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Abstract: In this paper, Weyl manifolds, denoted by WS(g, w, π, µ) , having a special a semisymmetric recurrent-
metric connection are introduced and the uniqueness of this connection is proved. We give an example of WS(g, w, π, µ)

with a constant scalar curvature. Furthermore, we define sectional curvatures of WS(g, w, π, µ) and prove that any
isotropic Weyl manifold WS(g, w, π, µ) is locally conformal to an Einstein manifold with a semisymmetric recurrent-
metric connection, EWS(g, w, π, µ) .
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1. Introduction
Linear connections are defined on manifolds to establish the parallel transport of vector fields along any curve in
the manifolds, so that infinitesimally close tangent spaces are connected to each other. Riemannian manifolds
are defined by a linear metric connection or by the Levi-Civita connection, and this connection is uniquely
defined once the metric tensor is determined or given and the metric tensor keeps the geometrical information
about the space.

The concept of the semisymmetric linear connection in a differentiable manifold without metricity con-
dition was introduced by Friedmann and Schouten in 1924 (see [4, p. 214]). Later, Hayden introduced the
idea of metric connection with torsion on a Riemannian manifold in 1932 [5]. Afterwards, Yano considered the
semisymmetric metric connection on a Riemannian manifold in 1970 [18].

Spaces with metric, nonmetric, torsion-free, or torsionful connections have wide applications in theories
of gravity as well as differential geometry [16].

This paper is devoted to the study of Weyl manifolds endowed with a semisymmetric recurrent-metric
connection, which we denote by WS(g, w, π, µ) . We derive some relations involving the curvature tensor of
a semisymmetric recurrent-metric connection. Moreover, we give an example of WS(g, w, π, µ) spaces with
constant scalar curvature.

We also define the sectional curvature of Weyl manifolds with a semisymmetric recurrent-metric connec-
tion WS(g, w, π, µ) and we prove that any isotropic Weyl manifold with a semisymmetric recurrent-metric-
connection can be locally conformal to an Einstein manifold with semisymmetric recurrent-metric connection
EWS(g, w, π, µ) .
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2. Preliminaries
In this section, we first give some preliminary concepts related to Weyl spaces and semisymmetric spaces.

Two Riemannian metrics g and ḡ are conformal if they coincide up to a factor that is positive function,
i.e. ḡ = e2λg . This is an equivalence relation, each class G being called a conformal structure. A Weyl structure
is a map w : G→ Λ1(W ) satisfying w(e2λg) = w(g) + 2dλ . A manifold with a Weyl structure is called a Weyl
manifold, denoted by W (g, w) .

In [3], it was proved that for a Weyl manifold W (g, w) , there exists a unique torsion-free connection ∇
that preserves the conformal class G . Preserving the conformal class means that for any g ∈ G there exists
1-form w such that

∇g = 2w ⊗ g. (2.1)

Equation (2.1) can be expressed in local coordinates as

∇kgij = 2wk gij . (2.2)

Here, w is a 1 -form called a complementary covector field.
Under the renormalization of the metric tensor g ,

g = Ω2g, (Ω > 0), (2.3)

the 1-form w is transformed by the law

w = w + d lnΩ, (2.4)

so that

∇kgij = 2wkgij . (2.5)

Here, Ω is a positive scalar differentiable function defined on W (g, w) (see [6] and [10, p. 152]).
The relation between the Weyl connection ∇ and the Riemannian connection ∇g is

∇XY = ∇g
XY − w(X)Y − w(Y )X + g(X,Y )ψ, (2.6)

where X,Y are vector fields on W (g, w) and ψ is the dual vector field to w such that w(X) = g(X,ψ) .
In local coordinates, (2.6) can be given by

Γ h
ji =

{
h

ji

}
− (wjδ

h
i + wiδ

h
j − whgji), (2.7)

where Γ h
ji are the coefficients of the Weyl connection and{

h

ji

}
=

1

2
ghm (∂jgmi + ∂igmj − ∂mgji), (2.8)

are the coefficients of the Levi-Civita connection ∇g see [2, p. 81], and [10, p. 154].
The curvature tensor W of ∇ is given by

W (X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (2.9)
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Using (2.6) in (2.9), the curvature tensor of W (g, w) is obtained:

