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Abstract: A topological space X is called C -paracompact if there exist a paracompact space Y and a bijective function
f : X −→ Y such that the restriction f |A : A −→ f(A) is a homeomorphism for each compact subspace A ⊆ X . A
topological space X is called C2 -paracompact if there exist a Hausdorff paracompact space Y and a bijective function
f : X −→ Y such that the restriction f |A : A −→ f(A) is a homeomorphism for each compact subspace A ⊆ X . We
investigate these two properties and produce some examples to illustrate the relationship between them and C -normality,
minimal Hausdorff, and other properties.
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1. Introduction
We introduce two new topological properties, C -paracompactness and C2 -paracompactness. They were defined
by Arhangel’skiĭ. The purpose of this paper is to investigate these two properties. Throughout this paper, we
denote an ordered pair by ⟨x, y⟩ , the set of positive integers by N , the rational numbers by Q , the irrational
numbers by P , and the set of real numbers by R . T2 denotes the Hausdorff property. A T4 space is a T1

normal space and a Tychonoff space (T3 1
2

) is a T1 completely regular space. We do not assume T2 in the
definition of compactness, countable compactness, local compactness, and paracompactness. We do not assume
regularity in the definition of Lindelöfness. For a subset A of a space X , intA and A denote the interior and
the closure of A , respectively. An ordinal γ is the set of all ordinals α such that α < γ . The first infinite
ordinal is ω0 and the first uncountable ordinal is ω1 .

2. C -paracompactness and C2 -paracompactness
In 2016 and in a personal communication with Kalantan, the second author, Arhangel’skiĭ introduced the
following definition.

Definition 2.1 A topological space X is called C -paracompact if there exist a paracompact space Y and a
bijective function f : X −→ Y such that the restriction f |A : A −→ f(A) is a homeomorphism for each compact
subspace A ⊆ X . A topological space X is called C2 -paracompact if there exist a Hausdorff paracompact space
Y and a bijective function f : X −→ Y such that the restriction f |A : A −→ f(A) is a homeomorphism for
each compact subspace A ⊆ X .
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Observe that a function f : X −→ Y witnessing the C -paracompactness (C2 -paracompactness) of X

need not be continuous: for example, the identity function from any countable complement topology on an
uncountable set onto its discrete; see Theorem 2.7 below. However, it will be under some conditions. Recall
that a space X is Fréchet if for any subset A of X and any x ∈ A , there exists a sequence (xn) of elements of
A that converges to x [7].

Theorem 2.2 If X is a C -paracompact (C2 -paracompact) Fréchet space and f : X −→ Y is a witness of the
C -paracompactness (C2 -paracompactness) of X , then f is continuous.

Proof Let A be any nonempty subset of X . Let y ∈ f(A) be arbitrary. Let x ∈ X be the unique element
such that f(x) = y . Then x ∈ A . Pick a sequence (xn) ⊆ A such that xn −→ x . Let B = {x, xn : n ∈ N} ;
then B is a compact subspace of X , being a convergent sequence with its limit, and hence f |B : B −→ f(B) is a
homeomorphism. Now, let V ⊆ Y be any open neighborhood of y ; then V ∩f(B) is open in the subspace f(B)

containing y . Thus, f−1(V )∩B is open in the subspace B containing x . Thus, (f−1(V )∩B)∩{xn : n ∈ N} ̸= ∅ ,
so (f−1(V ) ∩ B) ∩ A ̸= ∅ . Hence, ∅ ̸= f((f−1(V ) ∩ B) ∩ A) ⊆ f(f−1(V ) ∩ A) = V ∩ f(A) . Thus, y ∈ f(A) .
Therefore, f is continuous. 2

Since any first countable space is Fréchet, we conclude the following.

Corollary 2.3 If X is a C -paracompact (C2 -paracompact) first countable space and f : X −→ Y is a witness
of the C -paracompactness (C2 -paracompactness) of X , then f is continuous.

Corollary 2.4 Any C2 -paracompact Fréchet space is Hausdorff.

Corollary 2.5 Let X be a C2 -paracompact Fréchet space. Then for each disjoint compact subspace A and B ,
there exist two open sets U and V such that A ⊆ U , B ⊆ V , and U ∩ V = ∅ .

Proof Let Y be a T2 paracompact space and f : X −→ Y be a bijective function such that the restriction
f |A : A −→ f(A) is a homeomorphism for each compact subspace A ⊆ X . By Theorem 2.2, f is continuous.
Let A and B be any disjoint compact space; then f(A) and f(B) are disjoint compact subspaces of Y . Since
Y is T2 , then f(A) and f(B) are disjoint closed subspaces of Y . Since Y is T2 paracompact, Y is normal
and thus there exist two open subsets G and H of Y such that f(A) ⊆ G , f(B) ⊆ H , and G ∩H = ∅ . By
the continuity of f , U = f−1(G) and V = f−1(H) work. 2

A C -paracompact Fréchet space may not be Hausdorff. Take for an example any indiscrete space
containing more than one element. Another example is the space Y of Example 2.25 below. Corollary 2.5
is not always true for C -paracompactness; see the space X of Example 2.25 below. By the theorem “A
function f from a k -space X into a topological space Y is continuous if and only if for every compact subspace
Z ⊆ X the restriction f |Z : Z −→ Y is continuous” [7, 3.3.21], we conclude the following.

