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Abstract: The theory of compact linear operators acting on a Banach space has a classical core and is familiar to
many. Perhaps less known is the characterization theorem of Terzioğlu for compact maps. This theorem has a number
of important connections that deserves illumination. In this paper we survey Terzioğlu’s characterization theorem for
compact maps and some of its consequences. We also prove a similar characterization theorem for Q -compact maps.
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1. Introduction
Let X and Y be Banach spaces and T : X → Y be an operator. We say that T is compact if and only if it
maps closed unit ball BX of X into a precompact subset of Y . In other words, T is compact if and only if
for every norm bounded sequence {xn} of X , the sequence {Txn} has a norm convergent subsequence in Y .
Equivalently, T is compact if and only if for every ϵ > 0 , there exists elements y1, y2, . . . , yn ∈ Y such that

T (BX) ⊆
n∪

k=1

{yk + ϵBY },

where by BX and BY we mean the closed unit balls of X and Y , respectively. Every compact linear operator
is bounded, hence continuous, but clearly not every bounded linear map is compact since one can take the
identity operator on an infinite dimensional space X . Compact operators are natural generalizations of finite
rank operators and thus dealing with compact operators provides us with the closest analogy to the usual
theorems of finite dimensional spaces. Recall that L(X,Y ) denotes the normed vector space of all continuous
operators from X to Y and L(X) stands for L(X,X) and K(X,Y ) is the collection of all compact operators
from X to Y . It is well known that if Y is a Hilbert space then any compact T : X → Y is a limit of finite
rank operators; in other words, if F(X,Y ) denotes the class of finite rank maps, then

K(X,Y ) = F(X,Y ),

where the closure is taken in the operator norm. However, the situation is quite different for Banach spaces; not
every compact operator between Banach spaces is a uniform limit of finite rank maps. For further information
we refer the reader to a well-known example due to Enflo [8], in which Enflo constructs a Banach space without
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the approximation property. The following classical results on compact operators will be used for our discussion
later.

Theorem 1.1 For Banach spaces X , Y , and Z , we have the following:

1. K(X,Y ) is a norm closed vector subspace of L(X,Y ) .

2. If X
S−−−−−→ Y

T−−−−−→ Z are continuous operators and either S or T is compact, then TS is likewise
compact.

If one consider the continuous operators on a Banach space X , the above theorem asserts the fact that compact
operators on X form a two-sided ideal in L(X) . The following theorem of Schauder simply states that an
operator is compact if and only if its adjoint is compact.

Theorem 1.2 (Schauder) A norm bounded operator T : X → Y between Banach spaces is compact if and
only if its adjoint T ∗ : Y ∗ → X∗ is compact.

The main idea in proving Schauder’s theorem lies in the fact that

||PnT − T || → 0 implies ||T ∗Pn − T ∗|| → 0,

where Pn : X → span{e1, . . . , en} . A well-known proof of Schauder’s theorem may be found in Yosida’s work
[[21], p. 282].

For our discussion below we also need the following characterization of compact sets in a Banach space;
in some sense, it is a comment on the smallness of compact sets.

Theorem 1.3 (Grothendieck) A subset of a Banach space is compact if and only if it is included in the
closed convex hull of a sequence that converges in norm to zero.

In other words, if we have K , a compact subset of a Banach space X , then we can find a sequence {xn} in X

such that
||xn|| → 0 and K ⊆ co{xn}.

For a proof we refer the reader to [[7], p. 3].

2. Terzioğlu’s theorem

Theorem 2.1 (Terzioğlu [19]) An operator T : X → Y between two Banach spaces is compact if and only if
there exists a sequence {un} of linear functionals in X∗ with ||un|| → 0 such that the inequality

||Tx|| ≤ sup
n
|< un, x >|

holds for every x ∈ X .

Proof Suppose T : X → Y is compact. Then by Schauder’s theorem T ∗ : Y ∗ → X∗ is compact, and thus, by
definition, if V denotes the closed unit ball of Y ∗, T ∗(V ) is a norm totally bounded subset of X∗ . Now applying
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Grothendieck’s result, we have a sequence {un} of elements of X∗ with ||un|| → 0 and T ∗(V ) ⊆ co{un} , or in
other words, each element of T ∗(V ) can be written the form

∞∑
n=1

αnun with
∞∑

n=1

|αn| ≤ 1.

Thus, for each x ∈ X , we have

||Tx|| = sup
||v||≤1

|< T ∗v, x >| ≤

( ∞∑
n=1

|αn|

)
sup
n
| < un, x > |.