W (X,Y )Z = R(X,Y )Z − s(X,Z)Y + s(Y, Z)X + s(Y,X)Z − s(Y,X)Z + g(Y, Z)SX − g(X,Z)SY, (2.10)

for any vector fields X, Y, Z where R denotes the curvature tensor of the Riemannian connection ∇g and s

is the tensor field of type (0, 2) defined by

s(X,Y ) = (∇Xw)(Y ) + w(X)w(Y )− 1

2
w(ψ)g(X,Y ) , (2.11)

and S is the tensor field of type (1, 1) defined by

g(SX, Y ) = s(X,Y ). (2.12)

In local coordinates, using the curvature tensor of W (g, w) ,

W h
kji = ∂kΓ

h
ji − ∂jΓ

h
ki − Γ t

kiΓ
h
jt + Γ t

jiΓ
h
kt, (2.13)

we obtain the components of curvature tensor W h
kji as

(2.14)

W h
kji = R h

kji − wkiδ
h
j + wjiδ

h
k + (wjk − wkj)δ

h
i + ghs(wksgji − wjsgki) ,

with

wji = ∇jwi + wjwi −
1

2
wt w

tgji , (2.15)

and R h
kji represents the Riemannian curvature tensor with respect to the Levi-Civita connection.

The curvature tensor and covariant curvature tensor, the Ricci tensor, and the scalar curvature of Weyl
space are defined through parallel transportation of vector fields v , respectively, by

Wkjil =W m
kji gml , (2.16)

Wji = gklWkjil =W l
lji , (2.17)

W = gij Wij . (2.18)

By transvecting (2.14) with ghm , we get

Wkjim = Rkjim − wkigjm + wjigkm + (wjk − wkj)gim + wkmgji − wjmgki, (2.19)

which is called the covariant curvature tensor of W (g, w) .
The curvature tensor, the covariant curvature tensor, and the Ricci tensor of W (g, w) satisfy the following

symmetry properties (see [10, p. 157]):

Wkjil = −Wjkil , (2.20)

Wkjil +Wkjli = 2gil(∇jwk −∇kwj) = 4gil∇[jwk]. (2.21)
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By using symmetries of the curvature tensor of Weyl space, we obtain identities that are similar to
identities held in Riemannian spaces. The following identities are known as the first and second Bianchi
identities for Weyl spaces, respectively [6, 11]:

W l
kji +W l

jik +W l
ikj = 0 , (2.22)

∇mW
l

kji +∇kW
l

jmi +∇jW
l

mki = 0 . (2.23)

Furthermore, the Ricci tensor of the Weyl manifold is computed in terms of Ricci curvature Rkj of
Riemannian space as

Wkj = Rkj + (n− 2)wkj + (wkj − wjk) + wst g
stgkj , (2.24)

where wkj is defined in (2.15). It should also be noted that the Ricci tensor of a Weyl manifold is not symmetric;
its symmetric and antisymmetric parts are given as follows (see [2], p.82):

W(kj) = Rkj +
1

2
(n− 2)[∇jwk +∇kwj + 2wkwj − 2wt w

tgjk] + gjk∇tw
t , (2.25)

W[kj] = n∇[kwj] . (2.26)

From (2.24), we obtain the scalar curvature of Weyl space:

W = R+ 2(n− 1)∇jw
j − (n− 1)(n− 2)wjw

j , (2.27)

where R is the Riemannian scalar curvature and w is the complementary covector defined in (2.2).

In the next section, we give some definitions and properties of manifolds with semisymmetric connection,
and we also construct a new special connection on a Weyl manifold.

3. Semisymmetric recurrent-metric connection on Weyl manifolds

In the literature, the idea of semisymmetric connection was introduced by [1, 13, 15, 17, 18] and curvature-
related properties were studied widely therein. Let M be an n -dimensional, (n > 2) differentiable manifold.
A linear connection ∇∗ on M , whose coefficients are Γ∗ i

jk , is said to be semisymmetric if the torsion tensor T
of ∇∗ satisfies the relation

T (X,Y ) = π(Y )X − π(X)Y, (3.1)

where π is a 1-form, and X ,Y are smooth vector fields on M . In local coordinates, (3.1) can be written as

T i
jk = Γ∗ i

jk − Γ∗ i
kj = πk δ

i
j − πj δ

i
k . (3.2)

In addition, if a semisymmetric connection has the recurrency condition

∇∗
Xg = 2 µ(X)g (3.3)
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in local coordinates, (3.3) can be written as

∇∗
k gij = 2µk gij , (3.4)

and then the connection ∇∗ is said to be a semisymmetric recurrent-metric connection and µ is called the
recurrent covariant vector field [7, 8].