Corollary 2.6 If X is a C -paracompact (C2 -paracompact) k -space and f : X −→ Y is a witness of the
C -paracompactness (C2 -paracompactness) of X , then f is continuous.

It is clear from the definitions that any C2 -paracompact space must be C -paracompact. Now, assuming
that X is a compact and C2 -paracompact space, then the witness function of C2 -paracompactness is a
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homeomorphism, which gives that X is Hausdorff and T4 . Thus, any compact space that is not Hausdorff
cannot be C2 -paracompact. We conclude that the following compact spaces are C -paracompact but not C2 -
paracompact because they are not Hausdorff: finite complement topology on an infinite set, compact complement
space [17, Example 22], modified Fort space [17, Example 27], and overlapping intervals space [17, Example 53].
In Example 2.25 below, we give a Hausdorff C -paracompact space that is not C2 -paracompact. It is clear from
the definitions that any paracompact space must be C -paracompact. Just take Y = X and use the identity
function. However, in general, C -paracompactness does not imply paracompactness. ω1 is C -paracompact
because it is C2 -paracompact, being T2 locally compact (see Theorem 2.12 below), but not paracompact
because it is countably compact noncompact. The following theorem can be proved in a similar way as in [3].

Theorem 2.7 If X is a T1 space such that the only compact subsets are the finite subsets, then X is C2 -
paracompact.

We conclude that (R, CC) , where CC is the countable complement topology [17], is C2 -paracompact,
which is not paracompact. (R, CC) is T1 but not T2 and this does not contradict Corollary 2.4 because it is
not Fréchet as 0 ∈ P and the only convergent sequences are the eventually constant.

Recall that a topological space X is called C -normal if there exist a normal space Y and a bijective
function f : X −→ Y such that the restriction f |A : A −→ f(A) is a homeomorphism for each compact
subspace A ⊆ X [3]. Since any Hausdorff paracompact space is T4 , then it is clear that any C2 -paracompact
space is C -normal. Here is an example of a C -normal space that is not C2 -paracompact.

Example 2.8 Consider R with the left ray topology L = {∅,R}∪{(−∞, x) : x ∈ R} . In this space (R, L) , any
two nonempty closed sets must intersect; thus, (R, L) is normal and hence C -normal. (R, L) is not Hausdorff
as any two nonempty open sets must intersect. A subset C ⊂ R is compact if and only if it has a maximum
element. Suppose that (R, L) is C2 -paracompact. Let Y be a Hausdorff paracompact space and f : R −→ Y

be a bijection such that f |C : C −→ f(C) is a homeomorphism for each compact subspace C of R . Let
C = (−∞, 0] ; then C is compact in (R, L) and C as a subspace is not Hausdorff because any two nonempty
open sets in C must intersect. However, C will be homeomorphic to f(C) and f(C) is Hausdorff, being a
subspace of a Hausdorff space, and this is a contradiction. Therefore, (R, L) cannot be C2 -paracompact.

There are some conditions whereby C -normality will imply C2 -paracompactness, but first we need the
following lemma.

Lemma 2.9 If f : X −→ Y is a bijection function such that f |A : A −→ f(A) is a homeomorphism for each
compact subspace A ⊆ X and any finite subset of X is discrete, then Y is T1 .

Proof Assume that Y has more than one element and let a and b be any two distinct elements of Y . Let
c and d be the unique elements of X such that f(c) = a and f(d) = b . Then f |{c,d} : {c, d} −→ {a, b} is a
homeomorphism and {c, d} is a discrete subspace of X . Thus, f({c}) = {a} and f({d}) = {b} are both open in
{a, b} as a subspace of Y . Thus, there exists an open neighborhood Ua ⊆ Y of a such that Ua ∩ {a, b} = {a} ;
hence, b ̸∈ Ua , and similarly there exists an open neighborhood Ub ⊆ Y of b such that a ̸∈ Ub . Thus,
Y is T1 . 2
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Theorem 2.10 Let X be a Fréchet Lindelöf space such that any finite subspace of X is discrete. If X is
C -normal, then X is C2 -paracompact.

Proof Since X is C -normal, then there exist a normal space Y and a bijection function f : X −→ Y such that
the restriction f |A : A −→ f(A) is a homeomorphism for each compact subspace A ⊆ X . By Lemma 2.9, Y is
T1 and hence T4 . Since X is Fréchet, then f is continuous [10]. Since X is Lindelöf and f is continuous and
onto, then Y is Lindelöf. Since any T3 Lindelöf space is paracompact, then Y is T2 paracompact. Therefore,
X is C2 -paracompact. 2

Any infinite particular point space [17] is not paracompact. A similar proof as in [10] shows that any
infinite particular point space cannot be C -paracompact. Observe that any finite space that is not discrete
(i.e. not T1 ) is compact and hence paracompact, thus C -paracompact. Therefore, any finite space that is
neither normal nor discrete will be an example of a C -paracompact that is neither C2 -paracompact nor C -
normal. We conclude that paracompactness does not imply C -normality, and C -paracompactness does not
imply C -normality. Here is an infinite C -normal space that is not C -paracompact.