Suppose that T satisfies the inequality ||Tx|| ≤ supn |< un, x >| for some sequence {un} ∈ X∗ . For ϵ > 0

choose N such that ||un|| < ϵ for n > N and set

Mϵ = {x ∈ X : < ui, x >= 0 for i = 1, 2, . . . N},

and then one can have

T ∗(V̊ ) ⊂ ϵŮ +M⊥
ϵ ,

where U denotes the unit ball of X and for each linear subspace M of X , the polar of M , denoted by
M̊ , is a linear subspace of X∗ defined as:

M̊ := {a ∈ X∗ : | < x, a > | ≤ 1 for x ∈M} .

This shows that T ∗ is compact and hence T is compact.
2

An application of the above characterization theorem (Theorem 2.1) implies the fact that every compact
mapping of a Banach space into a Pλ -space is ∞ -nuclear. To understand this result, we need the following
definitions.

Definition 2.2 We say that X is a Pλ space, (λ ≥ 1), if for every bounded linear operator T from a Banach
space Y to X and every Z ⊃ Y there is a linear extension T̃ of Z to X with

||T̃ || ≤ λ||T ||.

This is illustrated in the following diagram:

Z

Y X

∼
T

T

If ||T̃ || = ||T || in the above definition, we call X extendible. This property is related to the existence of a
Hahn–Banach type extension. Lindenstrauss in [12] examined the problem of when the extension T̃ is compact
if T itself is compact and his results are diverse and numerous, touching upon many related topics. For the

260



AKSOY/Turk J Math

case λ = 1 , it is known that a Banach space is a P1 space if and only if it is isometric to the space C(K) of all
continuous functions on extremally disconnected compact Housdorff space K with the sup norm. This result is
due to Nachbin [14].

Next, we define infinite nuclear mappings. This concept was first introduced in [15].

Definition 2.3 Let X and Y be Banach spaces and T : X → Y a linear operator. Then T is said to be
infinite-nuclear if there are sequences {un} ⊂ X∗ and {yn} ⊂ Y such that lim

n
||un|| = 0 ,

sup
||v||≤1

{ ∞∑
n=1

| < v, yn > | : v ∈ Y ∗

}
< +∞,

and

Tx =

∞∑
n=1

< un, x > yn

for x ∈ X .

As an application of Theorem 2.1, under the condition that T : X → Y where Y is a Pλ -space, Terzioğlu also
obtains a precise expression for Tx , which we state in the following theorem.

Theorem 2.4 ([19]) Let T be a compact mapping of a Banach space X into a Pλ space Y . Then for every
ϵ > 0 there exists a sequence {un} in X∗ with

lim
n→∞

||un|| = 0 and sup
n
||un|| ≤ ||T ||+ ϵ

and a sequence {yn} ∈ Y with sup
||v||≤1

∞∑
n=1

| < v, yn > | ≤ λ such that T has the form

Tx =

∞∑
n=1

< un, x > yn.

The complete details of the proof can be found in [19]. However, it is worth pointing out that the main idea of
the proof relies on a factorization of a compact map through the space c0 as follows:
Using Theorem 2.1, choose the sequence {un} in X∗ satisfying

lim
n
||un|| = 0 and sup

n
||un|| ≤ ||T ||+ ϵ and ||Tx|| ≤ sup | < un, x > |.

Define the linear mapping
S : X → c0 by Sx = {< un, x >},

and observe that S is compact. Then define a linear mapping R0 :

R0 : S(X)→ Y by R0(Sx) = Tx.

The inequality
||R0(Sx)|| = ||Tx|| ≤ sup | < un, x > | = ||Sx||
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implies that ||R0|| ≤ 1 .

c0

S(X) Y

∼
R

R0

Since Y is a Pλ space, there exists an extension R̃ of R0 such that R̃ :c0 → Y with ||R̃|| ≤ λ||R0|| = λ

and

E
S−−−−→ c0

R̃−−−−−→ Y.

Evidently T = R̃S .

By considering {en} ∈ c0 and setting yn = R̃(en) we obtain

sup
||v||≤1

∞∑
n=1

| < v, yn > | ≤ λ, and Tx =

∞∑
n=1

< un, x > yn.

Another related representation theorem for compact maps emphasizing the factorization through c0 can
be found in [17]. Using all of the above results of Terzioğlu, the following conclusions are shown in [20].

Corollary 2.5 ( [20]) 1. Every Pλ space has the approximation property.

2. Every compact linear operator of an L∞ space into a Banach space is infinite-nuclear.

3. Let T be a compact linear map of an infinite-dimensional space X into a Banach space Y . Then there
exists an infinite-dimensional closed subspace M of X such that TM : M → T (M) is infinite nuclear.

Terzioğlu’s characterization for compact maps found its use in more current research on compact maps
as well. See [9, 10, 18].

3. Compactness with approximation scheme

Approximation schemes were introduced by Butzer and Scherer for Banach spaces in 1968 [6] and later by
Brudnyi and Krugljak [5]. These concepts find their best application in a paper by Pietsch [16], where he defined
approximation spaces; proved embedding, reiteration, and representation results; and established connection to
interpolation spaces.