In this work, we use the notion of a semisymmetric recurrent metric connection for Weyl manifolds. Let

∇ be a linear connection with coefficients Γ
i

jk on a Weyl manifold W (g, w) satisfying (3.2). If the following
relation also holds on W (g, w) ,

∇Xg(Y, Z) = 2(w + µ)(X)g(Y, Z) , (3.5)

in local coordinates, (3.5) is represented by

∇kgij = ∇kgij + 2µkgij = 2(wk + µk)gij , (3.6)

and then W (g, w) is called a Weyl manifold with a semisymmetric recurrent-metric connection denoted by
WS(g, w, π, µ) .

From (2.2), we have

∇kgij = ∂kgij − ghjΓ
h

ki − gihΓ
h

kj (3.7)

= 2wkgij ,

and from (3.6), more explicitly,

∇kgij = ∂kgij − ghjΓ
h

ki − gihΓ
h

kj (3.8)

= 2(wk + µk)gij .

By using (3.8), we have

∇kg
ij = −2(wk + µk)g

ij . (3.9)

Here, we will examine the existence and uniqueness of the semisymmetric recurrent-metric connection ∇
on a Weyl manifold and will prove the following theorem.

Theorem 3.1 Let WS(g, w, π, µ) be an n-dimensional Weyl manifold equipped with the semisymmetric recurrent-
metric connection ∇ associated with 1-forms w , π , and µ satisfying (2.2), (3.2), and (3.4) , respectively. Then
there exists a unique connection ∇ on WS(g, w, π, µ) given by

∇XY = ∇XY − µ(X)Y − µ(Y )X + g(X,Y )ξ + π(Y )X − g(X,Y )η , (3.10)

where ξ and η are dual vector fields such that

µ(X) = g(X, ξ), π(X) = g(X, η) . (3.11)
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Proof Let ∇ be a semisymmetric recurrent metric connection and ∇ be a Weyl connection. We have

(∇Xg)(Y, Z) = ∇Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ) (3.12)

and
(∇Xg)(Y, Z) = ∇Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ) (3.13)

for any vector fields X,Y , and Z .
We put

∇XY = ∇XY + U(X,Y ) , (3.14)

where U is a tensor field of type (1, 2) defined as the difference of the connections.
Using (3.1) and (3.14) it is obtained that

T (X,Y ) =∇XY −∇YX − [X,Y ] ,

=U(X,Y )− U(Y,X) . (3.15)

From (3.12), (3.13), (3.14), and (3.15) we get

g(U(X,Y ), Z) + g(U(X,Z), Y ) = −2µ(X)g(Y, Z) . (3.16)

By using (3.15), and permuting vector fields X,Y , and Z for T , we get

g(T (X,Y ), Z) = g(U(X,Y ), Z)− g(U(Y,X), Z) ,

g(T (Z,X), Y ) = g(U(Z,X), Y )− g(U(X,Z), Y ) ,

g(T (Z, Y ), X) = g(U(Z, Y ), X)− g(U(Y, Z), X) . (3.17)

From (3.16) and (3.17) we obtain

g(T (X,Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X) = 2g(U(X,Y ), Z) + 2µ(X)g(Y, Z)

+ 2µ(Y )g(Z,X)− 2µ(Z)g(X,Y ) . (3.18)

Defining the tensor T́ of type (1, 2) as

g(T (Z,X), Y ) = g(T́ (X,Y ), Z) , (3.19)

equation (3.18) can be written as

g(U(X,Y ), Z) =
1

2
[g(T (X,Y ), Z) + g(T́ (X,Y ), Z) + g(T́ (Y,X), Z)]

− µ(X)g(Y, Z)− µ(Y )g(Z,X) + µ(Z)g(X,Y ) . (3.20)

Thus, we find

U(X,Y ) =
1

2
[T (X,Y ) + T́ (X,Y ) + T́ (Y,X)]− µ(X)Y − µ(Y )X + g(X,Y )ξ , (3.21)

where µ(X) = g(X, ξ) .
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From (3.1) and (3.19) we have

g(T (Z,X), Y ) =g(π(X)Z, Y )− g(π(Z)X,Y ) ,

=g(T́ (X,Y ), Z) . (3.22)