Example 2.11 Let X = [ 0, ∞) . Define τ = {∅, X} ∪ {[ 0, x) : x ∈ R, 0 < x} . Note that (X, τ ) is just the
subspace of (R, L) . That is, τ = LX = L[ 0,∞) . Now consider (X, τ 0) , where τ 0 is the particular point
topology. We have that τ is coarser than τ 0 because any nonempty open set in τ must contain 0 . Thus,
(X, τ 0) cannot be paracompact. Observe that (X, τ ) is normal because there are no two nonempty closed
disjoint subsets. Thus, (X, τ ) is C -normal. Now, a subset C of X is compact if and only if C has a maximal
element. To see this, if C has a maximal element, then any open cover for C will be covered by one member
of the open cover, the one that contains the maximal element. If C has no maximal element, then C cannot
be finite. If C is unbounded above, then {[ 0, n) : n ∈ N} would be an open cover for C that has no finite
subcover. If C is bounded above, let y = supC and pick an increasing sequence (cn) ⊆ C such that cn −→ y ,
where the convergence is taken in the usual metric topology on X . Then {[ 0, cn) : n ∈ N} would be an open
cover for C that has no finite subcover. Thus, C would not be compact. (X, τ ) is Fréchet. That is because
X is first countable. If x ∈ X , then B(x) = {[0, x+ 1

n ) : n ∈ N} is a countable local base for X at x .
Now, suppose that X is C -paracompact. Pick a paracompact space Y and a bijective function f : X −→

Y such that f |A : A −→ f(A) is a homeomorphism for each compact subspace A of X . By Corollary 2.3, f

is continuous. Thus, for any nonempty open subset U of Y we have that f−1(U) is open in X . Since f is a
bijective, Y is infinite. For each y ∈ Y , pick an open neighborhood Uy of y such that the family {Uy : y ∈ Y } is
an infinite open cover for Y . Since each Uy contains the element f(0) , then the open cover {Uy : y ∈ Y } cannot
have any locally finite open refinement and thus Y is not paracompact, which is a contradiction. Therefore, X
is C -normal but not C -paracompact.

An example of a Tychonoff C -normal space that is not paracompact is ω1 × (ω1 + 1) . It is C -normal
because it is Hausdorff locally compact [3]. We have a great benefit from local compactness.

Theorem 2.12 Every Hausdorff locally compact space is C2 -paracompact.

Proof Let X be any Hausdorff locally compact topological space. By [7, 13], there exists a T2 compact space
Y and hence Y is T2 paracompact, and a bijective function f : X −→ Y such that f is continuous. Since f is
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continuous, then for any compact subspace A ⊆ X we have that f |A : A −→ f(A) is a homeomorphism because
1− 1 , onto, and continuity are inherited from f , and f |A is closed as A is compact and f(A) is Hausdorff.2

The converse of Theorem 2.12 is not true in general. Here is an example of a Tychonoff C2 -paracompact
space that is not locally compact.

Example 2.13 Consider the quotient space R/N . We can describe it as follows: Let i =
√
−1 . Let

Y = (R \ N) ∪ {i} . Define f : R −→ Y as follows:

f(x) =

{
x ; if x ∈ R \ N
i ; if x ∈ N

Now consider on R the usual topology U . Define on Y the topology τ = {W ⊆ Y : f−1(W ) ∈ U} . Then
f : (R, U) −→ (Y, τ ) is a closed quotient mapping. We can describe the open neighborhoods of each element
in Y as follows: The open neighborhoods of i ∈ Y are of the form (U \ N) ∪ {i} , where U is an open set in
(R, U) such that N ⊆ U . The open neighborhoods of any y ∈ R \ N are of the form (y − ϵ, y + ϵ) \ N where ϵ

is a positive real number.
It is well known that (Y, τ ) is T3 , which is neither locally compact nor first countable. Now, since (Y,

τ ) is Lindelöf, being a continuous image of R with its usual topology, and T3 , then (Y, τ ) is paracompact
and T4 . Hence, it is C2 -paracompact.

Recall that a topological space (X, τ ) is called submetrizable if there exists a metric d on X such that
the topology τ d on X generated by d is coarser than τ , i.e. τ d ⊆ τ , see [8]. By a similar proof as in [3],
we can get the following theorem.

Theorem 2.14 Every submetrizable space is C2 -paracompact.

ω1 + 1 is an example of C2 -paracompact that is not submetrizable. Recall that a topological space (X,

τ ) is called epinormal if there is a coarser topology τ ′ on X such that (X, τ ′) is T4 [2]. Epinormality implies
C -normality [3]. We still do not know if epinormality implies C2 -paracompactness or not, but epinormality
and Lindelöfness do. We emphasize that we do not assume T3 in the definition of Lindelöfness.

Theorem 2.15 Every Lindelöf epinormal space is C2 -paracompact.

