, the symmetric Ricci tensor of EW . S(g, w,m, p) is
Rk = (1—=n)Kgi; , (3.85)

and equation (3.84) implies that wy and py are gradient. This completes the proof. O
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