From (3.19), and (3.22), we reach

g(T́ (X,Y ), Z) =π(X)g(Z, Y )− g(Z, η)g(X,Y ) , (3.23)

which implies
T́ (X,Y ) = π(X)Y − g(X,Y )η , (3.24)

where π(X) = g(X, η) .
Hence, (3.21) turns into

U(X,Y ) = π(Y )X − µ(X)Y − µ(Y )X + g(X,Y )ξ − g(X,Y )η . (3.25)

Then (3.14) becomes

∇XY = ∇XY − µ(X)Y − µ(Y )X + g(X,Y )ξ + π(Y )X − g(X,Y )η ,

which completes the proof. 2

Also, equation (3.10) is obtained in local coordinates as

Γ
l

ik =

{
l

ik

}
− (wiδ

l
k + wkδ

l
i − wlgik) + (λkδ

l
i − µiδ

l
k − λlgik), (3.26)

where λk = πk − µk .
The following subsection is devoted to presentation of curvature tensors of Weyl manifolds with the

semisymmetric recurrent-metric connection, WS(g, w, π, µ) , in local coordinates in detail. The covariant
curvature tensor, the Ricci tensor, and the scalar curvature of WS(g, w, π, µ) will be denoted by Rkjim , Rji ,
and R , respectively.

3.1. The curvature tensor of WS(g, w, π, µ)

Theorem 3.2 The curvature tensor of a Weyl manifold with the semisymmetric recurrent-metric connection
WS(g, w, π, µ) has the following properties:

(i) Rkjim =Wkjim +Qkjim − αijgmk + αikgmj − αmkgij + αmjgik , (3.27)

where Wkjim is the covariant curvature tensor of W (g, w) , and

Q h
kji = λkiδ

h
j − λjiδ

h
k + λjlg

lhgki − λklg
lhgji + δhi (∇jµk −∇kµj) , (3.28)

or by transvecting with metric tensor ghm

Qkjim = gmjλki − gmkλji + λjmgki − λkmgji + 2gmi∇[jµk] , (3.29)
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and

αij = λiwj + λjwi − wlλ
lgij , (3.30)

λki = ∇kλi − λkλi +
1

2
gkiλtλ

t , (3.31)

and also, λ , w , and µ are 1-forms as given in (3.2), (2.2), and (3.4), respectively.

(ii) Rji =Wji +Qji − (n− 2)(λjwi + λiwj − 2gjiwtλ
t) , (3.32)

where Wji is given by (2.24), and

Qji = Qkjimg
km = (n− 2)[−∇jλi + λiλj − gjiλtλ

t]− gji∇tλ
t + 2∇[jµi] . (3.33)

(iii) R = R+ 2(n− 1)(∇tw
t −∇tλ

t)− (n− 1)(n− 2)(wt − λt)(w
t − λt) , (3.34)

where R is the Riemannian scalar curvature and holds the relation R = Rjig
ji .

Proof

(i) In spaces with torsion, parallel transport of vector fields is defined by [18]. The curvature tensor of
WS(g, w, π, µ) can be computed by using the Ricci identity for a covariant vector field vi :

(∇k∇j −∇j∇k) vi = −R t

kji vt − T t
kj ∇t vi , (3.35)

where R h

kji is the curvature tensor of WS(g, w, π, µ) ,

R
h

kji = ∂kΓ
h

ji − ∂jΓ
h

ki + Γ
t

ji Γ
h

kt − Γ
t

ki Γ
h

jt , (3.36)

and T h
ij is the torsion tensor of WS(g, w, π, µ) ,

T h
ij = Γ

h

ij − Γ
h

ji = U h
ij − U h

ji . (3.37)

Substituting coefficients of connections (3.26) in (3.36), and after some calculations, we obtain the curva-
ture tensor of WS(g, w, π, µ) as

R
h

kji =W h
kji +Q h

kji − δhk (λjwi + λiwj − wlλ
lgij) + δhj (λkwi + λiwk − wlλ

lgik) (3.38)

−gij(λkwh + λhwk − wlλ
l δhk ) + gik(λjw

h + λhwj − wlλ
l δhj ) ,

where W h
kji represents the curvature tensor of Weyl space defined in (2.14).