Proof Let (X, τ ) be any Lindelöf epinormal space. Take a coarser topology τ ′ on X such that (X, τ ′) is
T4 . Since (X, τ ) is Lindelöf and τ ′ is coarser than τ we have that (X, τ ′) is T3 and Lindelöf, and hence
Hausdorff paracompact. Therefore, (X, τ ) is C2 -paracompact as the identity function id : (X, τ ) −→ (X,

τ ′) works [7, 3.1.13]. 2

In general, C2 -paracompactness does not imply epinormality. Since any epinormal space is Hausdorff,
in fact T2 1

2
[2], any countable complement topology on an uncountable set is such an example, but C2 -

paracompactness and the Fréchet property do.

Theorem 2.16 Any C2 -paracompact Fréchet space is epinormal.
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Proof Let (X, τ ) be any C2 -paracompact Fréchet space. If (X, τ ) is normal, we are done. Assume that
(X, τ ) is not normal. Let (Y, τ ′) be a T2 paracompact space and f : (X, τ ) −→ (Y, τ ′) be a bijective
function such that the restriction f |A : A −→ f(A) is a homeomorphism for each compact subspace A ⊆ X .
Since X is Fréchet, f is continuous; see Theorem 2.2. Define τ ⋆ = {f−1(U) : U ∈ τ ′} . It clear that τ ⋆ is a
topology on X coarser than τ such that f : (X, τ ⋆) −→ (Y, τ ′) is continuous. If W ∈ τ ⋆ , then W is of
the form W = f−1(U) where U ∈ τ ′ . Thus, f(W ) = f(f−1(U)) = U , which gives that f is open and hence
homeomorphism. Thus, (X, τ ⋆) is T4 . Therefore, (X, τ ) is epinormal. 2

Recall that a topological space X is called completely Hausdorff, T2 1
2

[17] (called also an Urysohn

space [7]), if for each distinct element a, b ∈ X there exist two open sets U and V such that a ∈ U , b ∈ V ,
and U ∩ V = ∅ . Since epinormality implies T2 1

2
[2], we have the following corollary.

Corollary 2.17 Any C2 -paracompact Fréchet space is completely Hausdorff, (T2 1
2
) .

Any finite complement topology on an infinite set is C -paracompact and Fréchet but not Hausdorff; thus,
Theorem 2.16 is not always true for C -paracompactness. The next example is an application for Theorem 2.16

Example 2.18 Recall that two countably infinite sets are said to be almost disjoint [18] if their intersection is
finite. Call a subfamily of [ω0]

ω0 = {A ⊂ ω0 : A is infinite} a mad family [18] on ω0 if it is a maximal (with
respect to inclusion) pairwise almost disjoint subfamily. Let A be a pairwise almost disjoint subfamily of [ω0]

ω0 .
The Mrówka space Ψ(A) is defined as follows: The underlying set is ω0 ∪ A , each point of ω0 is isolated,
and a basic open neighborhood of W ∈ A has the form {W} ∪ (W \ F ) , with F ∈ [ω0]

<ω0 = {B ⊆ ω0 : B

is finite} . It is well known that there exists an almost disjoint family A ⊂ [ω0]
ω0 such that |A | > ω0 and

the Mrówka space Ψ(A) is a Tychonoff, separable, first countable, and locally compact space that is neither
countably compact, paracompact, nor normal. A is a mad family if and only if Ψ(A) is pseudocompact [12].
For a mad family A , the Mrówka space Ψ(A) is C2 -paracompact, being T2 locally compact. Ψ(A) is also
Fréchet, being first countable. We conclude that such a Mrówka space is epinormal.

We have to mention that Corollary 2.9 of [2], of the second author, is incorrect; the condition of
cardinality less than continuum must be added to its hypothesis. Observe that Example 2.18 shows that
C2 -paracompactness does not imply the Lindelöf property.

The next notion, especially in the context of compact Hausdorff spaces, has been considered many times
by various topologists but the short name to label the situation was not yet introduced. Arhangel’skiĭ suggested
to name it lower compact.

Definition 2.19 A topological space (X, τ ) is called lower compact if there exists a coarser topology τ ′ on
X such that (X, τ ′) is T2 -compact.

Observe that if we do not require the space (X, τ ′) to be T2 in Definition 2.19, then any space would
be lower compact as the indiscrete topology will refine. If we require T1 , then the co-finite (finite complement)
topology will refine any space to make it lower compact.

Theorem 2.20 Every lower compact space is C2 -paracompact.
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Proof Let τ ′ be a T2 compact topology on X such that τ ′ ⊆ τ . Then (X, τ ′) is T2 paracompact and
the identity function idX : (X, τ ) −→ (X, τ ′) is a continuous bijective. If C is any compact subspace of
(X, τ ) , then the restriction of the identity function on C onto idX(C) is a homeomorphism because C is
compact, idX(C) is Hausdorff being a subspace of the T2 space (X, τ ′) , and “every continuous one-to-one
mapping of a compact space onto a Hausdorff space is a homeomorphism” [7, 3.1.13]. 2

The converse of Theorem 2.20 is not always true. Consider for example the countable complement
topology on an uncountable set.

Theorem 2.21 If (X, τ ) is C2 -paracompact countably compact Fréchet, then (X, τ ) is lower compact.