Let X be a Banach space and {An} be a sequence of subsets of X satisfying:

1. A1 ⊆ · · · ⊆ An ⊆ · · · ⊆ X .

2. λAn ⊆ An for all scalars λ and n = 1, 2, . . . .

3. Am +An ⊆ Am+n for m,n = 1, 2, . . . .
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For example, if we consider the space X = Lp[0, 1] , for 1 ≤ p < ∞ , then the collection of sets
{An} = {Lp+ 1

n
} forms an approximation scheme like above. Pietsch’s approximation spaces Xρ

µ (0 < ρ <

∞, 0 < µ ≤ ∞) are defined by considering the nth approximation number αn(f,X) , where

αn(f,X) := inf{||f − a|| : a ∈ An−1}

and
Xρ

µ = {f ∈ X : {nρ− 1
µ αn(f,X)} ∈ ℓµ}.

In the same paper, [16], embeddings, composition, and representation interpolation of such spaces are studied
and applications to the distribution of Fourier coefficients and eigenvalues of integral operators are given.

In the following we consider for each n ∈ N a family of subsets Qn of X satisfying the same three
conditions stated above. An example for Qn could be the set of all at most n -dimensional subspaces of any
Banach space X , or if our Banach space X = L(E) , namely the set of all bounded linear operators on another
Banach space E , then we can take Qn = Nn(E) the set of all n -nuclear maps on E .

Compactness relative to an approximation scheme for bounded sets and linear operators can be defined
by using Kolmogorov diameters as follows.

Let D ⊂ X be a bounded subset and UX denote the closed unit ball of X . Suppose Q = (Qn(X)n∈N)

be an approximation scheme on X ; then the nth Kolmogorov diameter of D with respect to this scheme Q is
denoted by δn(D,Q) and defined as

δn(D,Q) = inf{r > 0 : D ⊂ rUX +A for some A ∈ Qn(X)}.

Letting Y be another Banach space and T ∈ L(Y,X) , then the nth Kolmogorov diameter of T with
respect to this scheme Q is denoted by δn(T,Q) and defined as

δn(T,Q) = δn(T (UX), Q).

Definition 3.1 We say D is Q-compact set if

lim
n→∞

δn(D,Q) = 0,

and similarly T ∈ L(Y,X) is a Q-compact map if

lim
n→∞

δn(T,Q) = 0.

The following example illustrates that not every Q -compact operator is compact.

Example 3.2 Let {rn(t)} be the space spanned by the Rademacher functions. It can be seen from the Khinchin
inequality [13] that

ℓ2 ≈ {rn(t)} ⊂ Lp[0, 1] for all 1 ≤ p ≤ ∞. (3.1)

We define an approximation scheme An on Lp[0, 1] as follows:

An = Lp+ 1
n
. (3.2)

263



AKSOY/Turk J Math

Lp+ 1
n
⊂ Lp+ 1

n+1
gives us An ⊂ An+1 for n = 1, 2, . . . , and it is easily seen that An + Am ⊂ An+m for

n,m = 1, 2, . . . , and that λAn ⊂ An for all λ . Thus, {An} is an approximation scheme.
Next, we claim that for p ≥ 2 the projection P : Lp[0, 1] → Rp is a Q-compact map, but not compact,

where Rp denotes the closure of the span of {rn(t)} in Lp[0, 1] .

Lp
i−→ L2

P ↓ ↓ P2

Rp
j←− R2

We know that for p ≥ 2 , Lp[0, 1] ⊂ L2[0, 1] , and R2 is a closed subspace of L2[0, 1] and

P = j ◦ P2 ◦ i,

where i, j are isomorphisms shown in the above figure. P is not a compact operator, because dimRp = ∞ .
On the other hand, it is a Q-compact operator because, if we let URp

, ULp
denote the closed unit balls of Rp

and Lp , respectively, it is easily seen that P (ULp
) ⊂ ∥P∥URp

, but URp
⊂ CUR

P+ 1
n

, where C being a constant

follows from the Khinchin inequality. Therefore,

P (ULp
) ⊂ Lp+ 1

n
, which gives δn(P,Q)→ 0.

The above example shows that Q -compact maps are different from compact maps, and for further
properties of Q -compact maps we refer to [2]. Next we give a characterization of Q -compact sets as subsets of
the closed convex hull of certain uniform null-sequences.

Definition 3.3 Suppose X is a Banach space with an approximation scheme Qn . A sequence {xn,k}n,k in X

is called an order c0 -sequence if

1. ∀n = 1, 2, . . . , there exists An ∈ Qn and a sequence {xn,k}k ⊂ An ;

2. ||xn,k|| → 0 as n→∞ uniformly in k .