If we simplify our calculations we define the tensor Q h
kji as in (3.28) and λki as in (3.31), respectively:

Q h
kji = δhj λki − δhkλji + λjlg

lhgki − λklg
lhgji + δhi (∇jµk −∇kµj) ,
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λki = ∇kλi − λkλi +
1

2
gkiλtλ

t ,

and multiplying (3.28) by the metric tensor ghm , we obtain

Qkjim = gmjλki − gmkλji + λjmgki − λkmgji + 2gmi∇[jµk] ,

and similarly, we get

Qji = Qkjimg
km = (n− 2)[−∇jλi + λiλj − gjiλtλ

t]− gji∇tλ
t + 2∇[jµi] .

From (3.29), we see that the following antisymmetry property holds for Qkjil :

Qkjil = −Qjkil . (3.39)

Multiplying (3.38) by metric tensor ghm and using (3.29) and (2.19), we reach (3.27):

Rkjim =Wkjim +Qkjim − gmkαij + gmjαik − gijαmk + gikαmj ,

where

αij = λiwj + λjwi − gijwlλ
l .

(ii) Now let us examine the Ricci curvature and its symmetric properties for WS(g, w, π, µ) . Multiplying
(3.27) by gmk , we get the Ricci tensor of WS(g, w, π, µ) as

Rji =Wji +Qji − (n− 2)(λjwi + λiwj) + 2(n− 2)gjiwlλ
l , (3.40)

where Wji and Qji are given by (2.24) and (3.33), respectively.

It is seen that the Ricci tensor Rji of WS(g, w, π, µ) is not symmetric. The symmetric and antisymmetric
parts of Rji can be calculated as

R(ji) =W(ji) −
(n− 2)

2

[
(∇jλi +∇iλj)− 2λiλj + 2gjiλtλ

t + 2(λjwi + λiwj)
]

(3.41)

+ gji[2(n− 2)wtλ
t −∇tλ

t]

and

R[ji] = n∇[jwi] − (n− 2)∇[jλi] + 2∇[jµi] . (3.42)

(iii) Transvecting the Ricci curvature tensor Rji in (3.40) by the metric tensor gji , we obtain

R = Rji g
ji , (3.43)

and then the scalar curvature of WS(g, w, π, µ) is

R = R+ 2(n− 1)(∇tw
t −∇tλ

t)− (n− 1)(n− 2)(wt − λt)(w
t − λt) . (3.44)
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2

Now we examine the properties of the covariant curvature tensor of Weyl space with the semisymmetric
recurrent-metric connection WS(g, w, π, µ) . Using the properties of Rkjil and Wkjil , it can be seen that the
curvature tensor of WS(g, w, π, µ) satisfies the following symmetry relations in the following propositions:

Proposition 3.3 The curvature tensor of WS(g, w, π, µ) satisfies the following symmetry relations:

(i). Rkjim = −Rjkim , (3.45)

(ii). Rkjim +Rkjmi = 4gim(∇[jµk] +∇[jwk]) . (3.46)

Proof

(i) Interchanging the indices k and j in equation (3.27), we have

Rkjim +Rjkim =Wkjim +Wjkim +Qkjim +Qjkim,

and using (2.20) and (3.39) in the above equation, we get (3.45).

(ii) Using (2.20), (2.21), (3.29), and (3.30) in the equation of (3.27), we obtain (3.46).

Rkjim +Rkjmi =Wkjim +Wkjmi +Qkjim +Qkjmi

=Wkjim +Wkjmi + 2gim(µjk − µkj)

= 2gim(∇[jwk] −∇[kwj]) + 2gim(µjk − µkj)

= 4gim(∇[jµk] +∇[jwk]) .

Note that if wk and µk are gradients or if wk and µk have opposite signs, then

Rkjim = −Rkjmi.

In the following proposition, we introduce extended (generalized) first and second Bianchi identities for
WS(g, w, π, µ) .

2

Proposition 3.4 The curvature tensor of WS(g, w, π, µ) satisfies the following first and second Bianchi
identities for WS(g, w, π, µ) , respectively:

(i). R
l

kji +R
l

jik +R
l

ikj = 2(δlj∇[kπi] + δli∇[jπk] + δlk∇[iπj]) , (3.47)

(ii). (∇lR
t

kji + ∇kR
t

jli + ∇jR
t

lki ) = 2(πlR
t

kji + πkR
t

jli + πjR
t

lki ) . (3.48)

Proof

(i) Using (3.38) and (3.31), and by changing indices k , j , i cyclically, we get