Proof Pick a T2 paracompact space (Y, τ ⋆) and a bijection function f : (X, τ ) −→ (Y, τ ⋆) such that
the restriction f |A : A −→ f(A) is a homeomorphism for each compact subspace A ⊆ X . Since X is Fréchet,
then f is continuous. Hence, (Y, τ ⋆) is countably compact. Since (Y, τ ⋆) is also paracompact, then (Y,

τ ⋆) is T2 compact. Define a topolgy τ ′ on X as follows: τ ′ = {f−1(U) : U ∈ τ ⋆} . Then τ ′ is coarser
than τ and f : (X, τ ′) −→ (Y, τ ⋆) is a bijection continuous function. Let W ∈ τ ′ be arbitrary; then W

is of the form f−1(U) for some U ∈ τ ⋆ . Thus, f(W ) = f(f−1(U)) = U . Hence, f is open and so f is a
homeomorphism. Thus, (X, τ ′) is T2 compact. Therefore, (X, τ ) is lower compact. 2

Applying Theorem 2.21 on ω1 , we get that ω1 is lower compact. Indeed, here is a coarser Hausdorff
compact topology on ω1 . Define a topology V on ω1 generated by the following neighborhood system: Each
nonzero element β < ω1 will have the same open neighborhood as in the usual ordered topology in ω1 . Each
open neighborhood of 0 is of the form U = (β, ω1)∪{0} where β < ω1 . Simply, the idea is to move the minimal
element 0 to the top and make it the maximal element. Then V is coarser than the usual ordered topology on
ω1 and (ω1, V) is a Hausdorff compact space because it is homeomorphic to ω1 + 1 .

Recall that a topology τ on a nonempty set X is said to be minimal Hausdorff if (X, τ ) is Hausdorff
and there is no Hausdorff topology on X strictly coarser than τ ; see [4, 5]. In the next theorem we will use
the following theorem: “A minimal Hausdorff space is compact if and only if it is completely Hausdorff (T2 1

2
)”

[14, 1.4]. Using this fact and Corollary 2.17, we get the following theorem.

Theorem 2.22 Any minimal Hausdorff C2 -paracompact Fréchet space is compact.

Corollary 2.23 If X is a minimal Hausdorff C2 -paracompact Fréchet space, then the witness ( T2 -paracompact)
space Y is unique up to homeomorphism.

Now we give the following characterization in the class of minimal Hausdorff spaces.

Theorem 2.24 Let X be a minimal Hausdorff second countable space. The following are equivalent.

1. X is C2 -paracompact.

2. X is locally compact.

3. X is compact

4. X is epinormal.

15
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5. X is metrizable.

6. X is lower compact.

7. X is minimal T4 .

Proof (1) ⇒ (2) Since any second countable space is first countable and any first countable space is Fréchet,
then Theorem 2.22 gives that X is T2 compact and hence locally compact.

(2) ⇒ (3) Since any T2 locally compact space is Tychonoff, by the minimality, X is compact [14, 1.4].
(3) ⇒ (4) Any T2 compact space is T4 .
(4) ⇒ (5) Any epinormal space is T2 1

2
. By minimilaity, X is compact and hence T3 . Since any T3

second countable space is metrizable, the result follows.
(5) ⇒ (6) By minimality, X is T2 1

2
compact and hence lower compact.

(6) ⇒ (7) Again, by minimality, X is T2 compact and hence T4 . Since any minimal T4 space is compact
[4, 4.2], the result follows.

(7) ⇒ (1) Since any minimal T4 space is compact, X will be T2 paracompact and hence C2 -paracompact.
2

In the next example, we give a minimal Hausdorff second countable C -paracompact space that is not
C2 -paracompact. The space X in the next example is due to Urysohn [14].

Example 2.25 Let X = {a, b, ci, aij , bij : i ∈ N, j ∈ N} where all these elements are assumed to be distinct.
Define the following neighborhood system on X :

For each i, j ∈ N, aij is isolated and bij is isolated.

For each i ∈ N, B(ci) = {V n(ci) = {ci, aij , bij : j ≥ n} : n ∈ N}.

B(a) = {V n(a) = {a, aij : i ≥ n} : n ∈ N}.

B(b) = {V n(b) = {b, bij : i ≥ n} : n ∈ N}.

Let us denote the unique topology on X generated by the above neighborhood system by τ . Then τ is minimal
Hausdorff and (X, τ ) is not compact [4]. Since X is countable and each local base is countable, then the
neighborhood system is a countable base for (X, τ ) , so it is second countable but not C2 -paracompact because
it is not T2 1

2
as the closure of any open neighborhood of a must intersect the closure of any open neighborhood

of b .
For each i ∈ N , let Ai = {aij : j ∈ N} and Bi = {bij : j ∈ N} . Let C = {ci : i ∈ N} .