Theorem 3.4 Let X be a Banach space with an approximation scheme with sets An ∈ Qn satisfying the
condition |λ|An ⊂ An for |λ| ≤ 1 . A bounded subset D of X is Q-compact if and only if there is an order
c0 -sequence {xn,k}k ⊂ An such that

D ⊂

{ ∞∑
n=1

λnxn,k(n) : xn,k(n) ∈ (xn,k),

∞∑
n=1

|λn| ≤ 1

}
.

Proof of the above theorem can be obtained from the one given for p -Banach spaces in [3]. Clearly this
is an analog of Grothendieck’s theorem for Q -compact sets (compare with Theorem 1.3 above).

4. Terzioğlu’s theorem for Q-compact maps
Terzioğlu’s characterization of compact maps relies on both the Grothendieck and Schauder theorems. To obtain
the “Terzioğlu type” of a theorem for Q -compact maps one needs to check if these two theorems for Q -compact
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maps are valid or not. Theorem 3.4 above is Grothendieck’s theorem for Q -compact sets; therefore, we turn our
attention to seeing whether or not Schauder’s theorem is true for Q -compact maps. In other words, we need
to understand the relationship between T being Q -compact and its transpose T ∗ being Q∗ -compact. Recall
that a map T ∈ L(X,Y ) is a Q -compact map if

lim
n→∞

δn(T,Q) = 0.

As usual, by δn(T,Q) we mean

δn(T,Q) = δn(T (UX), Q) = inf{r > 0 : T (UX) ⊂ rUY +A for some A ∈ Qn(Y )},

and similarly δn(T
∗, Q∗) defined as δn(T

∗, Q∗) = δn(T
∗(UY ∗), Q∗) .

To obtain a “Schauder’s type theorem” for Q -compact maps, one seeks a relationship between δn(T,Q)

and δn(T
∗, Q∗) , which is not known. However, Astala in [4] proved that under the assumption that the Banach

space X has the lifting property and the Banach space Y has the extension property, for a map T ∈ L(X,Y ) ,
one has γ(T ) = γ(T ∗) , where γ(T ) denotes the measure of noncompactness of T . The relationship between
Kolmogorov diameters and the measure of noncompactness can be found in [1], which is expressed as

lim
n→∞

δn(T,Q) = γ(T,Q).

In the following we present a result analogous to Terzioğlu’s characterization theorem for Q -compact
maps under the assumption that both T and T ∗ are Q -compact.

Theorem 4.1 Let X and Y be Banach spaces, T ∈ L(X,Y ) , and assume that both T and T ∗ are Q-compact
maps. Then there exists a sequence {un,k} ∈ Qn with ||un,k|| → 0 for n → ∞ uniformly in k , such that the
inequality

||Tx|| ≤ sup| < un,k(n), x > |

holds for every x ∈ X . Here Qn is a “special” class of subsets of X∗ with the property that un,k(n) ∈ {un,k} .

Proof Since T ∗ : Y ∗ → X∗ is Q -compact, thus by the Theorem 3.4, T ∗(UY ∗) is a Q -compact set. Thus,
there exists a sequence {un,k}k ⊂ An ∈ Qn such that ||un,k|| → 0 as n→∞ uniformly in k and

T ∗(UY ∗) ⊂

{ ∞∑
n=1

λnun,k(n) : un,k(n) ∈ (un,k),

∞∑
n=1

|λn| ≤ 1

}
.

Then for each x ∈ X , we have

||Tx|| = sup
v∈UY ∗

| < v, Tx > | = sup
v∈UY ∗

| < T ∗v, x > | = sup
n
| <

∞∑
n=1

λnun,k(n), x > |,

and thus

||Tx|| ≤
∞∑

n=1

|λn| sup
n
| < un,k(n), x > | ≤ sup

n
| < un,k(n), x > |.

2
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Remark 4.2 Even though the relationship between δn(T,Q) and δn(T
∗, Q∗) is not known, for the closely

defined concept of approximation numbers, we know more. The relationship between the approximation numbers
of T and T ∗ was studied by several authors. It is shown in [11] that for T ∈ L(X) , we have

dist(T,F) ≤ 3 dist(T ∗,F∗),

where F and F∗ denote the class of all finite rank operators on X and X∗ , respectively. Central to the proof
of such a result is the assumption of local reflexivity possessed by all Banach spaces (see [13]). It is not hard to
show that if we assume that our space X , with approximation scheme Qn , satisfies the slight modification of
this property, called the extended local reflexivity principle, then we have

αn(T,Q) ≤ 3αn(T
∗, Q∗).

By αn(T,Q) we mean the n th approximation number defined with respect to the given approximation scheme
as

αn(T,Q) = inf {||T −B|| : B ∈ L(X), B(X) ∈ Qn(X)} .
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