R
l

kji +R
l

jik +R
l

ikj = Q l
kji +Q l

jik +Q l
ikj . (3.49)
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On the other hand, using (3.31), we calculate Q l
kji +Q l

jik +Q l
ikj as

Q l
kji +Q l

jik +Q l
ikj = δlj(λki − λik) + δlk(λij − λji) + δli(λjk − λkj) (3.50)

+ δli(µjk − µkj) + δlk(µij − µji) + δlj(µki − µik) ,

where

µkj = ∇kµj − µjµk +
1

2
gjkµtµ

t . (3.51)

Using (3.31), and arranging (3.50), we find

Q l
kji +Q l

jik +Q l
ikj = δlj [∇k(πi −∇iπk)] (3.52)

+ δlk[∇i(πj −∇jπi)] + δli[∇j(πk −∇kπj)] .

Using (3.52) in (3.49), we get

R
l

kji +R
l

jik +R
l

ikj = 2(δlj∇[kπi] + δli∇[jπk] + δlk∇[iπj])

which is called the generalized first Bianchi identity.
Also, the covariant form is obtained:

Rkjim +Rjikm +Rikjm = 2(gjm∇[kπi] + gim∇[jπk] + gkm∇[iπj]) .

(ii) Using the Ricci identity (3.35) and differentiating covariantly both sides of (3.35), we get

−∇l∇k∇j vi +∇l∇j∇k vi = ∇l(R
t

kji ) vt +R
t

kji ∇l(vt) (3.53)

+∇l(T
t

kj )∇t vi + T t
kj (∇l∇t vi) ,

which is written in terms of the covariant derivative of the curvature tensor and torsion tensor.
Now, interchanging the indices l , k , and j in (3.53), using the components of the torsion tensor of (3.2) ,
and by some tensor calculations, the Ricci identity (3.35) reduces to

T t
lk (∇t∇j −∇j∇t) vi + T t

jl (∇t∇k −∇k∇t) vi + T t
kj (∇t∇l −∇l∇t) vi (3.54)

= −2πk(R
t

lji vt + T t
lj ∇t vi)− 2πl(R

t

jki vt + T t
jk ∇t vi)− 2πj(R

t

kli vt + T t
kl ∇t vi) .

Using (3.53), (3.54), and (3.2), we find

(∇lR
t

kji + ∇kR
t

jli + ∇jR
t

lki ) = 2(πlR
t

kji + πkR
t

jli + πjR
t

lki ) ,

which is called the generalized second Bianchi identity for WS(g, w, π, µ) .

2
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Theorem 3.5 WS(g, w, π, µ) and W (g, w) have the same curvature tensors if and only if the recurrent
covariant vector field µk of ∇ defined by (3.4) is a gradient vector and the following equation holds:

λij + αji = 0, (3.55)

where αij and λij are as in (3.30) and (3.31), respectively.

Proof Let WS(g, w, π, µ) and W (g, w) have the same curvature tensors:

Rkjim =Wkjim.

Using (3.27), we have

Qkjim = gmkαij − gmjαik + gijαmk − gikαmj . (3.56)

Also, from (3.30), (3.31), and (3.29), we obtain the relation

gmj(αik + λki)− gmk(αij + λji) + gik(αmj + λjm)− gij(αmk + λkm) (3.57)

+2gmi∇[jµk] = 0.

From (3.58), it follows that αik + λki = 0 and ∇[jµk] = 0 simultaneously.
Conversely, using (3.27),

Rkjim =Wkjim +Qkjim − αijgmk + αikgmj − αmkgij + αmjgik ,

and substituting (3.29) in (3.27), we get

Rkjim =Wkjim + gmj(αik + λki)− gmk(αij + λji) + gik(αmj + λjm) (3.58)

− gij(αmk + λkm) + 2gmi∇[jµk] .

By using the given assumptions of αik + λki = 0 and ∇[jµk] = 0 , we conclude that

Rkjim =Wkjim. (3.59)

2

Next, we give an example of 3 -dimensional WS(g, w, π, µ) with a constant curvature in which components
of the torsion tensor, complementary, and recurrency covector fields are chosen specially.