Claim 1: A subset E of X is compact if and only if E satisfies all of the following conditions:

1. E ∩ C is finite.

2. If E ∩Ai or E ∩Bi is infinite, then ci ∈ E .

3. If {i ∈ N : E ∩Ai ̸= ∅} is infinite, then a ∈ E .

4. If {i ∈ N : E ∩Bi ̸= ∅} is infinite, then b ∈ E .
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Proof of Claim 1: Let K1 = {i ∈ N : ci ∈ E} , K2 = {i ∈ N : E ∩ Ai ̸= ∅} , and K3 = {i ∈ N : E ∩ Bi ̸= ∅} .
Assume E is compact. Suppose that E ∩ C is infinite. The family {V 1(a), V 1(b), V 1(ci) : i ∈ K1} is an
open cover for E that has no finite subcover, which contradicts the compactness of E . Thus, (1) holds. Now,
assume E is compact and satisfies (1). Suppose that there exists an m ∈ N with E ∩Am infinite and cm ̸∈ E .
The family {V 1(b), V m+1(a), {amj}, {aij} : j ∈ N, i ̸∈ K1, i < m} ∪ {V 1(ci) : i ∈ K1} is an open cover for E

that has no finite subcover, a contradiction. Similarly, we can show that if E ∩ Bi is infinite, then ci ∈ E .
Now, assume E is compact and satisfies (1) and (2). Suppose that K2 is infinite but a ̸∈ E . The open cover
{V 1(b), V 1(cm), {aij} : m ∈ K1, i ∈ K2, j ∈ N} of E has no finite subcover, a contradiction. Thus, (3) holds
and in a similar way (4) does hold.

Now assume E satisfies all of the four conditions. Let U = {Uα : α ∈ Λ} be any open (open in
X ) cover of E . By (1), for each i ∈ K1 there exists an αi ∈ Λ such that ci ∈ Uαi

. Thus, for each
i ∈ K1 , there exists an ni ∈ N such that V ni(ci) ⊆ Uαi

. Observe that if there exists ani,j ∈ E \ V ni(ci) ,
then those ani,j s are finite. Also, if there exists bni,j ∈ E \ V ni(ci) , then those bni,j s are finite. Let
V1 = {V ni(ci) : i ∈ K1} ∪ {{ani,j}, {bni,j} : i ∈ K1 ; ani,j ∈ E \ V ni(ci) ; bni,j ∈ E \ V ni(ci)} . Observe
that V1 is finite. Now, let k1 = maxK1 . For each i ∈ K2 \K1 we have, by (2), that Ai ∩ E is finite and for
each i ∈ K3\K1 we have, by (2), that Bi∩E is finite. Let V2 = {{aij}, {bij} : aij ∈ E ; bij ∈ E ; i < k1 ; i ̸∈ K1} .
Observe that V2 is finite. If K2 is infinite, then, by (3), a ∈ E . Thus, there exists an αa ∈ Λ such that a ∈ Uαa .
Hence, there exists an na ∈ N such that V na(a) ⊆ Uαa

. Let n′
a = max{na, k1} . Then V n′

a(a) ⊆ V na(a) ⊆ Uαa
.

In this case, let V3 = {V n′
a(a), {aij} : i < n′

a ; i ∈ K2 \ K1} . Observe that V3 is finite. If K2 is finite but
a ∈ E , we may take the same V3 . If K2 is finite and a ̸∈ E , we take V3 = {{aij} : i ∈ K2 \K1} . Observe
that V3 is also finite in this case. Similarly, if K3 is infinite, then, by (4), b ∈ E . Thus, there exists an
αb ∈ Λ such that b ∈ Uαb

. Hence, there exists an nb ∈ N such that V nb(b) ⊆ Uαb
. Let n′

b = max{nb, k1} .

Then V n′
b(b) ⊆ V nb(b) ⊆ Uαb

. In this case, let V4 = {V n′
b(b), {bij} : i < n′

b ; i ∈ K3 \ K1} . Observe that
V4 is finite. If K3 is finite but b ∈ E , we may take the same V3 . If K3 is finite and b ̸∈ E , we take
V4 = {{bij} : i ∈ K3 \ K1} . Observe that V4 is also finite in this case. Now V1 ∪ V2 ∪ V3 ∪ V4 is a finite
refinement of U . Thus, E is compact.
Claim 2: (X, τ ) is C -paracompact.
Proof of Claim 2: Let Y = X and let Y have the following neighborhood system: For each y ∈ Y \ C , let
y have the same neighborhoods as in X . For each i ∈ N , let Hi = Ai ∪ Bi = {aij , bij : j ∈ N} . For each
i ∈ N and each n ∈ N , let V n(ci) be the same as in X . For i ∈ N , an open neighborhood of ci is of the
form V n(ci) ∪ (∪k≥ l (V

n(ck) \ Fk)) ,where l > i and Fk is a finite subset of Hk . That is, we add an “ l -tail”
Dn

l = ∪k≥lV
n(ck) , where l > i , to V n(ci) , but we delete from each V n(ck) , k ≥ l , a finite subset Fk ⊂ Hk .

The open neighborhoods of the ci s are the only difference between the neighborhood system of X and of Y .
Note that if cm ∈ V n(ci) ∪ (∪k≥ l (V

n(ck) \ Fk)) , where i, l, n ∈ N with l > i and m ̸= i , then m ≥ l > i .

Consider now V n(cm) \ Fm . Since Fm is finite, we can find an n′ ∈ N such that V n′
(cm) ⊆ V n(cm) \ Fm .

Thus, V n′
(cm)∪ (∪k≥m+1 (V

n′
(ck) \Fk)) ⊆ V n(ci)∪ (∪k≥ l (V

n(ck) \Fk)) . Thus, this neighborhood system on
Y will generate a unique topology τ ′ ; see [7, 1.2.3]. Since any V n(ci)∪ (∪k≥ l (V

n(ck) \Fk)) , where l > i and
Fk is a finite subset of Hk , is open in X , then τ ′ is coarser than τ . If i1 ̸= i2 , then any open neighborhood
of ci1 will intersect any open neighborhood of ci2 and thus Y is not Hausdorff. Let {Uα : α ∈ Λ} be any open
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cover of Y . There exists an αa ∈ Λ such that a ∈ Uαa . There exists an na ∈ N such that V na(a) ⊆ Uαa .
There exists an αb ∈ Λ such that b ∈ Uαb

. There exists an nb ∈ N such that V nb(b) ⊆ Uαb
. There exists an

α1 ∈ Λ such that c1 ∈ Uα1 . There exists an n1, l1 ∈ N such that V n1(c1) ∪ (∪k≥ l1 (V
n1(ck) \ Fk)) ⊆ Uα1 . Let

l = max {l1, na, nb} . For each 1 < i < l , there exists an αi ∈ Λ such that ci ∈ Uαi
. The set Li = Hi \ Uαi

is finite for each i < l . Thus, {V l(a), V l(b), Uαi
: 1 ≤ i < l} ∪ {{x} : x ∈ Li ; i < l} is a finite refinement of

{Uα : α ∈ Λ} . Therefore, Y is compact and hence paracompact. Let E be any compact subspace of X . We
show that the topology on E inherited from X coincides with the topology on E inherited from Y . Since τ ′ is
coarser than τ , we just need to show the other containment. Since the only differences are the neighborhoods of
the elements of C , let ci ∈ E be arbitrary and let V n(ci)∩E be any open neighborhood of ci in E as a subspace
of X . Since E is compact in X , then, by part 1 of Claim 1, E ∩ C is finite. Let l = max{i ∈ N : ci ∈ E} .
Thus, by part 2 of Claim 1, for each k ≥ l+1 we have that Hk∩E is finite. For each k ≥ l+1 , let Hk∩E = Fk .
Then G = V n(ci)∪ (∪k≥ l+1 (V

n(ck) \Fk)) is an open neighborhood of ci in Y such that G∩E = V n(ci)∩E .
Thus, V n(ci) ∩ E is an open neighborhood of ci in E as a subspace of Y . Hence, the two topologies on E

coincide. Thus, Y and the identity function from X onto Y will give the C -paracompactness of X .

Theorem 2.26 C -paracompactness (C2 -paracompactness) is a topological property.

Proof Let X be a C -paracompact (C2 -paracompact) space and let X ∼= Z . Let Y be a paracompact
(Hausdorff paracompact) space and f : X −→ Y be a bijective function such that the restriction f |C : C −→
f(C) is a homeomorphism for each compact subspace C ⊆ X . Let g : Z −→ X be a homeomorphism. Then
Y and f ◦ g : Z −→ Y satisfy the requirements. 2

Theorem 2.27 C -paracompactness (C2 -paracompactness) is an additive property.

Proof Let Xα be a C -paracompact (C2 -paracompact) space for each α ∈ Λ . We show that their sum ⊕α∈ΛXα

is C -paracompact (C2 -paracompact). For each α ∈ Λ , pick a paracompact (a Hausdorff paracompact) space
Yα and a bijective function fα : Xα −→ Yα such that fα|Cα

: Cα −→ fα(Cα) is a homeomorphism for

each compact subspace Cα of Xα . Since Yα is paracompact (Hausdorff paracompact) for each α ∈ Λ , then
the sum ⊕α∈ΛYα is paracompact (Hausdorff paracompact), [7, 2.2.7, 5.1.30]. Consider the function sum [7,
2.2.E], ⊕α∈Λfα : ⊕α∈ΛXα −→ ⊕α∈ΛYα defined by ⊕α∈Λfα(x) = fβ(x) if x ∈ Xβ , β ∈ Λ . Now, a subspace
C ⊆ ⊕α∈ΛXα is compact if and only if the set Λ0 = {α ∈ Λ : C ∩Xα ̸= ∅} is finite and C ∩Xα is compact in
Xα for each α ∈ Λ0 . If C ⊆ ⊕α∈ΛXα is compact, then (⊕α∈Λfα)|C is a homeomorphism because fα|C∩Xα

is

a homeomorphism for each α ∈ Λ0 . 2

Let X be any T1 topological space. Let X ′ = X × {1} . Note that X ∩X ′ = ∅ . Let A(X) = X ∪X ′ .
For simplicity, for an element x ∈ X , we will denote the element ⟨x, 1⟩ in X ′ by x′ and for a subset B ⊆ X

let B′ = {x′ : x ∈ B} = B × {1} ⊆ X ′ . For each x′ ∈ X ′ , let B(x′) = {{x′}} . For each x ∈ X , let
B(x) = {U ∪ (U ′ \ {x′}) : U be open in X with x ∈ U} . Let τ denote the unique topology on A(X) , which
has {B(x) : x ∈ X} ∪ {B(x′) : x′ ∈ X ′} as its neighborhood system. A(X) with this topology is called the
Alexandroff duplicate of X [6]. It is well known that if X is paracompact (Hausdorff), then so is its Alexandroff
duplicate A(X) [1]. By a similar argument as in [3] we have the following theorem.