Example 3.6 Let us consider the three dimensional metric given as

ds2 =
dr2

1− κr2
+ r2(dθ2 + sin2 θ dϕ2), (r > 0 , 0 ≤ θ < π, 0 ≤ ϕ < 2π), (3.60)

where 1− κr2 > 0 and κ is an arbitrary constant.
The scalar curvature of (3.60) is obtained as R = 6κ . For κ = 1, 0,−1 , space is called spherical, planar,

and hyperbolic, respectively.
Here, all 1-forms w , π , and µ are represented with three components in spherical directions r, θ, ϕ , i.e.

w = (wr, wθ, wϕ) , π = (πr, πθ, πϕ) . For this example, we choose the complementary vector w as w = (0, wθ, 0) ,
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covector fields π as π = (0, πθ, 0) , and recurrency form µ as µ = (0, µθ, 0) , which are defined in equations
(2.2), (3.2), and (3.4), respectively. Thus, for the metric (3.60), we find the connection coefficients, the Ricci
curvature, and the scalar curvature of WS(g, w, π, µ) as follows:

Γ
r

rr =
κr

1− κr2
, Γ

r

rθ = −wθ + µθ , (3.61)

Γ
r

θr = −(wθ + µθ) , Γ
r

θθ = −r(1− κr2) ,

Γ
r

ϕϕ = −r(1− κr2) sin2 θ , Γ
θ

rr =
wθ − µθ

r2(1− κr2)
,

Γ
ϕ

ϕr = Γ
θ

θr = Γ
ϕ

rϕ = Γ
θ

rθ =
1

r
, Γ

ϕ

ϕθ = cot θ − wθ + µθ ,

Γ
θ

θθ = −(wθ + µθ) = −πθ , Γ
θ

ϕϕ = − sin θ(cos θ + (µθ − wθ)sinθ) ,

Γ
ϕ

θϕ = cot θ − πθ .

Here, if we choose wθ and µθ to be functions of radial coordinate r , and also πθ to satisfy the relation
πθ = wθ(r) + µθ(r) , then from (3.37), we can compute components of the torsion tensor for (3.62).

T r
rθ = T ϕ

ϕθ = 2wθ , T r
θr = T ϕ

θϕ = −2wθ , (3.62)

and the components of the Ricci tensor of WS(g, w, π, µ) are

Rrr =
2κr2 + (wθ − µθ)(cot θ − wθ + µθ)

r2(1− κr2)
,

Rrθ =
2rw′

θ − wθ + µθ

r
,

Rθr = −r(w
′
θ + µ′

θ) + wθ − µθ

r
,

Rθθ = 2κr2 + cot θ(wθ − µθ) ,

Rϕϕ = sin θ
(
2κr2 sin θ + (wθ − µθ)[2 cos θ + (µθ − wθ) sin θ]

)
, (3.63)

where prime (′) denotes the derivative with respect to r , and the scalar curvature of WS(g, w, π, µ) is obtained
as

R =
1

r2
(
6κr2 + 2(wθ − µθ)(2 cot θ − wθ + µθ)

)
. (3.64)

Particularly, in (3.64), by taking

wθ = λθ = µθ = c1
√
1− κr2 + c2

[
−1 + artanh

(
1√

1− κr2

)]
, 1− κr2 > 0, (3.65)

where c1 , c2 are any real constant, we obtain that the scalar curvature of WS(g, w, π, µ) is R = 6κ . Thus, the
scalar curvature of WS(g, w, π, µ) becomes the same as the scalar curvature of Riemannian space.

In the following section, sectional curvature is examined for WS(g, w, π, µ) in the sense of previous studies
(see [9], p. 265, and [12]).
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3.2. Sectional curvatures on Weyl manifolds with semisymmetric recurrent-metric connection
WS(g, w, π, µ)

Let X,Y ∈ Tp(WS) at a point P ∈WS(g, w, π, µ) . Let Π be the 2-plane spanned by X ,Y . Then the sectional
curvature K of WS(g, w, π, µ) at P with respect to plane Π is defined by [12]:

K(Π) = K(X,Y )

=
R (X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
. (3.66)

In local coordinates the equation (3.66) is

K(Π) =
RijklX

iY jXkY l

(gikgjl − gilgjk)XiY jXkY l
. (3.67)

If the sectional curvature K of WS(g, w, π, µ) at a point P is the same for all 2 -planes in Tp(WS) , then we
say that WS(g, w, π, µ) is isotropic at P . If WS(g, w, π, µ) is isotropic at every point P on WS(g, w, π, µ) ,
then WS(g, w, π, µ) is called isotropic (see [9], p. 265, and [12]).

On the other hand, if the sectional curvature K of WS(g, w, π, µ) has the same value at every point and
for every section at that point, then we say that WS(g, w, π, µ) has constant curvature.