Theorem 2.28 If X is C -paracompact (C2 -paracompact) , then so is its Alexandroff duplicate A(X) .
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Recall that a subset A of a space X is called a closed domain [7], and called also regularly closed, κ-
closed, if A = intA . A space X is called mildly normal [16], called also κ-normal [15], if for any two disjoint
closed domains A and B of X there exist two disjoint open sets U and V of X such that A ⊆ U and B ⊆ V ;
see also [9, 11]. The space X in Example 2.11 is mildly normal, being normal, but not C -paracompact. Here
is an example of a C2 -paracompact space that is not mildly normal.

Example 2.29 Recall that the Dieudonné Plank [17] is defined as follows: Let

X = ((ω1 + 1)× (ω0 + 1)) \ {⟨ω1, ω0⟩}.

Write X = A ∪ B ∪N , where A = {⟨ω1, n⟩ : n < ω0} , B = {⟨α, ω0⟩ : α < ω1} , and N = {⟨α, n⟩ : α < ω1 and
n < ω0} . The topology τ on X is generated by the following neighborhood system: For each ⟨α, n⟩ ∈ N , let
B(⟨α, n⟩) = {{⟨α, n⟩}} . For each ⟨ω1, n⟩ ∈ A , let B(⟨ω1, n⟩) = {Vα(n) = (α, ω1] × {n} : α < ω1} . For each
⟨α, ω0⟩ ∈ B , let B(⟨α, ω0⟩) = {Vn(α) = {α} × (n, ω0] : n < ω0} . It is well known that the Dieudonné plank
is a Tychonoff space that is neither locally compact, normal, nor paracompact [17]. Now, a subset C ⊆ X is
compact if and only if C satisfies all of the following conditions:

(i) C ∩A and C ∩B are both finite.

(ii) If ⟨ω1, n⟩ ∈ C , then the set (ω1 × {n}) ∩ C is finite.

(iii) The set {⟨α, n⟩ ∈ C : ⟨α, ω0⟩ ̸∈ C} is finite.

Now, define Y = X = A∪B ∪N . Generate a topology τ ′ on Y by the following neighborhood system:
Elements of B ∪ N have the same local base as in X . For each ⟨ω1, n⟩ ∈ A , let B(⟨ω1, n⟩) = {{⟨ω1, n⟩}} .
Then Y is Hausdorff paracompact. Now, Y and the identity function id : X −→ Y will witness the C2 -
paracompactness of the Dieudonné plank X , in a similar way as in [3, Example 1.10].

X is not normal because A and B are closed disjoint subsets, which cannot be separated by two disjoint
open sets. Let E = {n < ω0 : n is even} and O = {n < ω0 : n is odd} . Let K and L be subsets of ω1 such
that K ∩ L = ∅ , K ∪ L = ω1 , and the cofinality of K and L is ω1 ; for instance, let K be the set of limit
ordinals in ω1 and L be the set of successor ordinals in ω1 . Then K × E and L × O are both open, being
subsets of N . Define C = K × E and D = L×O ; then C and D are closed domains in X , being closures
of the open set, and they are disjoint. Note that C = K × E = (K × E) ∪ (K × {ω0}) ∪ ({ω1} × E) and
D = L×O = (L × O) ∪ (L × {ω0}) ∪ ({ω1} × O) . Let U ⊆ X be any open set such that C ⊆ U . For each
n ∈ E there exists an αn < ω1 such that Vαn

(n) ⊆ U . Let β = sup{αn : n ∈ E} ; then β < ω1 . Since L is
cofinal in ω1 , then there exists γ ∈ L such that β < γ and then any basic open set of ⟨γ, ω0⟩ ∈ D will meet
U . Thus, C and D cannot be separated. Therefor, the Dieudonné plank X is C2 -paracompact but not mildly
normal.

Open Problem: (Arhangel’skiĭ, 2016)
Is there a T4 space that is not C2 -paracompact?
The class of all C2 -paracompact spaces is very wide, but, intuitively, we think the answer is positive even

though we have not found such a space yet. Observe that such a space is not in the class of minimal Hausdorff
spaces (see Theorem 2.24 and [14, 1.4]), or in the class of minimal T4 spaces as any minimal T4 space is compact
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[4, 4.2], and hence C2 -paracompact. Also, such a space cannot be an ordinal because any ordinal space is T2

locally compact, and hence C2 -paracompact; see Theorem 2.12. It cannot be submetrizable; see Theorem 2.14.
It cannot be Lindelöf; see Theorem 2.15. It cannot be lower compact; see Theorem 2.20. It could be the case
that such a space is a LOTS, a linearly ordered topological space, or any other space, but this LOTS must be
neither Lindelöf, locally compact, nor paracompact. Observe also that the existence of such a space, T4 but not
C2 -paracompact, will show that C2 -paracompactness is not hereditary just by taking a compactification of it.
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