It is obvious that if WS(g, w, π, µ) has constant curvature, then WS(g, w, π, µ) is isotropic.
We recall that a Weyl manifold WS(g, w, π, µ) is said to be an Einstein manifold with respect to

the semisymmetric recurrent-metric connection EWS(g, w, π, µ) if the symmetric part of the Ricci tensor is
proportional to the metric; that is,

R(ji) = θgij , (3.68)

for a scalar function θ defined on WS(g, w, π, µ) (see [14], Eq. 41).
It is shown that every 2-dimensional Weyl manifold is an Einstein manifold [12].

We now quote the following lemma (see [9], p. 265), which will be needed in the proof of the following
theorem.

Lemma 3.7 Suppose that S is any 4-covariant tensor, and that X and Y are two arbitrary linearly independent
vectors. If for all X and Y

SijklX
iY jXkY l = 0 , (3.69)

then we have

Sijkl + Sklij + Silkj + Skjil = 0 . (3.70)

A sufficient condition for a Weyl manifold to be locally conformal to an Einstein manifold by using
sectional curvature was given in [12]. By means of the notation used in [12], we state and prove the following
theorem for WS(g, w, π, µ) .

Theorem 3.8 Any isotropic Weyl manifold with the semisymmetric recurrent-metric connection can be locally
conformal to an Einstein manifold with the semisymmetric recurrent-metric connection, EWS(g, w, π, µ) .
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Proof Assume that WS(g, w, π, µ) is an isotropic manifold. In Lemma 3.7, by taking

Sijkl = Rijkl −K(x)(gikgjl − gilgjk) , (3.71)

and using (3.70), we get

Rijkl +Rklij +Rilkj +Rkjil = 4Kgikgjl − 2K(glkgij + gligkj) . (3.72)

Transvecting (3.72) by glh ,

(3.73)

R
h

ijk +R
h

kji + (Rkjil +Rkjil)g
lh = [4Kgikgjl − 2K(glkgij + gligkj)]g

lh ,

and using symmetry properties (3.45) and (3.46) and the first Bianchi identity for EWS(g, w, π, µ) ,

R
l

kji +R
l

jik +R
l

ikj = 2(δlj∇[kπi] + δli∇[jπk] + δlk∇[iπj]) , (3.74)

we find that

R
h

ijk +R
h

kji +R
h

ikj + 2Rilkjg
lh = 2K(2gikδ

h
j − gkjδ

h
i − gijδ

h
k ) (3.75)

− glhAlkji + 4δhj (∇[kwi] +∇[kµi]) ,

where

Alkji = 2(gij∇[lπk] + gkj∇[iπl] + glj∇[kπi]) . (3.76)

Contracting (3.75) with h and i and using equation (3.74),

Rjk +R
i

kji +Rkj + 2Rilkjg
il = 2K(2gikδ

i
j − gkjδ

i
i − gijδ

i
k)− gliAlkji (3.77)

+ 4δij(∇[kwi] +∇[kµi]) .

For (3.77), by using (3.27), (3.28), and (2.15), let us calculate R i

kji and gliAlkji :

R
i

kji = Q i
kji +W i

kji , (3.78)

where

Q i
kji =δ

i
j λki − δ i

kλji + λjlg
ligki − λkmg

migji + δ i
i (∂jµk − ∂kµj) (3.79)

=2n∇[jµk] .

Thus,

Q i
kji = 2n∇[jµk] ,

W i
kji = n(wjk − wkj) = 2n∇[jwk] , (3.80)
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and from (3.76),

Alkjig
li = 2gligkj∇[iπl] . (3.81)

Hence, we reach

Rjk +Rkj + 2n(∇[jµk] +∇[jwk]) = 2K(2gikδ
j
i − ngkj − gkj) (3.82)

+ 4(∇[kwj] +∇[kµj])− 2gligkj∇[iπl] .

From (3.82), we observe that the symmetric part of the Ricci tensor is

R(jk) = (1− n)Kgkj − (n+ 2)(∇[jwk] +∇[jµk]). (3.83)

Since R(jk) is symmetric, the second term of (3.83) must satisfy the following relation:

∇[jwk] +∇[jµk] = 0 . (3.84)

Thus, the symmetric Ricci tensor of EWS(g, w, π, µ) is

R(jk) = (1− n)Kgkj , (3.85)

and equation (3.84) implies that wk and µk are gradient. This completes the proof. 2
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